26,845 research outputs found

    Automated Generation of User Guidance by Combining Computation and Deduction

    Full text link
    Herewith, a fairly old concept is published for the first time and named "Lucas Interpretation". This has been implemented in a prototype, which has been proved useful in educational practice and has gained academic relevance with an emerging generation of educational mathematics assistants (EMA) based on Computer Theorem Proving (CTP). Automated Theorem Proving (ATP), i.e. deduction, is the most reliable technology used to check user input. However ATP is inherently weak in automatically generating solutions for arbitrary problems in applied mathematics. This weakness is crucial for EMAs: when ATP checks user input as incorrect and the learner gets stuck then the system should be able to suggest possible next steps. The key idea of Lucas Interpretation is to compute the steps of a calculation following a program written in a novel CTP-based programming language, i.e. computation provides the next steps. User guidance is generated by combining deduction and computation: the latter is performed by a specific language interpreter, which works like a debugger and hands over control to the learner at breakpoints, i.e. tactics generating the steps of calculation. The interpreter also builds up logical contexts providing ATP with the data required for checking user input, thus combining computation and deduction. The paper describes the concepts underlying Lucas Interpretation so that open questions can adequately be addressed, and prerequisites for further work are provided.Comment: In Proceedings THedu'11, arXiv:1202.453

    Can Computer Algebra be Liberated from its Algebraic Yoke ?

    Full text link
    So far, the scope of computer algebra has been needlessly restricted to exact algebraic methods. Its possible extension to approximate analytical methods is discussed. The entangled roles of functional analysis and symbolic programming, especially the functional and transformational paradigms, are put forward. In the future, algebraic algorithms could constitute the core of extended symbolic manipulation systems including primitives for symbolic approximations.Comment: 8 pages, 2-column presentation, 2 figure

    A Case Study in Refactoring Functional Programs

    Get PDF
    Refactoring is the process of redesigning existing code without changing its functionality. Refactoring has recently come to prominence in the OO community. In this paper we explore the prospects for refactoring functional programs. Our paper centres on the case study of refactoring a 400 line Haskell program written by one of our students. The case study illustrates the type and variety of program manipulations involved in refactoring. Similarly to other program transformations, refactorings are based on program equivalences, and thus ultimately on language semantics. In the context of functional languages, refactorings can be based on existing theory and program analyses. However, the use of program transformations for program restructuring emphasises a different kind of transformation from the more traditional derivation or optimisation: characteristically, they often require wholesale changes to a collection of modules, and although they are best controlled by programmers, their application may require nontrivial semantic analyses. The paper also explores the background to refactoring, provides a taxonomy for describing refactorings and draws some conclusions about refactoring for functional programs

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Rewriting Constraint Models with Metamodels

    Get PDF
    An important challenge in constraint programming is to rewrite constraint models into executable programs calculat- ing the solutions. This phase of constraint processing may require translations between constraint programming lan- guages, transformations of constraint representations, model optimizations, and tuning of solving strategies. In this paper, we introduce a pivot metamodel describing the common fea- tures of constraint models including different kinds of con- straints, statements like conditionals and loops, and other first-class elements like object classes and predicates. This metamodel is general enough to cope with the constructions of many languages, from object-oriented modeling languages to logic languages, but it is independent from them. The rewriting operations manipulate metamodel instances apart from languages. As a consequence, the rewriting operations apply whatever languages are selected and they are able to manage model semantic information. A bridge is created between the metamodel space and languages using parsing techniques. Tools from the software engineering world can be useful to implement this framework
    • …
    corecore