3,401 research outputs found

    Hardness of Token Swapping on Trees

    Get PDF
    Given a graph where every vertex has exactly one labeled token, how can we most quickly execute a given permutation on the tokens? In (sequential) token swapping, the goal is to use the shortest possible sequence of swaps, each of which exchanges the tokens at the two endpoints of an edge of the graph. In parallel token swapping, the goal is to use the fewest rounds, each of which consists of one or more swaps on the edges of a matching. We prove that both of these problems remain NP-hard when the graph is restricted to be a tree. These token swapping problems have been studied by disparate groups of researchers in discrete mathematics, theoretical computer science, robot motion planning, game theory, and engineering. Previous work establishes NP-completeness on general graphs (for both problems), constant-factor approximation algorithms, and some poly-time exact algorithms for simple graph classes such as cliques, stars, paths, and cycles. Sequential and parallel token swapping on trees were first studied over thirty years ago (as "sorting with a transposition tree") and over twenty-five years ago (as "routing permutations via matchings"), yet their complexities were previously unknown. We also show limitations on approximation of sequential token swapping on trees: we identify a broad class of algorithms that encompass all three known polynomial-time algorithms that achieve the best known approximation factor (which is 2) and show that no such algorithm can achieve an approximation factor less than 2

    IST Austria Thesis

    Get PDF
    This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph. For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton. In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars

    Complexity of Token Swapping and its Variants

    Full text link
    In the Token Swapping problem we are given a graph with a token placed on each vertex. Each token has exactly one destination vertex, and we try to move all the tokens to their destinations, using the minimum number of swaps, i.e., operations of exchanging the tokens on two adjacent vertices. As the main result of this paper, we show that Token Swapping is W[1]W[1]-hard parameterized by the length kk of a shortest sequence of swaps. In fact, we prove that, for any computable function ff, it cannot be solved in time f(k)no(k/log⁥k)f(k)n^{o(k / \log k)} where nn is the number of vertices of the input graph, unless the ETH fails. This lower bound almost matches the trivial nO(k)n^{O(k)}-time algorithm. We also consider two generalizations of the Token Swapping, namely Colored Token Swapping (where the tokens have different colors and tokens of the same color are indistinguishable), and Subset Token Swapping (where each token has a set of possible destinations). To complement the hardness result, we prove that even the most general variant, Subset Token Swapping, is FPT in nowhere-dense graph classes. Finally, we consider the complexities of all three problems in very restricted classes of graphs: graphs of bounded treewidth and diameter, stars, cliques, and paths, trying to identify the borderlines between polynomial and NP-hard cases.Comment: 23 pages, 7 Figure

    Swapping Labeled Tokens on Graphs

    Get PDF
    Consider a puzzle consisting of n tokens on an n-vertex graph, where each token has a distinct starting vertex and a distinct target vertex it wants to reach, and the only allowed transformation is to swap the tokens on adjacent vertices. We prove that every such puzzle is solvable in O(n [superscript 2]) token swaps, and thus focus on the problem of minimizing the number of token swaps to reach the target token placement. We give a polynomial-time 2-approximation algorithm for trees, and using this, obtain a polynomial-time 2α-approximation algorithm for graphs whose tree α-spanners can be computed in polynomial time. Finally, we show that the problem can be solved exactly in polynomial time on complete bipartite graphs.Japan. Ministry of Education, Culture, Sports, Science and Technology (Japan Society for the Promotion of Science ELC Project Grant 24.3660)Japan. Ministry of Education, Culture, Sports, Science and Technology (Japan Society for the Promotion of Science ELC Project Grant 24106010)Japan. Ministry of Education, Culture, Sports, Science and Technology (Japan Society for the Promotion of Science ELC Project Grant 24700130)Japan. Ministry of Education, Culture, Sports, Science and Technology (Japan Society for the Promotion of Science ELC Project Grant 25106502)Japan. Ministry of Education, Culture, Sports, Science and Technology (Japan Society for the Promotion of Science ELC Project Grant 25106504)Japan. Ministry of Education, Culture, Sports, Science and Technology (Japan Society for the Promotion of Science ELC Project Grant 25330003

    Complexity of token swapping and its variants

    Get PDF
    AbstractIn the Token Swapping problem we are given a graph with a token placed on each vertex. Each token has exactly one destination vertex, and we try to move all the tokens to their destinations, using the minimum number of swaps, i.e., operations of exchanging the tokens on two adjacent vertices. As the main result of this paper, we show that Token Swapping is W[1]-hard parameterized by the length k of a shortest sequence of swaps. In fact, we prove that, for any computable function f, it cannot be solved in time f(k)no(k/logk) where n is the number of vertices of the input graph, unless the ETH fails. This lower bound almost matches the trivial nO(k)-time algorithm. We also consider two generalizations of the Token Swapping, namely Colored Token Swapping (where the tokens have colors and tokens of the same color are indistinguishable), and Subset Token Swapping (where each token has a set of possible destinations). To complement the hardness result, we prove that even the most general variant, Subset Token Swapping, is FPT in nowhere-dense graph classes. Finally, we consider the complexities of all three problems in very restricted classes of graphs: graphs of bounded treewidth and diameter, stars, cliques, and paths, trying to identify the borderlines between polynomial and NP-hard cases

    Shortest Reconfiguration of Colorings Under Kempe Changes

    Get PDF
    International audienc

    Complexity of token swapping and its variants

    Get PDF
    AbstractIn the Token Swapping problem we are given a graph with a token placed on each vertex. Each token has exactly one destination vertex, and we try to move all the tokens to their destinations, using the minimum number of swaps, i.e., operations of exchanging the tokens on two adjacent vertices. As the main result of this paper, we show that Token Swapping is W[1]-hard parameterized by the length k of a shortest sequence of swaps. In fact, we prove that, for any computable function f, it cannot be solved in time f(k)no(k/logk) where n is the number of vertices of the input graph, unless the ETH fails. This lower bound almost matches the trivial nO(k)-time algorithm. We also consider two generalizations of the Token Swapping, namely Colored Token Swapping (where the tokens have colors and tokens of the same color are indistinguishable), and Subset Token Swapping (where each token has a set of possible destinations). To complement the hardness result, we prove that even the most general variant, Subset Token Swapping, is FPT in nowhere-dense graph classes. Finally, we consider the complexities of all three problems in very restricted classes of graphs: graphs of bounded treewidth and diameter, stars, cliques, and paths, trying to identify the borderlines between polynomial and NP-hard cases

    Independence and matching numbers of some token graphs

    Full text link
    Let GG be a graph of order nn and let k∈{1,
,n−1}k\in\{1,\ldots,n-1\}. The kk-token graph Fk(G)F_k(G) of GG, is the graph whose vertices are the kk-subsets of V(G)V(G), where two vertices are adjacent in Fk(G)F_k(G) whenever their symmetric difference is an edge of GG. We study the independence and matching numbers of Fk(G)F_k(G). We present a tight lower bound for the matching number of Fk(G)F_k(G) for the case in which GG has either a perfect matching or an almost perfect matching. Also, we estimate the independence number for bipartite kk-token graphs, and determine the exact value for some graphs.Comment: 16 pages, 4 figures. Third version is a major revision. Some proofs were corrected or simplified. New references adde
    • 

    corecore