37 research outputs found

    The ARTS web server for aligning RNA tertiary structures

    Get PDF
    RNA molecules with common structural features may share similar functional properties. Structural comparison of RNAs and detection of common substructures is, thus, a highly important task. Nevertheless, the current available tools in the RNA community provide only a partial solution, since they either work at the 2D level or are suitable for detecting predefined or local contiguous tertiary motifs only. Here, we describe a web server built around ARTS, a method for aligning tertiary structures of nucleic acids (both RNA and DNA). ARTS receives a pair of 3D nucleic acid structures and searches for a priori unknown common substructures. The search is truly 3D and irrespective of the order of the nucleotides on the chain. The identified common substructures can be large global folds with hundreds and even thousands of nucleotides as well as small local motifs with at least two successive base pairs. The method is highly efficient and has been used to conduct an all-against-all comparison of all the RNA structures in the Protein Data Bank. The web server together with a software package for download are freely accessible at

    RedMDStream: Parameterization and Simulation Toolbox for Coarse-Grained Molecular Dynamics Models

    Get PDF
    AbstractCoarse-grained (CG) models in molecular dynamics (MD) are powerful tools to simulate the dynamics of large biomolecular systems on micro- to millisecond timescales. However, the CG model, potential energy terms, and parameters are typically not transferable between different molecules and problems. So parameterizing CG force fields, which is both tedious and time-consuming, is often necessary. We present RedMDStream, a software for developing, testing, and simulating biomolecules with CG MD models. Development includes an automatic procedure for the optimization of potential energy parameters based on metaheuristic methods. As an example we describe the parameterization of a simple CG MD model of an RNA hairpin

    PROTEIN NUCLEIC ACID INTERACTIONS GRANT # DE-FG02-96ER62166 FINAL REPORT

    Full text link

    Nat Struct Mol Biol

    Get PDF
    As translation proceeds, the nascent polypeptide chain passes through a tunnel in the large ribosomal subunit. Although this ribosomal exit tunnel was once thought only to be a passive conduit for the growing nascent chain, accumulating evidence suggests that it may in fact play a more active role in regulating translation and initial protein folding events. Here we have determined single-particle cryo-electron microscopy reconstructions of eukaryotic 80S ribosomes containing nascent chains with high alpha-helical propensity located within the exit tunnel. The maps enable direct visualization of density for helices as well as allowing the sites of interaction with the tunnel wall components to be elucidated. In particular regions of the tunnel, the nascent chain adopts distinct conformations and establishes specific contacts with tunnel components, both ribosomal RNA and proteins, that have been previously implicated in nascent chain-ribosome interaction

    RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures

    Get PDF
    Background: Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization. Description: RNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics) is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA structures is provided. RNA FRABASE 2.0 is freely available at http://rnafrabase.cs.put.poznan.pl webcite. Conclusions: RNA FRABASE 2.0 provides a novel database and powerful search engine which is equipped with new data and functionalities that are unavailable elsewhere. Our intention is that this advanced version of the RNA FRABASE will be of interest to all researchers working in the RNA field

    Aminormotiffinder - a graph grammar based tool to effectively search a minor motifs in 3D RNA molecules

    Get PDF
    RNA Motifs are three dimensional folds that play important role in RNA folding and its interaction with other molecules. They basically have modular structure and are composed of conserved building blocks dependent upon the sequence. Their automated in silico identification remains a challenging task. Existing motif identification tools does not correctly identify motifs with large structure variations. Here a “graph rewriting” based method is proposed to identify motifs in real three dimensional structures. The unique encoding of A Minor Searcher takes into consideration the non canonical base pairs and also multipairing of RNA structural motifs. The accuracy is demonstrated by correctly predicting A minor motifs across many PDB files with zero false positives. There is a huge demand of a good well developed RNA Motif identification algorithm that would successfully identify both canonical / non canonical and isomorphic motifs. In this thesis, a novel encoding algorithm is demonstrated that successfully identifies RNA A Minor Motifs from 3D RNAs. The algorithm encodes the three dimensional RNA Data into one dimension without losing any tertiary information during the transition. A Minor motif is then searched in this one dimensional string using exhaustive search technique with linear time complexity. The efficiency is demonstrated by the comparison of AMinorSearcher with benchmark tool FR3D. FR3D lacked in both precision and recall while AMinorSearcher did not
    corecore