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ABSTRACT Coarse-grained (CG) models in molecular dynamics (MD) are powerful tools to simulate the dynamics of large
biomolecular systems on micro- to millisecond timescales. However, the CG model, potential energy terms, and parameters
are typically not transferable between different molecules and problems. So parameterizing CG force fields, which is both
tedious and time-consuming, is often necessary. We present RedMDStream, a software for developing, testing, and simulating
biomolecules with CG MD models. Development includes an automatic procedure for the optimization of potential energy
parameters based on metaheuristic methods. As an example we describe the parameterization of a simple CG MD model of
an RNA hairpin.
Molecular dynamics (MD) (1) is a technique to study biomol-
ecular motions with a molecular mechanics model and
numerical solution of Newton’s equations of motions. The
first few picosecond-long full-atomic MD of a trypsin inhib-
itor in a vacuumwas carried out in 1977 (2). Recently the dy-
namics of the same protein was simulated on a millisecond
timescale (3). Despite huge progress in increasing MD effi-
ciency and computer power, there is still a large gap between
theMDcapability and timescales of biological processes. For
example, protein translation and folding require up to sec-
onds and involvemuch larger systems than a trypsin inhibitor.

A possible methodological remedy is to develop reduced
MD models, also termed coarse-grained (CG) (4–6) models.
In CG models, a biomolecule is represented as a set of inter-
action centers (beads) that group together multiple atoms.
This approach leads to the extension of spatial and temporal
scales; the number of degrees of freedom is reduced; and
because the simplified interactions usually correspond to
the highest-frequency ones, the MD time step can be
enlarged. With CG MD models, millisecond timescale sim-
ulations for systems much larger than a trypsin inhibitor can
be performed on desktop computers. CG MD models have
been successfully applied to processes such as nucleic
acid thermal denaturation (7), protein folding (8–10), and
conformational changes (11), as well as equilibrium dy-
namics of ribosome (12) or nucleosome (13). However,
the common use of CG MD simulations is hindered by the
huge effort associated with developing such models.

For full-atomistic MD, there are well-established proto-
cols on how to derive a potential energy function and param-
eters from quantum chemistry (14). Although there exist
Submitted December 15, 2014, and accepted for publication March 13,

2015.

*Correspondence: f.leonarski@cent.uw.edu.pl or joanna@cent.uw.edu.pl

Editor: Nathan Baker.

� 2015 by the Biophysical Society

0006-3495/15/04/1843/5 $2.00
methods for systematic parameterization of CGMDmodels,
such as iterative Boltzmann inversion (15) or renormaliza-
tion group (16), they are not standardized for systems of bio-
physical interest. Moreover, the emphasis is on the results of
the author-selected problem, and not on the thorough
description of the model preparation process (reviewed in
(6)). This process, typically only briefly described in publi-
cations, is hard to repeat. Although most CG MD models
work well, they are limited to a particular problem or mole-
cule class, even though in most cases they could be easily
adapted to similar problems or related biomolecules. CG
MD models’ range of applications can be only extended if
protocols for their development are improved and systema-
tized. The obstacle has been the fragmentation of CG MD
tools and benchmarks.

A CG MD model itself is not enough to run a simulation;
tools to prepare starting files, a CG MD simulation engine,
and tools to analyze results are necessary. For full-atomistic
MDmodels, well-tested software packages, such as NAMD/
VMD (17,18) or Amber/AmberTools (19), are available.
However, in CG modeling, the user often has to combine
tools from different sources. Some CG MD models are
available only as in-house toolboxes; others are published
only as a set of equations without the simulation tools.
Another issue has been the benchmarking of these models.
For example, comparison of radial distribution functions
(or their subsets corresponding to a particular set of bead
pairs) is widely used to assess models, although there is
no well established method to describe this difference in nu-
merical terms. So providing tools to make the CG MD
models more universal has been essential.

We present RedMDStream—an application to developCG
MD force field parameters using a user-specified protocol
and perform CGMD simulations. RedMDStream is suitable
for the development and simulations of low-resolution (one
to three beads per residue) and off-lattice CG MD models.
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It is a standalone application written in C and Cþþ lan-
guages, working on Linux machines, parallelized with MPI
and OpenMP (see the Supporting Material for the scalability
benchmarks), and freely available under GNU public license
from http://bionano.cent.uw.edu.pl/Software/RedMD.
RedMDStream architecture

To develop a CGMDmodel with RedMDStream, one has to
perform the following steps (see Fig. 1).

1. Design CG topology. State the rules to transform an
atomistic structure into a CG representation. These rules
describe the bead type, placement, mass, and charge, as
well as the connectivity network and potential energy
terms.
Biophy
a. Beads can be placed in the positions of particular
atoms or residues’ centers of masses. See Fig. 2 b
for an example.

b. The connectivity network, including pseudo-
bonds, angles, and dihedrals, is set according to
user-defined criteria: the sequence (neighbor inter-
actions), distance (distance cut-off in a reference
structure), or secondary/tertiary structure (comple-
mentary pairing in nucleic acids, salt, or disulphide
bridges in proteins). See Fig. 2, c–d.

c. Interactions are assigned for the connectivity
network by providing potential energy terms. Users
choose between the predefined terms, such as har-
monic and Morse potential, or provide their own
equation. This equation along with its derivative
is tabularized by RedMDStream for better perfor-
mance. Parameters of the predefined and custom
potential terms depend on the properties of a
particular interacting pair (triple, quadruple), e.g.,
beads closer in the reference structure will have
stronger bonding, as in elastic network models
(12,13). See Table S1 for an example.
All these rules are written in an XML (20) file allowing us
to share the developed model with others (see Fig. S2).
sical Journal 108(8) 1843–1847
2. Provide a simulation protocol. The user describes the
implementation of the force field: the files to load, MD
simulation method and length, and steps to analyze the
trajectory.
a. Molecules can be provided in PDB (21), PDBML
(22), and PQR (23) formats. In addition to a coor-
dinate file, one may include structural information
from RNAView (24), in a dot-bracket notation for
nucleic acids or plain text format. Protein second-
ary structure annotations are read from PDB and
PDBML files. PDBML also includes base pairing
annotations (25) for nucleic acids.

b. For MD simulation NVE and NVT (with the
Berendsen thermostat), ensembles are available,
as well as Langevin and Brownian MD regimes (1).
MD is performed using the fully integrated
RedMD engine (26).

c. MD trajectory is saved in the DCD binary format
and analyzed for pseudo-atoms’ root mean square
deviation (RMSD), root mean square fluctuations
(RMSF), and distance distributions. To efficiently
test many CG model modifications, RedMDStream
can refrain from saving the trajectory on the disk
and use the analyzed measures as a sole outcome
of the MD simulation.
3. Perform parameter optimization. The optimal topology
parameters of the CG model can be determined using a
built-in optimization routine. The criteria of the quality
of the CG model are selected by the user and the score
comes from CG MD simulation(s) outcome. The criteria
can be based on comparing the RMSD, RMSF, and
distance distributions with a user-selected reference.
RedMDStream incorporates metaheuristic optimization
methods: evolutionary algorithm, particle swarm optimi-
zation, and simplex algorithm. To efficiently find the op-
timum of the function, the methods follow strategies
inspired by nature instead of strict mathematical rules
(27). The parameters selected for the optimization can
be the same as defined in the potential energy function or
some parameters can be either excluded or fixed. Also,
one can provide a mathematical expression between a
FIGURE 1 RedMDStream workflow. Frames list

the tasks performed by RedMDStream. Informa-

tion read from the input files is in blue font. The

control files are in red font. Italic font refers to

data produced by RedMDStream that can be stored

in the output file or memory. To see this figure in

color, go online.

http://bionano.cent.uw.edu.pl/Software/RedMD


FIGURE 2 (a) A full-atomistic structure of the microROSE element (21)

(PDB ID: 2GIO (21), NMR resolved structure). (b) Bead placement (large

white spheres) on the phosphorus atom in the CG MD model. (c) Pseudo-

bonds in variant 1 of the force field model. (d) Pseudo-bonds in variants

2 and 3. To see this figure in color, go online.

TABLE 1 Best score for each of the force field variants,

depending on the Langevin dumping constant

�1 �1
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parameter used in the optimization and one or many
parameters defining the energy function of the CG MD
model.
g ¼ 5 ps g ¼ 20 ps

Variant 1 0.27 0.21

Variant 2 0.27 0.23

Variant 3 0.24 0.22

Scores are normalized to 0.0 to 1.0 scale. Lower values correspond to better

models. Scoring criteria are described in Table S2.
RNA one-bead force field

As an example, we optimized a one-bead-per-nucleotide CG
MD model (28) for an RNA hairpin, a fragment of the
repression of heat shock gene expression element, called
microROSE (29) (Fig. 2 a). As a reference, a 100 ns MD
simulation with a full-atomistic force field was performed,
see Supporting Material for details.

Three variants of the CG model were tested (Fig. 2, c–d,
Table S1, and Fig. S3), differing in the interactions of com-
plementary pairs: variant 1 had a single pseudo-bond per
one complementary pair; variant 2 had three bonds per
one complementary pair; and variant 3 had the same as in
variant 2 but one of the bonds was sequence specific. We
wanted to verify if one bond per complementary pair is
sufficient, and if adding the base pair type specificity im-
proves the model. To find the best parameters for each
variant, we optimized the model (with particle swarm opti-
mization and evolutionary algorithm) based on 5 ns CG MD
simulations of microROSE (for the protocol, see Supporting
Material). Optimization was scored by comparing RMSD,
RMSF, and distance distributions with the full-atomic
trajectory. For the scoring criteria, see Table S2. Input
files necessary to repeat this optimization are in the file
microrose.RedMDStream.zip in the Supporting Material.

The best optimization scores are shown in Table 1. The
results depend on the Langevin dumping constant used in
CG MD simulations whose increase drops the best score
by 10% to 20%. This constant affects mostly RMSF
(Fig. S4), but the low dumping constant gives high unstable
RMSD in the simulation of variant 1 (Fig. S5).

Further, we verified the performance of the CG models
optimized based on 5 ns CG MDs in longer 100 ns simula-
tions. The simple model (variant 1) became unstable in the
first few ns with RMSD up to 15 Å (see Fig. S6). However,
the additional bonds per complementary pair in variants 2
and 3 provided stable 100 ns simulations. The distance
distributions (Figs. S7–S10) suggest that instability and
low score on short timescales are connected. Additional
complementary bonds provide extra-stabilization, but for
the cost of too narrow distributions (see Figs. S9 and
S10). No extra bonds ensure better flexibility, which better
resembles the distributions from an all-atom MD but leads
to the unnatural unfolding of the structure. On the other
hand, the effect of adding the base pair specificity to the po-
tential is minor; it neither improves the score nor distribu-
tions. As shown in Fig. S8 (variant 3, g ¼ 5.0 ps�1) this
addition has even an adverse effect on the distributions, re-
sulting in a split of the single P–P i:j peak for different base
pairs (A–U, C–G, and wobble). This effect does not appear
Biophysical Journal 108(8) 1843–1847
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in a model optimized with a higher Langevin dumping con-
stant. This is consistent with the distributions from the full-
atomistic model that share the same maximum for all the
base types. Overall, variant 2 seems optimal, as it provides
the best score without introducing too many parameters.

Besides analyzing the best model, we looked for a
general relationship between the parameter value and score
(Fig. S11). Overall, the three CG model variants give similar
preferable bonding parameters for neighboring beads (both
the force constant and equilibrium distance). However,
variant 1 requires stronger angle and dihedral force con-
stants to compensate for the lack of extra pseudo-bonds.
In variants 2 and 3, the loop region could be even unre-
stricted in terms of angle and dihedral (force constant
approaching to zero). Finally, variant 3 correctly predicted
that CG pairs are stronger (higher force constant) and closer
than AU pairs. For details of the methodology, such as the
choice of evolutionary algorithm parameters and examples
of CG models, please refer to (28).
CONCLUSIONS

In a single software package RedMDStream allows defining
a CG model (mapping and force field), its further optimiza-
tion and simulation, as well as its analysis. Combining all
the tools provides a consistent environment for a CG MD
model developer. Using the software may replace hours of
manual trial-and-error tests, as well as provide an overview
of CG MD model properties.

Although RedMDStream aids in the CG force field
design and optimization process, it does not operate as a
blackbox. Especially, the optimization results should be
visually inspected to verify if the scoring function was
well defined and does not accept unphysical models. This
effect can be minimized by using physically reasonable
parameter ranges, e.g., based on the Boltzmann inversion.
Tests on longer timescales should be also performed.
Note, that the outcome depends on the used structure set.
If a CG force field aims to describe a whole class of
molecules, it would be better to include many representa-
tive molecules in the optimization protocol (28), see Sup-
porting Material for the discussion on the optimization
procedure.

RedMDStream uses the XML format to define the CG
topology. This topology definition could work as interoper-
able format to store CG MD models, so authors could share
their XML files with others. Future releases will extend the
trajectory quality measures with force matching (30) and
include LAMMPS (31) support.
SUPPORTING MATERIAL

Supporting Materials and Methods, 12 figures, two tables, and

RedMDStream files are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(15)00284-2.
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