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Abstract. A major problem of unstructured P2P systems is theavy network
traffic. This is caused mainly by high numbers afery answers, many of
which are irrelevant for users. One solution ts firioblem is to use Top-k que-
ries whereby the user can specify a limited nunfkjeof the most relevant an-
swers. In this paper, we present FD, a (Fully isted) framework for execut-
ing Top-k queries in unstructured P2P systems, thithobjective of reducing
network traffic. FD consists of a family of algdmihs that are simple but effec-
tive. FD is completely distributed, does not dependhe existence of certain
peers, and addresses the volatility of peers dugingry execution. We vali-
dated FD through implementation over a 64-nodetefuand simulation using
the BRITE topology generator and SimJava. Our perdoca evaluation shows
that FD can achieve major performance gains in gesfnicommunication and
response time.

1 Introduction

Peer-to-peer (P2P) systems adopt a completely ttatizad approach to data sharing
and thus can scale to very large amounts of datauaers. Popular examples of P2P
systems such as Gnutelld0] and KaaZa 12] have millions of users sharing
petabytes of data over the Internet. Initial resleasn P2P systems has focused on
improving the scalability of the unstructured sys$e such as Gnutella and KaaZa,
which rely on flooding. This work led to structursedlutions that provide a distrib-
uted lookup mechanism to route search requesisCAN [15], CHORD [.9], P-Grid

[2] and FreeNet7]. Although these designs can give better perfocaaguarantees
than unstructured systems, more research is ndedaterstand their trade-offs be-
tween autonomy, fault-tolerance, scalability, setfanization, etc. Meanwhile, the
unstructured model which imposes no constraint ata glacement and topology re-
mains the most used today on the Internet.

A major problem of unstructured systems, which prgs them from being really
scalable, is their heavy network traffic. Measuratedan [L7] have shown that al-
though 95% of any two nodes are less than 7 hojpg athe flooding based routing
algorithm generates 330 TB/month in a Gnutella oetwvith only 50,000 nodes. A

1 Work partially funded by the ARA Massive Data b&tAgence Nationale de la Recherche.



main portion of this traffic is caused by the lammount of query answers, a lot of
which may not be of interest to users. One obvanlstion to this problem is to send
the query only to the peers that are very closthéoquery originatord3], e.g. to
those which are at most 3 hops a away. Howevex stghificantly reduces the quality
of results, in the sense that the user cannotaenpally “good” answers.

As another solution, we propose to use Top-k geexieereby the user can specify
a numberk and the system should retltrof the most relevant answers. The degree
of relevance gcorg of the answers to the query is determined bycairsg function.
Efficient techniques have been proposed for Topi&ryg processing in distributed
systems 24] [25]. The algorithms typically use histograms, maiiméd at a central
site, to estimate the score of databases with cespehe query and send the query to
the databases that are more likely to involve &xRuits. These techniques can some-
how be used in super-peer P2P systems where sapes-maintain the histograms
and perform query sending and result merging. Hamndwecause they rely on central
information, these techniques no longer apply istuuttured systems.

In this paper, we present FD, a (Fully Distributédmework for executing Top-k
queries in unstructured P2P systems, with the goadducing network traffic. FD in-
volves a family of algorithms that are simple biieetive. FD has several salient fea-
tures. First, it reduces significantly the commatiizn cost of executing queries in
unstructured systems. Second, its execution is taieip distributed and does not de-
pend on the existence of certain peers. Thirdjdresses the volatility of peers during
guery execution and deals with situations whereespeers leave the system before
finishing query processing. We validated FD throagbombination of implementa-
tion and simulation and the results show very gpedormance, in terms of commu-
nication and response time.

The rest of this paper is organized as followsSéttion 2, we make precise our
assumptions and define the problem. In Sectione3present the basic algorithm of
FD, analyze its communication cost and proposenigcles in order to reduce this
cost. In Section 4, we address the volatility oéngeby proposing algorithms extend-
ing the basic algorithm. Section 5 describes agpevdnce evaluation of FD through
implementation over a 64-node cluster and simutatising the BRITE topology gen-
erator ] and SimJaval[l]. Section 6 discusses related work. Sectionntlodes.

2 Problem Definition

In this section, we first give our assumptions rdgay schema management and the
P2P architecture. Then we can precisely stateribl@dlgm we address in this paper.

In a P2P system, peers should be able to expresgesglover their own schema
without relying on a centralized global schema raglata integration system2(].
Several solutions have been proposed to supposntladized schema mapping.
However, this issue is out of the scope of thisepand we assume it is provided us-
ing one of the existing techniquesg.[14], [20] and B]. Furthermore, also for sim-
plicity, we assume relational data.



We assume that the P2P system is unstructuredyesortly requirement is that
each peer knows some other peers, its neighbocgnimnunicate. In an unstructured
P2P environment, there are two major aspects talsemuery processing difficult;

* No centralized information: there is no node for keeping global information
about the data shared by all peers. Each peer kisepan shared data and has
no idea about the data shared by the other peérs.ofly thing that a peer
knows is its neighbors’ addresses.

» Dynamicity: peers are very dynamic and can join or leave tlstesy at any
time. During the execution of the query, some pagditing peers may thus
leave the system.

Now we can define the problem as follows. Qebe a Top-k queryi,e. the user is
interested to receivk top answers t@®. Let TTL (Time-To-Live) determine the
maximum hop distance which the user wants her goersent. LeD be the set of all
data itemsi(e. tuples) that can be accessed throtilghops in the P2P system during
the execution of). Let Sc(d, Q)be a scoring function that denotes the scorelef re
vance of a data iteiD to Q. Our goal is to find the s@t//D, such that:

/T/=kandJd,7T, d, 7(D — T)thenSc(d, Q) > Sc(d, Q)

while minimizing the communication cost.

3 Top-k Query Processing

In this section, we first present the basic algponitof FD. Then, we analyze its com-
munication cost and propose some techniques farcieg it. For simplicity, we as-
sume no dynamicity of peers which means that adrpeemain reachable during
guery processing. This assumption will be relaxethé next section.

3.1 Basic Algorithm

The algorithm starts at thguery originator the peer at which a user issues a Top-k
query Q. The query originator performs some initializatidfirst, it setsTTL with a
value which is either specified by the user or diféSecond, it give€) a unique
identifier, denoted byID, which is made of a unique peer-ID and a queryntau
managed by the query originator. Peers Qe to distinguish between new queries
and those received before. After initializatione tuery originator triggers the se-
guence of the following four phases (see the exarmpFigure 1): query forward, lo-
cal query execution, merge-and-backward, and dateval.
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Fig. 1. A sample P2P system (a) and a sequence diagrta basic algorithm of FD (b)

Query Forward

Q is included in a message that is broadcast byjtieey originator to its reachable

neighbors. Each pegrthat receives the message includipgerforms the following

steps.

1. CheckQID: if Q has been already received, then discard the mesdsg) save
the address of the sender aspheentof p.

2. DecrementTTL by one: if TTL > 0, make a new message includifg QID,
new TTL and the query originator's address and send thesage to all
neighbors (except parent).

Local Query Execution
After sendingQ to its neighborsp executesQ locally, i.e. accesses the local data
items that match the query predicate, scores thenga scoring function, selects the



k top data items and saves them as well as theiesdocally. For scoring the data
items, we can use one of the scoring functions geeg for relational datag.g.
Euclidean function §][5]. These functions require no global informatiamd acan
score peer’s data items only using local informatibhe scoring function can also be
specified explicitly by the user.

After selecting thek local top data itemgy) must wait to receive its neighbors’
score-lists before starting the next phase. Howesiace some of the neighbors may
leave the P2P system and never send a score-pistite must set a limit for the wait
time. We computg’s wait time using a cost function based on TTL{wwek de-
pendent parameters amps local processing parameters. We provide theildeté
this cost function in Appendix A. If the cost fuimet is inaccurate (for some peers),
then it may happen that score-lists get receivést #ie expiration of the wait time.
We will deal with this situation in Section 4.

Merge-and-Backward

After its wait time hasexpired,p merges itk local top scores with those received
from its neighbors and sends the result tgésent(the peer from which it received
Q) in the form of ascore-list In order to minimize network traffic, we do ndtubble
up” the top data items (which could be large), otilgir scores and addresses. A
score-list is simply a list df coupleg(a, s) such that is the address of the peer own-
ing the data item anglits score. Thug performs the following steps:

1. Merge the score-lists received from the neighbath its localk top scores and
extracting thek top scores (along with the peers’ addresses).

2. Send thamerged score-listwhich contains th& highest scores (and peers’ ad-
dresses) extracted from local top scores and trexsgved from the neighbors,
to its parent.

Data Retrieval
By the three first phases, the merged score-lmttaining top scores are bubbled up
to the query originator. After the query originatas produced its merged score-list,
which is called thdinal score-list and which is gained by merging kslocal top
scores with the merged score-lists received fremdighbors, it directly retrieves the
k top data items from the peers in the list as fedloFor each peeddress in the fi-
nal score-list:
1. Determine the number of tim@sappears in the final score-list, saytimes.
2. Ask the peer a& to return itsmtop scored items.

Formally, consider the final score-list which is a set of at mo&tcouples(a, s)
in this phase for eac’Domain(Ly), the query originator determin@s = {s / (a, s)
[71;} and asks the peerato return/T, / of its top scored items.

3.2 Analysis of Communication Cost
In this section, we analyze our basic algorithmdenmunication cost. As we will see,

it is not very high. We also propose strategieethuce it. We measure the communi-
cation cost in terms of number of messages and aumbbytes which should be



transferred over the network in order to executgiery by our algorithm. The mes-
sages transferred can be classified asordyard messagedor forwarding the query
to peers. 2packward messagefor returning the score-lists from peers to thery
originator. 3)retrieve message$o request and retrieve tkeop results. We first pre-
sent a model representing the peers that collabamatexecuting our algorithm, and
then analyze the communication cost of backwatdgke and forward messages.

Model
Let P be the set of the peers in the P2P system. GiwreeyQ, let P /P be a set
containing the query originator and all peers teativeQ. We model the peers Iy
and the links between them by a grapfPy, E) wherePg is the set oferticesin G
andE is the set of thedges There is an edge-q in E if and only if there is a link be-
tween the peeng andq in the P2P system. Two peers are catlejhbor if and only
if there is an edge between then@nThe number of neighbors of each ppePq is
called thedegree of pand is denoted bg(p). The average degree of peersdns
called theaverage degree of @nd is denoted bg(G). The average degree Gfcan
be Computed aﬁ(G) - ( Z d(p)) /‘ PQ‘
pOPy

During the execution of our algorithmp/Pq may receiveQ from some of its
neighbors. The first peer, sayfrom whichp receivedQ, is theparentof p in G, and
therebyp is achild of g. A peer may have some neighbors that are neithgrarent
nor its children.

Backward Messages

In the Merge-and-Backward phase, each pePgjrexcept the query originator, sends
its merged score-list to its parent. Therefore,tbmber of backward messages, de-
noted byMyy, iS My~ /Po/-1.

Let L be the size of each element of a score-list irdyie. the size of a score and
an address), then the size of the score-likiis wherek is the number of top results
specified inQ. Since the number of score-lists transferred bgkvard messages is
/ PQ/—l, then the total size of data transferred by bacdwaessages, denoted by,
can be computed ds,, = kx Lx (/Po/-1). If we setL=10, i.e. 4 bytes for the score
and 6 bytes for the address (4 bytes for IP addieds2 bytes for the port number),
thenby,, = kx 10x (/Po/-1).

Let us show with an example tHay, is not significant. Consider th&0,000peers
receiveQ (including the query originator), thdﬁ’Q/:lO,OOO Since users are inter-
ested in a few results akds usually small, we s&t=20. As a resulth,,, is less than 2
megabytes. Compared with the tens of megabytesusicnand video files, which are
typically downloaded in P2P systems, this is small.

Retrieve Messages

By retrieve messages, we mean the messages sém laqyery originator to request
the k top results and the messages sent by the peeisghe top results to return
these results. In the Data Retrieval phase, theyquiginator sends at moktmes-
sages to the peers owning the top results (thesebmgpeers owning more than one



top result) for requesting their top results anesthpeers return their top results by at
mostk messages. Therefore, the number of retrieve messdgnoted by, ism, <
2xk.

Forward Messages
Forward messages are the messages that we usaveod@ to the peers. According
to the basic design of our algorithm, each ped?tgrsendsQ to all its neighbors ex-
cept its parent. Lep, denote the query originator. Consider the gr&gRy, E) de-
scribed before, eagh'{ Pq — {po}), send<Q to d(p)-1peers, wherd(p) is the degree
of pin G. The query originator send¥to all of its neighbors, in other wordsdp,)
peers. Then, the sum of all forward messagag can be computed as
my = (> (d(p)-1)) +d(p,)
pO(Pq ={p o}

We can writamy, as follows :

my, = (X (d(p)-1) +1= (Y (d(p)) - |P|+1
pOPy pOPg

Based on the definition ai(G), my, can be written asy, = (d(G) -1)¥/Po/+1,
whered(G) is the average degree Gf According to the measurements 6], the
average degree of Gnutella is 4. If we take thisevas the average degree of the P2P
systemj.e. d(G)=4, we havary, = 3X/PQ/+1. From the above discussion, we can de-
rive the following lemma.
Lemma 1 The number of forward messages in the basic ifgoris (d(G) -
1)%/Pg/+1.
Proof: Implied by the above discussion.

To determine the minimum number of messages negeksaforwardingQ, we
prove the following lemma.
Lemma 2 The lower bound of the number of forward messdgesendingQ to all
peers irPgis /Po/ - 1.
Proof: For sendind to each pegp/Pq, we need at least one forward message. Only
one peer ifPg hasQ, i.e. the query originator, thu® should be sent t(PQ/ - 1 peers.
Therefore, we need at led®/ - 1 forward messages to se@do all peers ifPq.C|

Thus, the number of forward messages in the bégicitam is far from the lower
bound.

3.3 Reducing the Number of Messages

We can still reduce the number of forward messagexy the following strategies. 1)
sendingQ across each edge only once. 2) Sending Qithlist of peers that have re-
ceived it. 3)using statistics to sen@ to only a subset of neighbors, which are more
expected to return top results.

SendingQ across each edge only once

In graphG, there may be many cases that two ppensdq are neighbors and none of
them is the parent of the otherg.two neighbors which are children of the same par-
ent. In these cases, in the basic form of our #@lyar both peers ser@ to the other,



i.e. Q is sent across the edpeqy twice. We develop the following strategy to s&pd
across an edge only once.
Strategy 1 When a peep receivesQ, say at timd, from its parent (which is the first
time thatp receiveQ from), it waits for a random, small time, shyand then sends
Q only to the neighbors whighhas not receive® from them before + A.
Lemma 3 With a high probability, the number of forward ssages with Strategy 1
is reduced tal(G)x/Po/ / 2.
Proof: SinceA is a random number and different peers generdependent random
values forA, the probability that two neighbors seQdo each other simultaneously is
very low. Ignoring the cases where two neighborgi€gto the other simultaneously,
with Strategy 1Q is sent across an edge only once. Therefore,uhdder of forward
messages can be computed g = /E/. Since /E/= d(G)¥/Po//2, then my,=
d(G)x/Po/12.7

Consideringd(G)=4 (similar to [L6]), the number of forward messagesrig=
2x/Pg/.

With Strategy 1, is closer to the lower bound than the basic fofrowr algo-
rithm. However, we are still far from the lower okl By combining Strategy 1 and
another strategy, we can reduce the number of forweessages much more.

Attaching to each forward message a list of peertat have receivedQ
Even with Strategy 1, between two neighbors, wizigh children of the same parent
p, one forward message is sent although it is us€lescause both of them have re-
ceivedQ from p). If p attaches a list of its neighbors@ then its children can avoid
sendingQ to each other. Thus, we propose a second strategy.
Strategy 2 Before sending) to its neighbors, a peerattaches t® a list containing
its Id and the Id of its neighbors and sends tikisdlong withQ. Each peer that re-
ceives theQ’'s message, verifies the list and does not $@nd the peers involved in
the list.
Theorem 1 By combining Strategy 1 and Strategy 2, with ghhprobability, the
number of forward messages is less tHé®)x/Po//2.
Proof: With Strategy 2, two neighbors, which have the sgrarent, do not send any
forward message to each other. If we use Strategyith a high probability at most
one forward message is sent across each edge. Bsaiggy 2, there may be some
edges such that no forward message is sent adress ¢.g. edges between two
neighbors with the same parent. Therefore, by coimbiStrategy 1 and Strategy 2,
the number of forward messagesng </E/, and thusmy, sd(G)X/PQ/IZ. 0
Consideringd(G)=4, the number of forward messagesijg < 2X/PQ/.

Using statistics to reduce the messages

If the peers sen@ to only a subset of their neighbors, which areanlikely to return
thek top answers, then we can significantly reducentimaber of messages, including
the forward and backward messages. However, ths peed some statistics to select
the best neighbors. For this, each gekeeps some statistics about the content of the
score-lists returned by every neighbor. Thesessiedican include: 1) The number of
scores returned by the neighbor that are inpthenerged score-list. 2) The position
of the greatest score, returned by the neighbothémp’'s merged score-list. Using



these statistics, we can develop a number of h@msrito sendQ to the neighbors,

which are more likely to return the top resultse$é heuristics include:

» Do not sendQ to the neighbors which none of their scores wathénmerged
score-list in the previous execution@f

» SendQ to the neighbors for which at leaspercent ¢.9.x=10) of their scores
was in the merged score-list.

» SendQ to the neighbors which the position of their higfheeturned score in the
merged score-list was lower tham, wherez<l, e.g. z=0.80With this heuris-

tic, we select the neighbors that have previousyrned better top scores.

Using the above heuristics, we can reduce the nuwmbmessages, but this may
decrease the quality of the results. However, ogpegments (see Section 5) show
that, by selecting a good heuristic and well adtjgsthe parameters, we can achieve a
significant reduction in the messages without aifitant loss of quality.

4 Dealing with Peers’ Dynamicity

In Section 3, we proposed FD’s basic algorithm assg no dynamicity of peers.
Obviously, P2P systems are very dynamic, and it melf happen that some peers
leave the system (or fail) at any time during quengycessing. Furthermore, peers can
suddenly take more time than expected to respohd dan create the following
problems to our basic algorithm: late receptiorsafre-lists by a peer, after its wait
time has expired; peers becoming inaccessibleeiivtbrge-and-Backward phase; and
peers that hold top data items becoming inaccesgibthe Data Retrieval phase. In
this section, we deal with these problems and mepxtensions to the basic algo-
rithm.

4.1 Late Reception of Score-Lists

In FD’s basic algorithm, each pagrafter its wait time has expired, merges its wp |
cal scores with the score-lists received from ggghbors and sends the result as a
score-list to its parent. Howeveay,may underestimate its wait time which is based,
among other parameters, on local processing paeasnet other peers. Thus, it may
happen that score-lists of some neighbors arriteg ila. afterp has sent its score-list
to its parent. We could simply ignore these lateredists and discard them. How-
ever, they may refer to answers which are highlgvant to the user’s query. Thus,
we propose thagb sends the late-score lists asuagent score-listo its parent. The
urgent score-lists should be bubbled up without wmatil arriving to a peer of which
wait time has not expired. When a pgaeceives an urgent score-list, it performs the
following actions:
» If g is not the query originator: if it has already tsi® merged score-list to its

parent, sends the urgent score-list immediatel{stparent too; else, deals with

the urgent score-list as any other received sadste-I



 If qis the query originator: if it is in the Data Retral phase, discards the ur-
gent score-list; else, deals with the urgent stisteas any other received score-
list.
Therefore, using urgent score-lists, we can sat@ daore-lists from being dis-
carded (except those that reach to the query atiginin the Data Retrieval phase),
and this increases the accuracy of the algorittam&wer to the Top-k query.

4.2 Peers Inaccessible in the Merge-and-BackwaRhase

In the Merge-and-Backward phase, each pesgnds a score-list to its parent. And it
may happen that's parent is inaccessible.§.it has left the system). We could sim-
ply ignorep’s score-list and havp discard it. But we can find alternative paths to
backwardp’s core list. We propose the following strategy:

» If p has a neighbor, say which is notp’s child (.e. p is not the first peer from
which g has receive®), send tag the score-list as an urgent score-list. The ur-
gent score-list will be bubbled up rapidly untilréaches a peer of which wait
time has not expired.

» If p has not such a neighbor, send the score-listtllirax the query originator
which can deal with this score-list like any ottsmore-list received from its
neighbors. Recall from Section 3 that the addrésiseoquery originator is com-
municated to all peers along with
Using this strategy, if the parent of a ppdeaves the system during query execu-

tion, the score-list gf is never lost.

4.3 Top Data Items Inaccessible in the Data Re&val Phase

In the Data Retrieval phase, the peers which Haddtap data items in the final-score
list need be accessed by the query originator. Mewet may happen that one or
more of those peers are inaccessiblg,because of leaving the system, thus hamper-
ing the production of the complete final result.eGsimple way to deal with this is to
produce an incomplete result, with less than kitems. A better solution is to in-
crease k before starting the first phase to congiernbe inaccessible data items. But,
how many should we add ¢ We can answer this question if we know a littleren
about peers’ accessibility. LB&1 be the probability that any top data item beloggin
to the final score-list be inaccessible, the follogdemma gives us an answer:

Lemma 4: If we increase&k to k / (1 - P) then the expected number of accessible top
data items in the Data Retrieval phask is

Proof: If the requested list size ¥ thenx(1-P)items are expected to be accessible.
Solvingx(1-P)=k, the required value ofis x=k/(1- P) [

Therefore, to compensate the inaccessible top itet@s in the Data Retrieval
phase, before sendir@to its neighbors, the query originator canlsask / (1 - P).
The query originator can use the statistics gathémam previous query executions
for estimatingP.



5 Performance Evaluation

We evaluated the performance of FD through impldatem and simulation. The
implementation over a 64-node cluster was usefwlal@ate our algorithm and cali-
brate our simulator. The simulation allows us tadgtscale up to high numbers of
peers (up to 10,000 peers).

The rest of this section is organized as follomsSéction 5.1, we describe our ex-
perimental and simulation setup, and the algoritisesd for comparison. In Section
5.2, we evaluate the response time of FD. We flirassent experimental results using
the implementation of FD and two other baselin@@igms on a 64-node cluster, and
then we present simulation results on the resptinge using various parameters:
number of peers, effect of latency, and bandwig#ttion 5.3 presents the evaluation
of communication cost, and Section 5.4 evaluatesattturacy of FD w.r.t. the dy-
namicity of P2P systems.

5.1 Experimental and Simulation Setup

For our implementation and simulation, we usedJénéa programming language, the
SimJava package and the BRITE universal topologeiggor.

SimJava [1] is a process based discrete event simulatickage for Java. Based
on a discrete event simulation kernel, SimJavauahes$ facilities for representing
simulation objects as animated icons on screenin&a simulation is a collection
of entities each running in its own thread. Thestties are connected together by
ports and can communicate with each other by sgratid receiving event objects.

BRITE [4] has recently emerged as one of the most progisiriversal topology
generators. The objective of BRITE is to producgeaeral and powerful topology
generation framework. Using BRITE, we generatealogies similar to those of P2P
systems and we used them for determining the liakegween peers in our tests.

We first implemented FD in Java on the largestafe@hachines that was directly
available to us. The cluster has 64 nodes connduted1-Gbps network. Each node
has an Intel Pentium 2.4 GHz processor, and ruad ihux operating system. We
make each node act as a peer in the P2P systehavEoa P2P topology close to real
P2P overlay topologies, we determined the peerbeis using the topologies gener-
ated by the BRITE universal topology generattjr Thus, each node only is allowed
to communicate with the nodes that are its neighldorthe topology generated by
BRITE.

To study the scalability of FD far beyond 64 peansl to play with various per-
formance parameters, we implemented a simulatoguSimJava. To simulate a peer,
we use a SimJava entity that performs all taskisrthust be done by a peer for execut-
ing FD. We assign a delay to communication portsiitulate the delay for sending a
message between two peers in a real P2P systendeFamining the links between
peers, we used the topologies generated by BRITE.

In all our tests, we use the following simple quasyworkload:

SELECT R.data FROM R ORDER BY R.score
STOP AFTER



Each peer has a tabd{score, datajn which attributescoreis a random real num-
ber in the interval[0..1] with uniform distribution, and attributdata is a random
variable with normal distribution with a mean ofKkilo bytes) and a variance of 64.
Attribute scorerepresents the score of data items and attritmterepresents (the de-
scription of) the data item that will be returneatk to the user as the result of query
processing. The number of tuplesP®fat each peer is a random number (uniformly
distributed over all peers) greater than 1000 asd than 20,000.

The simulation parameters are shown in Table 1eg&mbtherwise specified, the
latency between any two peers is a normally disteid random number with a mean
of 200 (ms) and a variance of 10the bandwidth between peers is also a random
number with normal distribution with a mean of &8§s) and a variance of 32. Since
users are usually interested in a small numbesmfésults, we sdt=20.

The simulator allows us to perform tests ud@000peers, after which the simu-
lation data no longer fit in RAM and makes our sedifficult. This is quite sufficient
for our tests. Therefore, the number of peers & BZstem is set to lH,00Q unless
otherwise specified. In all test$;TL is set as the maximum hop-distance to other
peers from the query originator, thus all peershef P2P system can recei@ We
observed that in the topologies wit®,000nodes, withTTL=12 all peers could re-
ceive Q. Our observations correspond to those based oeriexpnts with the
Gnutella network 16]; for instance, witt60,000nodes, the maximum hop-distance
between any two nodesig.

Table 1. Simulation parameters

Parameter Values
Bandwidth Normally distributed random, Mean = 56pishVariance = 32
Latency Normally distributed random, Mean = 200 Wasiance = 100
Number of peers| 10,000 peers
TTL Large enough such that all of peers can reciéigequery
K 20
Result data items Normally distributed random, Mean = 1 KB, Variarncé4
size

In our simulation, we compare FD with two otheralthms. The first algorithm is
a centralizedalgorithm, which we denote &, which works as follows. Each peer
receivingQ sends itk top relevant data items directly to the query ioatpr. The
query originator merges the received results arichets thek overall top scored data
items from them. The second algorithm is an opteaizersion of CN, which we de-
note asCN*, by which the peers return directly to the querigioator only their
score-lists (not data items).

5.2 Response Time

Scale up
In this section, we investigate the scalability=@f. We use both our implementation
and our simulator to study response time while wvayyhe number of peers. The re-



sponse time includes local processing time and tiatefersj.e. sending query mes-
sages, score-lists and data items.

Using our implementation over the cluster, we rapegiments to study how re-
sponse time increases with the addition of peagairé 2 shows excellent scale up of
FD since response time logarithmically increaset wie addition of peers until 64.
Using simulation, Figure 3 shows the response tiofethe three algorithms with a
number of peers increasing up to 10000 and the sihaulation parameters set as in
Table 1.

FD always outperforms the two other algorithms #mel performance difference
increases significantly in favor of FD as the numisiepeers increases. The main rea-
son for FD’s excellent scalability is its fully digouted execution. With CN and CN*,
a central nodeie. the query originator, is responsible for queryaximn, and this
creates two problems. First, the central node besoancommunication bottleneck
since it must receive a large amount of data frdheopeers that all compete for
bandwidth. Second, the central node becomes a gBioce bottleneck, as it must
merge many answers to extract kiiep results.

Overall, the experimental results correspond with dimulation results. However,
the response time gained from our experiments thescluster is a little better than
that of simulation because the cluster has a higied network.
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Fig. 2. Response time vs. number of peers  Fig. 3. Response time vs. number of peers

Effect of Latency and Bandwidth
In this section, we study the effect of latency dmaehdwidth on response time. We
only use our simulator since these parametersixd fn our implementation. In the
previous simulation tests the latency and bandwwdgine normally distributed ran-
dom numbers with mean values of 200 (ms) and 56g)kbespectively. In this test,
we vary the mean values of the latency and bantivadt study their effects on the
response time.

Figure 4 shows how response time decreases witkasing bandwidth, with the
other simulation parameters set as in Table 1ebsing the bandwidth has strong,



similar effect on all three algorithms which haweettansfer some data over the net-
work. FD outperforms the other algorithms for ak tested bandwidths.

Figure 5 shows how response time evolves with aming latency, with the other
simulation parameters set as in Table 1. Latensylitike effect on the CN algorithm,
because the peers return their results directtheocquery originator, and do not bub-
ble up the results. Although FD outperforms theeothlgorithms for all the tested
values, high latencye.g. more than 1000 ms, has strong impact and incre&ses
sponse time much. However, below 1000 ms, lateasynot much effect on FD’s re-
sponse time. According to studies reportedli8],[ more than 80% of links between
peers have good latency, less than 280 ms, fornFixhas very good performance.
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5.3 Communication Cost

Now, using our simulator we study the communicatost of FD in its basic form
and also with the strategies proposed in Secti@rf®.reducing the communication
cost. We measure the communication cost in termthe@fmumber of bytes, which
should be transferred on the network for procesaitap-n query.

Effect of Strategy 1 and Strategy 2

In this section, we study the communication costhoée versions of FD: 1) its basic
form, noted as FD-Basic; 2) using Strategy 1, deshtly FD-St1; 3) using a combina-
tion of Strategy 1 and Strategy 2, denoted by FD-S.

Figure 6 shows how communication cost evolves witlreasing the number of
peers, with the other parameters set as in Tall¢ith. 10,000 peers, the communica-
tion cost of FD-Basic is about 5 MB, but FD-Str1h&s reduced this cost to about
3.5MB, thus approximately 30% reduction in commati@n cost.
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Effect of using statistics on communication cost

As stated in Section 3, we can use the statistitiseged during previous query execu-
tions in order to select a subset of the “bestghbors, which are more likely to re-
turn top results, and to serf@ only to them, thereby reducing the communication
cost. In this section, we study the effect of ttimtegy on the communication cost.
We measure the communication cost in terms of teher of bytes which should be
transferred over the network for processing a TapryQ.

We used the following heuristic for selecting theigmbors: sendQ to the
neighbors which the position of their greatest esdnrthe merged score-list was lower
thanzxn, wherez<1.

We also studied the effect of the above heuristidhee accuracyof the returned
results. We define the accuracy of results asvigld_etPqy /7 P be a set containing
the query originator and all peers that recé&é et To be the set of thle top results
owned by the peers involved Ry. Let T, be the set of the results which will be re-
turned to the user as the respons@ofVe denote the accuracy of resultsazy and
we define it agcy = (/To 1 T,/) 1/To /.

We increased from zero to one and we measuseg and the percentage of the
reduction in communication cost. The results angialed in Figure 7. For = 0.8Q
the accuracy of results is higher th@®% despite the fact that the communication
cost is reduced by approximate3%% Thus, with a small loss of accuracy, we can
obtain a significant reduction in communicationtcos

5.4 Dealing with Peers’ Dynamicity

Using the simulator we now study the effect of siategies presented in Section 4
for dealing with the dynamic behavior of P2P systeam the accuracy of results.



We defined the accuracy of resuli, in Section 5.3. We now measwe, in two
versions of FD. The first version, denotedFi3-Basig is the basic form of FD in
which peers discard the late score-lists, as vweethair merged score-list in the case
that their parent is inaccessible. The second d@eoted afD-Dynamig is a version
in which in the case of receiving late score-listsnaccessibility of the parent, the
peers use the urgent score-lists for bubbling epate score-list or merged score-list
as described in Section 4.

In our tests, we investigated how the accuracyestits changes with varying the
average lifetime of the peers according to theibistions observed inlB]. The life-
time of a peer is defined as the time period ther g¢gays in the P2P system. In our
tests, we assumed that the query originator doésave the system before releasing
the results to the user.

The results are shown in Figure 8. For lifetimesvab4 minutes, the accuracy of
results in FD-Dynamic is approximately one. But,FB-Basic, even for lifetimes
above one hour, the accuracy of results is less ¢ha. This shows the excellent im-
pact of our strategy on the accuracy of the resultl/namic environments.
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6 Related Work

Most of the techniques proposed for Top-k querycessing in distributed systems
are based on histograms, maintained at a centegltei estimate the score of data-
bases with respect to a query and send the quéhgetdatabases that are more likely
to involve top resultsZ4][25]. In [24], a two-step method for Top-k query processing
in distributed systems with possibly uncooperativeal systems is proposed. The
first step determines which databases are likelyotgtain the top results and rank the
databases with respect to the given query. Thensestep determines how the ranked
databases should be searched and which tuplestfimsearched databases should be
returned. A central node maintains some histogranestimate the rank of the data-



bases with respect to the query. However, thisnigele can not be used efficiently in
a P2P environment, because keeping histograms-datéowith autonomous peers
that may join or leave the system at any time fifscdit.

In the context of P2P systems, little researchdmeentrated on the Top-k query
processing. In 41], the authors present a Top-k query processiggrithm for
Edutella, a super-peer network in which a smalteetage of nodes are super-peers
and are assumed to be highly available with vemydgocomputing capacity. The su-
per-peers are responsible for Top-k query procgsair other peers only execute the
queries locally and score their resources. Althouglly good for super-peer systems,
this technique cannot apply efficiently to otherPP&ystems, in particular, unstruc-
tured, since there may be no peer with higherl#iia and computing power. In con-
trast, FD makes no assumption about the P2P nettwpdtogy and the existence of
certain peers.

PlanetP 8] is a P2P system that constructs a content ashvkspublish/subscribe
service using gossiping to replicate global docueeross P2P communities up to
ten thousand peers. In PlanetP, a Top-k query psotg method is proposed that
works as follows. Given a quefy, the query originator computes a relevance ranking
of peers with respect 1@, and then contacts them one by one from top twbobf
ranking and asks them to return a set of theirsiogred document names together
with their scores. To compute the relevance of geepglobal fully replicated index is
used that contains term-to-peer mappings. In &I&82P system, keeping up-to-date
the replicated index is a major problem that hgdalability. In contrast, our algo-
rithm does not use any replicated data.

For the cases where a data item can have multpies at different sites.g.the
amount of a customer’s purchase in several sttliesThreshold Algorithm (TA) for
monotonic score aggregatiof] [stands out as an efficient method. There hawen be
many works in order to optimize the TA algorithmterms of communication cost
and response time,g.[22] and [L3]. In our case, each data item has a unique score
However, we could also use variations of the TAodthm in the case of multiple
scores.

7 Conclusion

In this paper, we proposed FD, a fully distribufesimework for executing Top-k
queries in unstructured P2P systems, with the t@ilsgeof reducing network traffic.
FD requires no global information, does not dependhe existence of certain peers,
reduces significantly the communication cost, addrasses the volatility of peers
during query execution.

We validated the performance of FD through impletatton over a 64-node clus-
ter and simulation using the BRITE topology genaraind SimJava. The experimen-
tal and simulation results show that FD has lobarit scale up. The simulations also
show the excellent performance of FD, in termsahmunication cost and response
time, compared with two baseline algorithms. Thaults show that our strategies can
reduce the communication cost significantlg, by about 35%. They also show that,
by selecting a good heuristic and well adjusting parameters, we can take advan-



tage of statistics to achieve a significant redugti.e. of more than 35%, in commu-

nication cost without a significant loss in accyraess than 10%. Furthermore, the
simulation results show that the algorithms, pregom FD for addressing the dy-

namic behavior of P2P systems, are effective.

As future work, we plan to deal with replicatedalat P2P Top-k query process-
ing. In the case of data replication, with our aithon, there may be replicated data
items in the final score-list. This may be fine the user as it is an indication of the
items’ usefulness (in a P2P system, the most uskfial get most replicated). But we
could also identify replicated items. A simple gmn is to add information in the
score-lists to help eliminate duplicatesq. key values for relational data, descriptors
for documents). An issue then is to optimally clethe replicas to access.
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Appendix A: Computing the Wait time

In the Local Query Execution phase (see Sectior&@®)h peep, after sendin@ to its
neighbors and executing locally, must wait to receive the results of itsghbors.
However, some of the neighbors may leave the P2tesyand never send any result
to p. Thus, we must determine a limit fg’s wait time.

Let ttl be the value off TL whenp sendsQ to its neighbors. We definRe-
sponse(Q.,ttl)as the time forp to receive all its neighbors’ results. ThlRe-
sponse(Q,ttl)is the optimal value fop’s wait time. If p waits less thanRe-
sponse(Q,ttl)it will lose the results of some neighbors. Iinvaits more time, it will
increase the overall response time. Therefore, stimateResponse(Q,ttin order to
use it for setting the wait time @f Response(Q,ttlis made of the following cost
components.

1. Theforward time which is the time to sen@ from p to itsdescendants.e. p's
neighborsp’s neighbors’ neighbors, and so on, until TTL reechero.

2. Thelocal query execution timevhich is the time needed for the local execution
of Q by the descendants pf

3. Themerge timewhich is the time it takes the descendants wierge their local
scores with the received score-lists.

4. The backward timewhich is the time it takes the descendants tf bubble up
their score-lists, until they reachpo

To estimate these four cost components, we considemaximum number of
tasks, which must be done sequentially. Becauseahe of TTL of Q whenp sends
it to the neighbors i#l, the forward time has at masit sequential sendings &. The
local execution of) can be done in parallel by all its neighbors, twesconsider only
one sequential local query execution. To estimagerherge time, we consider the
maximum number of peers that must do their mergaatjpn sequentially which is
ttl-1 (only the peers that receiv@ with TTL=1 have not to do a merge operation).



The backward time consists of at mtissequential sendings of score-lists. Using the
cost parameters described in Table 2 which we disbalow, we can state that:

Response(Q,tt&’ ttl XTand (Q) + Texe((Q)+ ttl XTSLsn({k) + (ttl - (1)
1)XTMerge(k)

Now, let Wait,(Q,ttl) be the time that peqr must wait after sending the quely
with TTL=ttl to its neighbors, we can 3&ait,(Q,ttl) as follows:

Waitp(Q1tt|) =l XTand (Q) + Texe((Q) + ttl XTSLsn({k) + (ttl - 1)XTMerge(k) (2)

Table 2. Cost parameters for estimating the wait time

Parameter Description
TosndQ) Maximum time needed to seflfrom a peer to its neighbor.
Texed Q) Maximum time to execut® locally.

TsisndK) Maximum time to send a score-list containikgcores (and ad
dresses) from a peer to its parent.

Twerge (K) | Maximum time for a peer to merge all score-listseieed from its
neighbors with its local top scores. Each scotezbsitains at most
k couples.

Formula (2) relies on the cost parameters desciibb@dble 2. To discuss how we
can obtain these cost parameters, we classify thenmetwork-dependent parameters
and local processing parameters.

Network-dependent parametersi.e. Tosnd Q) andTssndK). These parameters de-
pend on the P2P physical network characteriséag,the latency and data transfer
rate between peers. Peers can estimate these paranmEng statistics gathered from
previous query executions. During the bubbling @iphe score-lists, we can also re-
cord some network characteristics like minimumnrateand minimum data transfer
rate between peers. Using these statigtican simply compute the network depend-
ent parameters.

Local processing parametersi.e. Texed Q) andTyerge (K). EstimatingTe.e{Q) pre-
cisely is hard because it depends on many parasnetgrthe computing power of
peers, their load, their database size, etc. Thesimply let the user give a threshold
T for the maximum local query execution time. If @ep cannot execu® within T
time units, its result may be discarded. In falts threshold is the budget that the
user invests for the local query execution. Sheadjast this parameter according to
the desired trade-off between result completenedsr@sponse time. For instance, a
low value of T may result in loosing the top results of the peleas cannot execut@
within T time units. Estimatinguerge (K) is easier because it is a functiorkaind the
number ofp’s neighbors. Furthermore, the time to merge sdisteds typically much
smaller than the other cost parameters. So a siogpistant value can be easily com-
puted.




