94,381 research outputs found

    Computer-aided position planning of miniplates to treat facial bone defects

    Full text link
    In this contribution, a software system for computer-aided position planning of miniplates to treat facial bone defects is proposed. The intra-operatively used bone plates have to be passively adapted on the underlying bone contours for adequate bone fragment stabilization. However, this procedure can lead to frequent intra-operatively performed material readjustments especially in complex surgical cases. Our approach is able to fit a selection of common implant models on the surgeon's desired position in a 3D computer model. This happens with respect to the surrounding anatomical structures, always including the possibility of adjusting both the direction and the position of the used osteosynthesis material. By using the proposed software, surgeons are able to pre-plan the out coming implant in its form and morphology with the aid of a computer-visualized model within a few minutes. Further, the resulting model can be stored in STL file format, the commonly used format for 3D printing. Using this technology, surgeons are able to print the virtual generated implant, or create an individually designed bending tool. This method leads to adapted osteosynthesis materials according to the surrounding anatomy and requires further a minimum amount of money and time.Comment: 19 pages, 13 Figures, 2 Table

    Development of a Design for Manufacturing Tool for Automated Fiber Placement Structures

    Get PDF
    Existing design processes for laminates constructed with automated fiber placement lack significant integration between the various software tools that compose the process. Tools for finite element analysis, computer aided drafting, stress analysis, tool path simulation, and manufacturing defect prediction are all critical parts of the design process. With traditional hand-layup laminates, the analysis performed with each of these tools could be fairly well decoupled from one another. However, for laminates generated by automated fiber placement, the disciplines can become significantly coupled, especially on structures with curvature. This gives rise to a need for integrated design for manufacturing software tools that are able to balance the competing objectives from each discipline. This paper describes the preliminary development of such a tool

    Integrated Design and Manufacturing Analysis for Automated Fiber Placement Structures

    Get PDF
    Automated fiber placement provides many advancements beyond traditional hand layups in terms of efficiency and reliability. However, there are also a variety of unique challenges that arise with automated fiber placement technology. In particular, steering of tows over doubly-curved tool surfaces can result in material overlaps and gaps due to path convergence/divergence, fiber angle deviation, as well defects in the tows themselves such as puckers and wrinkles. Minimization of these defects is traditionally considered a task for the manufacturing discipline. Manufacturing specifications are often created for these defects based on laminate testing and can be inflexible to avoid more tests. Recent efforts have been made under the National Aeronautics and Space Administration (NASA) Advanced Composites Project (ACP) to develop software tools and processes that provide automated coupling between design and manufacturing disciplines. The objective of this coupling is to provide information to the design discipline on the manufacturability of a laminate while the laminate is being designed. A variety of software tools, both existing commercial tools and research tools under development, will be used to achieve this objective: HyperSizer for laminate optimization, the Computer Aided Process Planning module for selection of manufacturing process parameters, Vericut Composite Programming for tow path simulation, and COMPRO for deposition and cure defects. The newly developed Central Optimizer tool will be used to tie the modules together and drive the design for manufacturing process

    Automated Fiber Placement of Composite Wind Tunnel Blades: Process Planning and Manufacturing

    Get PDF
    The ability to accurately manufacture large complex shapes in a consistent and repeatable manner has led to Automated Fiber Placement (AFP) being the predominant mode of manufacturing for large composite aerospace structures today. Currently, AFP is being considered for medium- and small-scale parts. Composite wind tunnel blades have traditionally been fabricated by hand layup for pre-impregnated or dry fabrics with resin infusion. Though well proven, the traditional fabrication method is laborious and tedious, and hence expensive. The project described in this paper used the Integral Structural Assembly of Advanced Composites (ISAAC) facility at the NASA Langley Research Center to build a manufacturing demonstration unit (MDU) with a shape representative of a wind tunnel blade. This MDU is used to discuss tooling, process planning, and fabrication. Additionally, details of the generic manufacturing workflow are presented

    Automated Fiber Placement Defect Identity Cards: Cause, Anticipation, Existence, Significance, and Progression

    Get PDF
    Automated Fiber Placement (AFP), a major composite manufacturing process, can result in many defects during the layup process that often require manual corrective action to produce a part with acceptable quality. These defects are the main limitation of the technology and can be hard to categorize or define in many situations. This paper provides a thorough definition and classification of all AFP defects. This effort constitutes a comprehensive and extensive library relevant to AFP defects. The defects selected and defined in this work are based on understanding and experience from the manufacture and research of advanced composite structure. Proper classification of these defects required an in-depth literature review and consideration of various viewpoints ranging from designers, manufacturers, analysts, and inspection professionals. Collectively, these sources were utilized to develop the most accurate view of each of the individual defect types. The results are presented as identity cards for each defect type, intended to provide researchers and the manufacturing industry a clear understanding of the (1) cause, (2) anticipation, (3) existence, (4) significance, and (5) progression of the defined AFP defects. The link between AFP defects and process planning, layup strategies, and machining was also investigated. Categorization of all important automated fiber placement defects is presented

    Latest Developments in Industrial Hybrid Machine Tools that Combine Additive and Subtractive Operations

    Get PDF
    Hybrid machine tools combining additive and subtractive processes have arisen as a solution to increasing manufacture requirements, boosting the potentials of both technologies, while compensating and minimizing their limitations. Nevertheless, the idea of hybrid machines is relatively new and there is a notable lack of knowledge about the implications arisen from their in-practice use. Therefore, the main goal of the present paper is to fill the existing gap, giving an insight into the current advancements and pending tasks of hybrid machines both from an academic and industrial perspective. To that end, the technical-economical potentials and challenges emerging from their use are identified and critically discussed. In addition, the current situation and future perspectives of hybrid machines from the point of view of process planning, monitoring, and inspection are analyzed. On the one hand, it is found that hybrid machines enable a more efficient use of the resources available, as well as the production of previously unattainable complex parts. On the other hand, it is concluded that there are still some technological challenges derived from the interaction of additive and subtractive processes to be overcome (e.g., process planning, decision planning, use of cutting fluids, and need for a post-processing) before a full implantation of hybrid machines is fulfilledSpecial thanks are addressed to the Industry and Competitiveness Spanish Ministry for the support on the DPI2016-79889-R INTEGRADDI project and to the PARADDISE project H2020-IND-CE-2016-17/H2020-FOF-2016 of the European Union's Horizon 2020 research and innovation program

    The relevance of point defects in studying silica-based materials from bulk to nanosystems

    Get PDF
    The macroscopic properties of silica can be modified by the presence of local microscopic modifications at the scale of the basic molecular units (point defects). Such defects can be generated during the production of glass, devices, or by the environments where the latter have to operate, impacting on the devices’ performance. For these reasons, the identification of defects, their generation processes, and the knowledge of their electrical and optical features are relevant for microelectronics and optoelectronics. The aim of this manuscript is to report some examples of how defects can be generated, how they can impact device performance, and how a defect species or a physical phenomenon that is a disadvantage in some fields can be used as an advantage in others
    • …
    corecore