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Abstract
A k-coloring of a graph maps each vertex of the graph to a color in {1, 2, . . . , k}, such that no two
adjacent vertices receive the same color. Given a k-coloring of a graph, a Kempe change produces
a new k-coloring by swapping the colors in a bicolored connected component. We investigate the
complexity of finding the smallest number of Kempe changes needed to transform a given k-coloring
into another given k-coloring. We show that this problem admits a polynomial-time dynamic
programming algorithm on path graphs, which turns out to be highly non-trivial. Furthermore, the
problem is NP-hard even on star graphs and we show that on such graphs it admits a constant-factor
approximation algorithm and is fixed-parameter tractable when parameterized by the number k of
colors. The hardness result as well as the algorithmic results are based on the notion of a canonical
transformation.
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35:2 Shortest Reconfiguration of Colorings Under Kempe Changes

1 Introduction

Reconfiguration problems ask for the existence of a transformation between two solutions
of an instance of a combinatorial problem, such as the satifiability problem, the stable
set problem, and so forth. Our reference problem is the k-coloring problem. Recall that
a k-coloring of a graph partitions the vertex set into at most k stable sets, called color
classes. A classical technique to obtain a new k-coloring from a given one is the Kempe
change: Given a k-coloring, a Kempe change swaps the colors in a connected component
of a subgraph induced by two color classes. We say that two k-colorings α and β of a
graph admit a Kempe-sequence of length ` if there is a sequence γ0, γ1, . . . , γ` of k-colorings,
such that γ0 = α, γ` = β, and for 0 ≤ i < `, the coloring γi+1 can be obtained from γi
by performing a single Kempe change. Two k-colorings that admit a Kempe-sequence (of
any length) are called Kempe-equivalent. Kempe-equivalence has been of great interest in
graph theory [15, 17, 19], sampling of colorings [8, 25], and statistical physics [2, 20, 21]. We
consider a natural optimization variant of Kempe-equivalence: Given a number ` and two
k-colorings of a graph, do the two colorings admit a Kempe-sequence of length at most `?

One of the first algorithms that exhibits Kempe-sequences is due to Las Vergnas and
Meyniel [15]. From their analysis it follows that for a d-degenerate graph and any k > d,
any two k-colorings of the graph are Kempe-equivalent. More recently, several results of a
similar flavor were obtained [2, 3, 10, 19]. Interestingly, no non-trivial subexponential upper
bounds on the length of the Kempe-sequences computed by the algorithm of Las Vergnas
and Meyniel are known, even for small values of k. Using different techniques, Bousquet and
Heinrich showed recently that for k ≥ d + 2, any two k-colorings of a d-degenerate graph
admit a Kempe-sequence of polynomial length in d [6]. Note that none of the algorithms
in the references mentioned above is known to exhibit Kempe-sequences of minimal length.
Furthermore, to the best of our knowledge, the complexity of determining the minimal length
of a Kempe-sequence between two k-colorings is open. The aim of this paper is to settle the
complexity of this task and to provide efficient exact and approximate algorithms for it.

We show that a Kempe-sequence of minimal length for two k-colorings of a path graph
can be found in polynomial time by a non-trivial dynamic programming algorithm. On the
other hand, it is unlikely that this positive result can be generalized significantly, since we
also show that the same problem on star graphs is NP-hard. Note that since star graphs and
path graphs are bipartite, a Kempe-sequence of linear length in the input size can be found
efficiently [3, 19].

In order to illustrate why finding Kempe-sequences of minimal length is non-trivial even
on path graphs, let us consider the example shown in Figure 1. It shows two Kempe-sequences
α, γ1, γ2, β and α, γ′1, γ′2, γ′3, β between two 3-colorings α and β of a path on seven vertices.
The latter Kempe-sequence changes only the colors of vertices that receive differents colors
in α and β. On the other hand, the Kempe-sequence α, γ1, γ2, β, which is optimal, changes
also twice the color of the middle vertex v, which receives the same color in α and β. The
purpose of changing the color of v is to build a large connected component consisting of the
vertices with colors 1 and 2. As a result, with a single Kempe change, all vertices can be
recolored to their target colors. We conclude from the example that a key difficulty is to
build up suitable bicolored components in order to obtain a short Kempe-sequence.

Related Work

Finding shortest transformations between configurations has recently received much attention
in different domains, ranging from the triangulations of point sets and polygons [16, 1] to
satisfying assignments of Boolean formulas [22] to puzzles [9, 12, 24]; please see [13, 23]
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α β

γ1’ γ2

γ1 γ2

’ γ3’

2 1 3 32 1 2

2 1 2 23 1 2 2 1 2 21 1 2

1 2 3 32 1 2 1 2 1 32 1 2 1 2 1 32 2 1

1 2 1 12 2 1
v v

Figure 1 Two Kempe-sequences between 3-colorings α and β of a path on seven vertices. The
upper sequence 〈α, γ1, γ2, β〉 is shortest even though it recolors the middle vertex v twice; notice
that v receives the same color 2 in α and β. On the other hand, the lower sequence 〈α, γ′

1, γ
′
2, γ

′
3, β〉

is not shortest although it recolors only the vertices receiving different colors in α and β.

for recent suveys. Such problems are often NP-hard, even if the existence of a suitable
transformation between two configurations can be decided in polynomial time. A recent
example is the NP-hardness of solving the n-Rubik’s cube using a minimal number of steps [9].

We say that two k-colorings are equivalent under elementary recolorings if they admit
a Kempe-sequence, such that any two consecutive k-colorings of the sequence differ with
respect to the color of a single vertex. In contrast to Kempe-equivalence, the complexity of
deciding equivalence under elementary recolorings is quite well understood [5, 7]. Furthermore,
Johnson et al. showed that deciding the existence of a transformation of length ` between two
k-colorings in this setting admits a polynomial-time algorithm for k = 3 and is FPT when
parameterized by k + ` [14]. It may seem quite surprising that there is a polynomial-time
algorithm for k = 3, since deciding if a graph admits a 3-coloring is NP-complete. This
polynomial-time algorithm is based on a potential argument: Each vertex is assigned a
non-negative potential value and in each step of a shortest transformation, the potential is
decreased by a positive constant value. When the target coloring is reached the potential
becomes zero. Due to long-range effects of general Kempe changes it is unlikely that a similar
potential argument can be used in our setting; hence our techniques are very different.

We can think of a k-coloring in terms of placing labeled tokens the vertices of a graph.
Transformations between labelled token configurations on graphs have been considered in
a slightly different setting called token swapping: from a given token configuration a new
configuration can be obtained by swapping two tokens on adjacent vertices. The goal is
again to decide whether there is a transformation of length at most ` between two given
token configurations. It is not required that adjacent vertices have tokens with different
labels. The problem is related to the design of efficient sorting networks. It is NP-complete
on graphs of treewidth two and constant diameter [4] and admits a polynomial-time 4-factor
approximation algorithm [18]. Several variations of the problems have been studied, for
example colored token swapping [26, 27], where tokens of the same color are indistinguishable.

Our Contribution

Let G be a class of graphs. We consider the following problem.

Kempe Distance on G
input: Graph G ∈ G, numbers k, ` ∈ N, two k-colorings α, β of G
question: Do α and β admit a Kempe-sequence of length at most `?

We show that Kempe Distance on paths admits a O(kn)-time dynamic programming
algorithm, where n is the number of vertices of the input graph. The algorithm can easily
be modified to output a shortest Kempe-sequence. The analysis of the algorithm is highly
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35:4 Shortest Reconfiguration of Colorings Under Kempe Changes

non-trivial. Roughly speaking, given a path on vertices v1, v2, . . . , vn and two k-colorings α
and β of the input graph, the algorithm computes for 1 ≤ i ≤ n two kinds of quantities on
the sub-path v1, v2, . . . , vi according to eight rules (please refer to Section 2 for an overview).
It computes i) the length of a shortest Kempe-sequence between the two colorings restricted
to the current subpath and ii) for each color a that is different from the source and target
color of vi, the algorithm checks whether there is a shortest Kempe-sequence on the subpath
such that vi has color a at some point. To establish the correctness of the algorithm, we
prove several interesting properties of Kempe-sequences between k-colorings of a path graph.
For instance, we show that in a shortest Kempe-sequence, the color of each vertex changes
at most twice.

We complement the above result by showing that the problem Kempe Distance on stars
is NP-complete by a reduction from the problem Hamiltonian Cycle. In contrast, we show
that a Kempe-sequence of minimal length that certifies the equivalence of two k-colorings of
a star graph under elementary recolorings can be found efficiently. On the positive side, we
show that there is a polynomial-time algorithm that computes a Kempe-sequence of length
at most 4 OPT(I) + 1, where OPT(I) denotes the length of a shortest Kempe-sequence for
an instance I of Kempe Distance on stars, and give an almost matching lower bound.
Furthermore, we show that Kempe Distance on stars parameterized by the number k of
colors is fixed-parameter tractable. The algorithmic results as well as the hardness result
are based on the notion of a canonical transformation. We would like to remark that
many algorithms for reconfiguration problems make use of a canonical configuration, that
is, the existence of a transformation is established by showing that any configuration can
be transformed into a certain canonical one. Here, we show that for any Kempe-sequence
between two k-colorings of a star there is a canonical Kempe-sequence of at most the same
length. Hence, it is sufficient to consider canonical shortest Kempe-sequences.

Notation

A star graph on n vertices consists of a center vertex of degree n− 1 and n− 1 leaf vertices,
each of degree one. For a k-coloring α of a graph, a maximal monochromatic set of vertices is
called a color class. Let G be a graph and let α and β be two k-colorings of G. Suppose that
α and β admit a Kempe-sequence s := (γ0, γ1, . . . , γl). We say that s is a Kempe-sequence
from α to β and denote its length by |s|. For a Kempe sequence s = (γ0, γ1, . . . , γl) and for
a vertex v ∈ V , the color transition of v in s is a sequence of colors c0 → c1 → · · · → cp
with ci 6= ci−1 for each i that represents the transition of colors of v in s. In other words,
c0, c1, . . . , cp is obtained from γ0(v), γ1(v), . . . , γl(v) by removing duplicates if a color appears
consecutively in the sequence. When the color transition of v is c0 → c1 → · · · → cp, we say
that v is recolored p times in the Kempe sequence.

Proofs marked with (∗) have been omitted due to space limitations.

2 Kempe Distance on Paths: a polynomial-time algorithm

In this section we present a polynomial-time algorithm for the problem Kempe Distance
on paths. In the following, let P be a path graph and we denote its vertex set by V =
{v1, v2, . . . , vn} and its edge set by E = {v1v2, v2v3, . . . , vn−1vn}. Let C = {1, 2, . . . , k} be
the color set and let α : V → C and β : V → C be the initial and target k-colorings of
P , respectively. For i = 1, 2, . . . , n, the colors α(vi) and β(vi) are denoted by αi and βi,
respectively.
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For i ∈ {1, . . . , n}, let Pi be the subpath of P induced by Vi := {v1, . . . , vi}. The restriction
of α (resp. β) to {v1, . . . , vi} is also denoted by α (resp. β) for notational convenience. For
i ∈ {1, . . . , n}, let l(Pi, α, β) ∈ Z+ be the length of a shortest Kempe sequence for the instance
(Pi, α, β). We simply denote li := l(Pi, α, β) if α and β are clear. For each i ∈ {1, . . . , n} and
for a color a ∈ C, we define f(i, a) as follows: f(i, a) = yes if a 6∈ {αi, βi} and there exists
a Kempe sequence s of length li such that the color transition of vi is αi → a → βi, and
f(i, a) = no otherwise.

Our algorithm adopts a dynamic programming approach that computes li and f(i, a) for
each i ∈ {1, . . . , n} and for each a ∈ C. For i ≥ 2, the update formula is as follows.

(U1) If αi = βi, then li = li−1 and f(i, a) = no for any a ∈ C.
(U2) If αi = βi−1 and αi−1 = βi, then li = li−1 and f(i, a) = no for any a ∈ C.
(U3) If αi = βi−1, αi−1 6= βi, and f(i− 1, βi) = yes, then li = li−1 and f(i, a) = no for any

a ∈ C.
(U4) If αi 6= βi−1, αi−1 = βi, and f(i− 1, αi) = yes, then li = li−1 and f(i, a) = no for any

a ∈ C.
(U5) If αi = βi−1, αi−1 6= βi, and f(i− 1, βi) = no, then li = li−1 + 1 and

f(i, a) =
{

yes if a = αi−1 or f(i− 1, a) = yes,
no otherwise

for a ∈ C.
(U6) If αi 6= βi−1, αi−1 = βi, and f(i− 1, αi) = no, then li = li−1 + 1 and

f(i, a) =
{

yes if a = βi−1 or f(i− 1, a) = yes,
no otherwise

for a ∈ C.
(U7) If αi, βi, αi−1, and βi−1 are distinct, then li = li−1 + 1 and

f(i, a) =


yes if a = αi−1 and f(i− 1, αi) = yes,
yes if a = βi−1 and f(i− 1, βi) = yes,
no otherwise

for a ∈ C.
(U8) If αi 6= βi and αi−1 = βi−1, then li = li−1 + 1 and

f(i, a) =
{

yes if i ≥ 3, a = αi−1, αi = αi−2, βi = βi−2, and f(i− 2, a) = yes,
no otherwise

for a ∈ C.

In order to show the validity of (U1)–(U8), we introduce the following properties (P1) and
(P2), and show simultaneously that (P1), (P2), and (U1)–(U8) hold for any i ∈ {1, . . . , n} by
induction.

(P1) There exists a Kempe sequence of length li such that vi is recolored at most once in
it, that is, vi is recolored directly from αi to βi if αi 6= βi, and vi is never recolored if
αi = βi.

(P2) For any Kempe sequence s for (Pi, α, β), vi is recolored at most 2|s| − 2li + 2 times
in s. In particular, vi is recolored at most twice in any shortest Kempe sequence.

STACS 2020



35:6 Shortest Reconfiguration of Colorings Under Kempe Changes

I Proposition 1 (∗). For any pair of colorings α : V → C and β : V → C, (U1)–(U8) hold
for i ≥ 2, and (P1) and (P2) hold for any i ≥ 1.

By using this proposition, we can obtain a polynomial-time algorithm for Kempe Dis-
tance on paths.

I Theorem 2. Kempe Distance on paths can be solved in O(nk) time.

Proof. We can easily compute l1 and f(1, a) for each a ∈ C. For i = 2, 3, . . . , n in this
order, we compute li and f(i, a) for each a ∈ C by using (U1)–(U8). Since each value can be
computed in constant time, we can compute ln in O(nk) time. J

The algorithm returns ln, the length of a shortest sequence. We note that we can easily
modify our algorithm so that it outputs a sequence of Kempe changes of length ln.

3 Kempe Distance on Stars

In this section we show that Kempe Distance on stars admits a constant-factor approxi-
mation algorithm and the same problem parameterized by the number k of colors is FPT.
Furthermore, we give a lower bound instance for the approximation algorithm and show that
Kempe Distance on stars is NP-complete. The key concept common to all our results in
this section is the notion of a sorted Kempe-sequence.

3.1 Sorted Kempe-Sequences
In the following, let S = (V,E) be a star graph with center vertex c ∈ V and leaves
L = V \ {c}. Any Kempe change performed on a k-coloring of S either changes the color
of the center vertex or it does not. This observation motivates the following notion of
a sorted Kempe-sequence. We consider a Kempe-sequence to be sorted, if there is some
intermediate coloring γ, such that the color of the center vertex is constant up to γ and
after γ it changes in each step. Formally, a Kempe-sequence γ0, γ1, . . . , γ` is sorted if there is
some index j ∈ {1, 2, . . . , `} and a color a ∈ {1, 2, . . . , k}, such that for 1 ≤ i ≤ j, we have
γi(c) = a and for j ≤ i < `, we have γi(c) 6= γi+1(c). In the following we let γ := γj and
call γ the intermediate coloring. We first show that we may restrict our attention to sorted
Kempe-sequences. We then provide tight bounds for shortest Kempe-sequences from α to γ
and γ to β, respectively, which will imply our algorithmic results and our hardness result.

According to the next lemma, for any Kempe-sequence between two k-colorings of S
there is a sorted one of at most the same length.

I Lemma 3. Let s := γ0, γ1, . . . , γ` be a Kempe-sequence of length ` of k-colorings of S.
Then there is a sorted Kempe-sequence from γ0 to γ` of length at most `.

Proof. We assume without loss of generality that no two consecutive colorings in s are
identical, since if this is the case, we may remove one of the two from s and thus obtain a
shorter Kempe-sequence. Suppose furthermore that s is not sorted, that is, there is some
index i ∈ {1, 2, . . . , ` − 2}, such that γi(c) 6= γi+1(c) and γi+1(c) = γi+2(c). To keep our
notation concise, let a := γi(c) and a′ := γi+1(c) be the color of c in γi and γi+1, respectively.
Since γi+1 6= γi+2, there is a unique leaf v ∈ L, such that γi+1(v) 6= γi+2(v). We let
b := γi+1(v) and b′ := γi+2(v) be the color of the leaf v in γi+1 and γi+2, respectively. By
assumption we have a 6= a′ and b 6= b′. Furthermore, since γi+1(c) = γi+2(c), we have that
b′ 6= a′. Finally, since γi+1 is a k-coloring, we have a′ 6= b.
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We show that there is a Kempe-sequence γ0, γ1, . . . , γi, γ
′, γi+2, . . . , γ`, such that γi(c) =

γ′(c). By applying this argument iteratively, we obtain a sorted Kempe-sequence between γ0
and γ` of length at most `. We consider two main cases.

Case 1: γi(v) = γi+1(v)
It remains to consider the two subcases a = b′ and a 6= b′. In the first subcase we have
γi(c) = a and γi+1(c) = γi+2(c) = a′, as well as γi(v) = γi+1(v) = b and γi+2(v) = a = b′.
So in this case we may first recolor v to color a′ and then c to b′ using Kempe changes.
That is, we let the k-coloring γ′ be given by γ′(u) := γi(u) for each vertex u ∈ V \ {v}
and γ′(v) := a′. On the other hand, if a 6= b′ then a, a′, b, b′ are distinct, so we may
choose γ′(u) := γi(u) for u ∈ V \ {v} and γ′(v) := b′. That is, we can reach γ′ from γi by
changing the color of v to b′ and γi+2 from γ′ by changing the color of the center vertex
c from a to a′.

Case 2: γi(v) 6= γi+1(v)
Recall that c receives different colors in γi and γi+1. Therefore, if v receives different
colors in γi and γi+1, then we must have γi(v) = a′ and γi+1(v) = a = b. Furthermore, if
a = b′ then v receives the same color in γi+1 and γi+2, which contradicts our assumptions.
Hence, it remains to consider the case that a 6= b′. We let γ′(u) := γi(u) for u ∈ V \ {v}
and γ′(v) := b′ and observe that γ′ is a k-coloring of S. By construction, the k-coloring
γ′ can be obtained from γi by performing a Kempe change that alters the color of v to b′.
Then, γi+2 can be obtained from γ′ by a Kempe change that alters the color of c from a

to a′. J

Note that a Kempe change that alters the color of the center vertex c, say, from color a
to color b, also changes the color of every leaf of color b to color a. Let us fix two k-colorings
α and β of the star S and let γ be the intermediate coloring of a sorted Kempe-sequence
from α to β. The next lemma establishes that the color classes of an intermediate coloring γ
agree with those of β.

I Lemma 4 (∗). Let u, v ∈ L be two leaves of S. Then β(u) = β(v) if and only if γ(u) = γ(v).

We will show below that, given some coloring γ whose color classes agree with β, we can
find efficiently a corresponding shortest sorted Kempe-sequence from α to β via γ. Hence, in
the light of Lemma 3, the task of finding a shortest Kempe-sequence from α to β reduces to
the task of finding among such colorings one whose corresponding sorted Kempe-sequence
is shortest. For this purpose, from the two k-colorings α and β of S, we construct an
edge-weighted bipartite auxiliary graph and show that any sorted Kempe-sequence from α

to β corresponds to a one-sided perfect matching in this graph. Furthermore, we determine
the bounds on the length of a sorted Kempe-sequence from α to β in terms of the weight of
the corresponding matching and structure of the graph it induces on the set of colors. Let
Gαβ be a complete bipartite graph on the vertex sets ([k] \ {α(c)}, β(L)). The weight wij of
an edge (i, j) ∈ E(Gαβ) is given by

wij := |α−1(i) ∩ β−1(j)| .

In the following, let γ be a k-coloring of S whose color classes agree with those of β. That
is the color classes of γ and β induce the same partition of the vertex set of S, but the parts
may receive different colors in β and γ. Let M := {(i, j) ∈ E(Gαβ) | γ−1(i) = β−1(j)}. By
Lemma 4, the set M is a β(L)-perfect matching of Gαβ . Hence, any sorted Kempe-sequence
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35:8 Shortest Reconfiguration of Colorings Under Kempe Changes

from α to β gives a β(L)-perfect matching of Gαβ . Also, each β(L)-perfect matching of Gαβ
corresponds to an intermediate coloring of a sorted Kempe-sequence from α to β.

We now show that, given γ, we can compute in polynomial time a shortest Kempe-sequence
from α to β via γ.

I Proposition 5. Let γ be a k-coloring of S whose color classes agree with those of β. Then
there is a polynomial-time algorithm that computes a shortest sorted Kempe-sequence from α

to β via γ.

The next two lemmas give tight bounds for i) the length of a Kempe-sequence from α

to γ that does not alter the color of the center vertex and ii) the length of a Kempe-sequence
from γ to β such that the color of the center vertex is altered in each step. Since the proofs
of the two lemmas are constructive and lead to polynomial-time algorithms, they imply
Proposition 5.

I Lemma 6 (∗). The length of a shortest Kempe-sequence from α to γ such that the color
of the center vertex is constant is |L| − w(M).

Proof (sketch). Observe that the number of leaves u ∈ L such that α(u) 6= γ(u) is a lower
bound on the length of a Kempe-sequence from α to γ that does not alter the color of the
center vertex. By performing for each leaf u such that α(u) 6= γ(u) a Kempe change that
assigns to u the color γ(u), we obtain a shortest Kempe-sequence from α to γ of the claimed
length that does not alter the color of the center vertex. J

It remains to bound the length of a shortest Kempe-sequence from γ to β such that the
color of the center vertex changes in each step. Note that matching M in Gαβ obtained from
γ defines at most one successor M(u) ∈ β(L) for each color u ∈ [k] \ {γ(c)}, where c is the
center vertex of the star S. By the construction of Gαβ , this partial successor map gives rise
to a set C of cycles and a set P paths on the set {1, 2, . . . , k} of colors. To obtain a desired
Kempe-sequence from γ to β, for each item Z ∈ P ∪ C, the color classes corresponding to
the vertices V (Z) need to be altered one-by-one by changing the color of the center vertex.

I Lemma 7 (∗). The length of a shortest Kempe-sequence from γ to β such that the color
of the center vertex changes in each step is( ∑

Z∈C∪P
|E(Z)|+ 1

)
− |{γ(c)} ∩ β(L)}|+ 1− |{β(c)} ∩ γ(L)}| .

Proof (sketch). By Lemma 4 it remains to assign the correct colors (given by β) to the
color classes of γ. We observe that for any cycle C ∈ C, since the color of the center vertex is
not in V (C), at least |E(C)|+ 1 Kempe changes altering the color of the center vertex are
required in order to assign to each leaf u ∈ L with γ(u) ∈ V (C) the color β(u). By a similar
observation, each path P ∈ P requires at |E(P )|+ 1 Kempe changes if the center vertex has
γ(c) /∈ V (P ) and |E(P )| Kempe changes otherwise. J

3.2 Fixed-parameter and Approximation Algorithms
Based on the insights about sorted Kempe-sequences from Section 3.1 we show that Kempe
Distance on stars is fixed-parameter tractable, where the parameter is the number k of
available colors. The correspondence between sorted Kempe-sequences and matchings in the
auxiliary graph Gαβ defined in Section 3.1, together with Proposition 5, yields the following
FPT result.
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I Theorem 8 (∗). Kempe Distance on stars can be decided in time O(k! · poly(k) · n),
where k is the number of available colors and n is the size of the instance.

Proof (sketch). Let (S, k, `, α, β) be an instance of Kempe Distance on stars. Let L be
the set of leaves of the star graph S. Each intermediate coloring of a sorted Kempe-sequence
corresponds to a β(L)-perfect matching in the graph Gαβ from Section 3.1. This graph can
be constructed in time O(poly(k) · n) by iterating over the leaves of G and keeping track of
the source and target colors. For each β(L)-perfect matching M of Gαβ we obtain in time
O(n) the length of a shortest Kempe-sequences according to the proofs of lemmas 6 and 7.
If the sum of the two lengths is at most ` for some matching output Yes, otherwise output
No. J

Note that for a given instance of Kempe Distance, a shortest Kempe-sequence can be
obtained in a straight-forward way by turning the constructive proofs of Lemmas 6 and 7 into
an algorithm. For two k-colorings α and β of a graph, we let α4β := {i ∈ {1, 2, . . . , k} |
α−1(i) 6= β−1(i)} be the set of colors on which the color classes of α and β are different.
Since changing the color of any leaf u that has the same source and target color results in at
least two additional Kempe changes, any shortest Kempe-sequence from α to β only involves
colors in α4β. This observation implies the following corollary.

I Corollary 9. Kempe Distance on stars is FPT in the number of color classes on which
the two colorings differ.

For an instance I of Kempe Distance on stars, we denote by OPT(I) the smallest value
t, such that α and β admit a Kempe-sequence of length at most t. Note that OPT(I) is at
most the order of input graph. We show that for a maximum-weight matching M of Gαβ ,
the length of a sorted Kempe-sequence with intermediate coloring γM gives a constant-factor
approximation.

I Theorem 10. There is a polynomial-time algorithm that, given an instance I of Kempe
Distance on stars with k-colorings α and β, computes a Kempe-sequence from α to β of
length at most 4 ·OPT(I) + 1.

Proof. Let I = (S, α, β, k, `) be an instance of Kempe Distance on stars and let Gαβ =
(A+B,E) be the bipartite graph obtained from the instance as in Section 3.1. We denote by
L the set of leaves of the graph S. Let τ∗ be a shortest Kempe-sequence from α to β of length
OPT(I). By Lemma 3, we may assume that τ∗ is sorted, so there is a matching M∗ of Gαβ ,
such that τ∗ is composed of a Kempe-sequence τ∗1 from α to an intermediate coloring γM∗

and a Kempe-sequence τ∗2 from γM∗ to β. Let M be a maximum-weight matching of Gαβ
and let τ1 (resp., τ2) be the Kempe-sequence from α to γM (resp., from γM to β) obtained
according to Lemma 6 (resp., Lemma 7). We show that τ has length at most 4 ·OPT(I) + 1.

By lemmas 4 and 6, the τ1 has minimal length among all Kempe-sequences from α to
a coloring γ′ such that for any two leaves u, v ∈ L, we have γ′(u) = γ′(v) if and only if
β(u) = β(v). So the length of τ1 is at most OPT(I). It will be convenient in the remainder
of this proof to consider Kempe-sequences also to be sequences of Kempe changes.

It remains to bound the length of τ2. Let C (resp., P) be the set of cycles (resp., paths)
on {1, 2, . . . , k} given by the successor map M . Let j ∈ β(L) be a target color of some leaf of
S and suppose that there is at least one Kempe change with target color j in τ2. Then j is a
vertex of an item in C ∪ P (relative to the matching M). We call a color j ∈ β(L) deficient
if j ∈ V (Z) for some Z ∈ C ∪ P and τ∗ contains no Kempe change with target color j.
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B Claim 11. The only edge with positive weight incident to a deficient vertex j in Gαβ is
(j, j). Furthermore, (j, j) ∈M∗.

Proof of Claim. Each vertex j ∈ β(L) of Gαβ has at least one incident edge with positive
weight; otherwise no vertex has target color j implying that j /∈ β(L). Since, by assumption,
there is no Kempe change with target color j in τ∗2 , we have that (j, j) ∈M∗. Furthermore,
we have that each edge (i, j) with i 6= j has weight zero in Gαβ ; otherwise there is a Kempe
change in τ∗1 with target color j. C

We may ignore the colors j ∈ β(L) such that (j, j) ∈ M , since no Kempe change in τ2
has target color j. So let us assume that β(L) contains no such colors. Furthermore, let d be
the number of deficient colors in β(L). We distinguish two cases.

Case 1: d ≤ |β(L)|/2.
For each non-deficient color in β(L), the Kempe-sequence τ∗ contains at least one Kempe
change with target color j. Therefore, OPT(I) ≥ |β(L)|/2. For each deficient color
j ∈ β(L), the corresponding vertex j on other side of Gαβ is covered by M , since
otherwise M does not have maximum weight. Therefore, each path or cycle in C ∪ P
contains at least two vertices. By Lemma 7, the Kempe-sequence τ2 has length at most
(3|β(L)|/2) + 1 ≤ 3 OPT(I) + 1.

Case 2: d > |β(L)|/2.
Consider the graph with edges H := (V (Gαβ),M 4M∗). Since M and M∗ are β(L)-
perfect, each component of H has an even number of edges. Therefore, the graph H is a
disjoint union of even paths P ′ and cycles C′. Let Z ∈ P ′ ∪ C′ and consider any deficient
vertex j of Z and the two edges (j, j) ∈M∗ and (i, j) ∈M incident to it. By Claim 11,
we have that wjj > 0 and wij = 0. On the other hand, since M has maximum weight,
we have w(M ∩E(Z)) ≥ w(M∗ ∩E(Z)). Therefore, the weight of the edges in M ∩E(Z)
exceeds that of the edges in M∗ ∩ E(Z) by at least the number of deficient vertices of Z.
Now observe that for each edge (i, j) ∈M \M∗, there are at least wij Kempe changes in
τ∗1 due to Lemma 4. We conclude that τ∗1 has length at least d ≥ |β(L)|/2 + 1. By again
considering the worst-case length of τ2 according to Lemma 7, we bound the length of
the Kempe-sequence τ by

3 OPT(I) ≥ 3|τ∗1 | ≥ 3|β(L)|/2 + 1 ≥ |τ2|

By combining the bounds for τ1 and τ2, we obtain that the Kempe-sequence τ has length
at most 4 OPT(I) + 1. J

We conclude this subsection by showing that our analysis in the proof of Theorem 10 is
almost tight. For this purpose, consider the instance of Kempe Distance on stars and the
corresponding graph Gαβ shown in Figure 2. Note that just one Kempe change is needed to
transform the source coloring into the target coloring. Both perfect matchings of the shown
graph Gαβ have weight 1, so the approximation algorithm may select the one consisting
of the two crossing edges. This yields a transformation that first recolors the vertex with
source and target color 1 to color 2. It remains to permute the color classes to obtain the
target coloring; the permutation of the colors is a cycle of length two. By Lemma 7, takes
precisely three Kempe changes to reach the target coloring. Hence, the algorithm outputs a
4-approximate solution in the worst case.
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3→ 3

1→ 2 1→ 1
(a)

1

2

1

2

1

0

1
0

(b)

Figure 2 Instance of Kempe Distance on stars (a) and corresponding edge-weighted graph
Gαβ (b) for which the approximation algorithm gives a 4-approximate solution. A label a → b

indicates source color a and target color b for the corresponding vertex.

3.3 NP-completeness of Kempe Distance
We complement our polynomial-time algorithms from Section 3.2 by the following result,
which we will prove in the remainder of this section.

I Theorem 12. Kempe Distance on stars is NP-complete.

Recall that any two k-colorings of a star on n vertices admit a Kempe-sequence of
length O(n). Hence, Kempe Distance on stars is in NP. To show NP-hardness, we give a
polynomial-time reduction from the problem Hamiltonian Cycle, which asks, whether a
given graph contains a simple cycle visiting each vertex. It was shown by Garey, Johnson, and
Tarjan that Hamiltonian Cycle remains NP-complete even on planar cubic graphs [11].
In order to show that Kempe Distance on stars is NP-hard, we first reduce Hamiltonian
Cycle on cubic graphs to the following minimum-cost permutation problem.

Minimum-Cost Permutation
Input: non-negative weights w ∈ ZV×V≥0 and number z ∈ Z
For a permutation π we denote by c(π) the number of cycles of a cycle decomposition
of π. The cost of a permutation π of V is given by c(π)−

∑
v∈V w(v, πv).

Question: Is there a permutation π of V , such that π has cost at most z?

We then establish that the minimum cost of a permutation corresponds to the length of a
shortest Kempe-sequence of a suitable instance of Kempe Distance. Let G = (V,E) be a
cubic graph. Consider the weights w ∈ ZV×V given by

wuv =
{
K if u and v are adjacent in G
0 otherwise,

where K is a suitably large number, say K = |V |2. The following lemma implies that
Minimum-Cost Permutation is NP-hard.

I Lemma 13. G has a Hamiltonian cycle if and only if there is a permutation π of V , such
that π has cost at most 1−K · |V |.

Proof. Let C = v1, v2, . . . , vt be a Hamiltonian cycle of G, where t = |V |. Furthermore, let
π be given by π(vi) := vi+1 for 1 ≤ i < t and π(vt) := v1 Since C is a Hamiltonian cycle, the
cost π is 1−K · |V |.

Now suppose that π is a permutation of V of cost at most 1 −K · |V |. Then for each
v ∈ V contributes at least −K to the cost and π contains not fixpoints (due to the choice
of K). Therefore, each vertex v ∈ V is on some cycle of π. Since the cost π is at most
1−K · |V | we have that c(π) ≤ 1. It follows from the construction of w that π corresponds
Hamiltonian cycle of G. J
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Note that since w is symmetric, it corresponds to a complete edge-weighted bipartite graph
G′ on the vertex set (V, V ). We construct an instance (S, α, β) of Kempe Distance on stars,
such that the corresponding edge-weighted auxiliary graph Gαβ (see Section 3.1) is isomorphic
to the weighted graph G′. The star graph S has 3K · |V | leaves

⋃
v∈V {`v1, `v2, . . . , `v3K}. We

denote its center vertex by c. The source coloring α is given by α(`vi ) := v for 1 ≤ i ≤ 3K
and v ∈ V . For 1 ≤ i ≤ 3, let ni(v) be the three neighbors of v in G in arbitrary order. For
1 ≤ i ≤ 3K and v ∈ V , let

β(`vi ) :=


n1(v) if 1 ≤ i ≤ K
n2(v) if K + 1 ≤ i ≤ 2K
n3(v) it 2k + 1 ≤ i ≤ 3K

Finally, let α(c) = β(c) = |V | + 1. It is readily verified that the weighted graph G′ is
isomorphic to the graph Gαβ obtained from S and the colorings α and β as in Section 3.1.
Hence, we may invoke lemmas 6 and 7 and obtain the following relation between minimum-cost
permutations and shortest Kempe-sequences from α to β.

I Lemma 14. There is a permutation of V of cost at most 1−K · |V | if and only if α and
β admit a Kempe-sequence of length at most |V |(2K + 1) + 1.

Proof. Let π be a permutation of V of cost at most 1−K · |V |. Since π corresponds to a
perfect matching M of the weighted graph G′ and G′ is isomorphic to Gαβ , we may invoke
lemmas 6 and 7 to obtain a sorted Kempe-sequence τ of length |V |(2K + 1) + 1 from α to β
via γM .

Now let τ be a Kempe-sequence from α to β of length at most |V |(2K + 1) + 1. We
show that there is a permutation π of V of cost at most 1−K · |V |. We may assume that τ
is sorted, so let γ be the intermediate coloring and let Mγ be the corresponding matching
of Gαβ (see Section 3.1). The successor map given by the matching Mγ gives rise to a
permutation π on V , which in turn induces a set C of cycles on V ; and potentially fixpoints.
By lemmas 6 and 7 we have

|V |(2K + 1) + 1 = |τ | ≥ 3K|V | − w(Mγ) + c(π)

Rearranging gives 1−K|V |+ |V | ≥ −w(Mγ) + c(π) =
∑
v∈V w(v, πv). Since K > 2|V |, we

have w(v, πv) = K for each v ∈ V . Therefore, by the construction of w, the permutation
π has no fixpoints. Hence, by lemmas 6 and 7, we get the following sharper bound on the
length of τ .

|V |(2K + 1) + 1 = |τ | ≥ 3K|V | − w(Mγ) + |V |+ c(π)

Since w(v, πv) = K for each v ∈ V , we obtain from this inequality that c(π) = 1. Therefore,
the permutation π has cost at most 1−K · |V |. J

From Lemmas 13 and 14, the NP-hardness of Kempe Distance on stars is immediate.
Observe that if we restrict ourselves to elementary recolorings then the problem is tractable.

I Proposition 15 (∗). There is a polynomial-time algorithm that, given two k-colorings α
and β of a star graph, finds, if it exists, a Kempe-sequence of minimal length that certifies
the equivalence of α and β under elementary recolorings.
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4 Conclusion

We showed that Kempe Distance on paths admits a polynomial-time algorithm and that
the same problem on stars is NP-complete. Furthermore, we show that Kempe Distance
on stars is FPT in the number k of colors and it admits a constant-factor approximation
algorithm. There are some interesting open questions related to our results.

Is it possible to generalize the dynamic programming algorithm for Kempe Distance on
paths to trees with a bounded number of leaves?
Does Kempe Distance on stars admit a polynomial-time approximation scheme?
Does Kempe Distance on stars admit a polynomial kernel?

We conjecture that the answer to the last question is negative.

References
1 Oswin Aichholzer, Wolfgang Mulzer, and Alexander Pilz. Flip distance between triangulations

of a simple polygon is NP-complete. Discrete & computational geometry, 54(2):368–389, 2015.
2 Marthe Bonamy, Nicolas Bousquet, Carl Feghali, and Matthew Johnson. On a conjecture of

mohar concerning Kempe equivalence of regular graphs. Journal of Combinatorial Theory,
Series B, 135:179–199, 2019. doi:10.1016/j.jctb.2018.08.002.

3 Marthe Bonamy, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Moritz
Mühlenthaler, Akira Suzuki, and Kunihiro Wasa. Diameter of colorings under kempe changes.
In Computing and Combinatorics - 25th International Conference, COCOON 2019, Proceedings,
pages 52–64, 2019. doi:10.1007/978-3-030-26176-4_5.

4 Édouard Bonnet, Tillmann Miltzow, and Paweł Rzążewski. Complexity of token swapping
and its variants. Algorithmica, 80(9):2656–2682, 2018.

5 Paul Bonsma and Luis Cereceda. Finding Paths Between Graph Colourings: PSPACE-
Completeness and Superpolynomial Distances. In MFCS, volume 4708 of Lecture Notes in
Computer Science, pages 738–749, 2007.

6 Nicolas Bousquet and Marc Heinrich. A polynomial version of cereceda’s conjecture, 2019.
arXiv:1903.05619.

7 Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Finding paths between 3-colorings.
Journal of Graph Theory, 67(1):69–82, 2011.

8 Sitan Chen, Michelle Delcourt, Ankur Moitra, Guillem Perarnau, and Luke Postle. Improved
bounds for randomly sampling colorings via linear programming. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2216–2234. SIAM, 2019.

9 Erik D Demaine, Sarah Eisenstat, and Mikhail Rudoy. Solving the rubik’s cube optimally is
NP-complete. In 35th Symposium on Theoretical Aspects of Computer Science, 2018.

10 Carl Feghali, Matthew Johnson, and Daniël Paulusma. Kempe equivalence of colourings of
cubic graphs. European Journal of Combinatorics, 59:1–10, 2017.

11 M. Garey, D. Johnson, and R. Tarjan. The planar Hamiltonian circuit problem is NP-complete.
SIAM Journal on Computing, 5(4):704–714, 1976. doi:10.1137/0205049.

12 Oded Goldreich. Finding the shortest move-sequence in the graph-generalized 15-puzzle is
NP-hard. In Studies in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation, pages 1–5. Springer, 2011.

13 Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie Gerke, and
Mark Wildon, editors, Surveys in Combinatorics 2013, pages 127–160. Cambridge University
Press, 2013.

14 Matthew Johnson, Dieter Kratsch, Stefan Kratsch, Viresh Patel, and Daniël Paulusma. Finding
shortest paths between graph colourings. Algorithmica, 75(2):295–321, 2016.

15 Michel Las Vergnas and Henri Meyniel. Kempe classes and the Hadwiger Conjecture. Journal of
Combinatorial Theory, Series B, 31(1):95–104, 1981. doi:10.1016/S0095-8956(81)80014-7.

STACS 2020

https://doi.org/10.1016/j.jctb.2018.08.002
https://doi.org/10.1007/978-3-030-26176-4_5
http://arxiv.org/abs/1903.05619
https://doi.org/10.1137/0205049
https://doi.org/10.1016/S0095-8956(81)80014-7


35:14 Shortest Reconfiguration of Colorings Under Kempe Changes

16 Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set is
NP-complete. Computational Geometry, 49:17–23, 2015.

17 Henry Meyniel. Les 5-colorations d’un graphe planaire forment une classe de commutation
unique. Journal of Combinatorial Theory, Series B, 24(3):251–257, 1978. doi:10.1016/
0095-8956(78)90042-4.

18 Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Antonis Thomas, and
Takeaki Uno. Approximation and Hardness of Token Swapping. In Piotr Sankowski and
Christos Zaroliagis, editors, 24th Annual European Symposium on Algorithms (ESA 2016),
volume 57 of Leibniz International Proceedings in Informatics (LIPIcs), pages 66:1–66:15.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.66.

19 Bojan Mohar. Kempe equivalence of colorings. In Adrian Bondy, Jean Fonlupt, Jean-
Luc Fouquet, Jean-Claude Fournier, and Jorge L. Ramírez Alfonsín, editors, Graph Theory
in Paris, Trends in Mathematics, pages 287–297. Birkhäuser Basel, 2007. doi:10.1007/
978-3-7643-7400-6_22.

20 Bojan Mohar and Jesús Salas. A new Kempe invariant and the (non)-ergodicity of the
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