163 research outputs found

    Sparse Array Architectures for Wireless Communication and Radar Applications

    Get PDF
    This thesis focuses on sparse array architectures for the next generation of wireless communication, known as fifth-generation (5G), and automotive radar direction-of-arrival (DOA) estimation. For both applications, array spatial resolution plays a critical role to better distinguish multiple users/sources. Two novel base station antenna (BSA) configurations and a new sparse MIMO radar, which both outperform their conventional counterparts, are proposed.\ua0We first develop a multi-user (MU) multiple-input multiple-output (MIMO) simulation platform which incorporates both antenna and channel effects based on standard network theory. The combined transmitter-channel-receiver is modeled by cascading Z-matrices to interrelate the port voltages/currents to one another in the linear network model. The herein formulated channel matrix includes physical antenna and channel effects and thus enables us to compute the actual port powers. This is in contrast with the assumptions of isotropic radiators without mutual coupling effects which are commonly being used in the Wireless Community.\ua0Since it is observed in our model that the sum-rate of a MU-MIMO system can be adversely affected by antenna gain pattern variations, a novel BSA configuration is proposed by combining field-of-view (FOV) sectorization, array panelization and array sparsification. A multi-panel BSA, equipped with sparse arrays in each panel, is presented with the aim of reducing the implementation complexities and maintaining or even improving the sum-rate.\ua0We also propose a capacity-driven array synthesis in the presence of mutual coupling for a MU-MIMO system. We show that the appearance of\ua0grating lobes is degrading the system capacity and cannot be disregarded in a MU communication, where space division\ua0multiple access (SDMA) is applied. With the aid of sparsity and aperiodicity, the adverse effects of grating lobes and mutual coupling\ua0are suppressed and capacity is enhanced. This is performed by proposing a two-phase optimization. In Phase I, the problem\ua0is relaxed to a convex optimization by ignoring the mutual coupling and weakening the constraints. The solution of Phase I\ua0is used as the initial guess for the genetic algorithm (GA) in phase II, where the mutual coupling is taken into account. The\ua0proposed hybrid algorithm outperforms the conventional GA with random initialization.\ua0A novel sparse MIMO radar is presented for high-resolution single snapshot DOA estimation. Both transmit and receive arrays are divided into two uniform arrays with increased inter-element spacings to generate two uniform sparse virtual arrays. Since virtual arrays are uniform, conventional spatial smoothing can be applied for temporal correlation suppression among sources. Afterwards, the spatially smoothed virtual arrays satisfy the co-primality concept to avoid DOA ambiguities. Physical antenna effects are incorporated in the received signal model and their effects on the DOA estimation performance are investigated

    Joint Design of Wireless Fronthaul and Access Links in Massive MIMO CRANs

    Get PDF
    Cloud radio access network (CRAN) has emerged as a promising mobile network architecture for the current 5th generation (5G) and beyond networks. This thesis focuses on novel architectures and optimization approaches for CRAN systems with massive multiple-input multiple-output (MIMO) enabled in the wireless fronthaul link. In particular, we propose a joint design of wireless fronthaul and access links for CRANs and aim to maximize the network spectral efficiency (SE) and energy efficiency (EE). Regarding downlink transmission in massive MIMO CRANs, the precoding designs of the access link are optimized by accounting for both perfect instantaneous channel state information (CSI) and stochastic CSI of the access link separately. The system design adopts a decompress-and-forward (DCF) scheme at the remote radio heads (RRHs), with optimization of the multivariate compression covariance noise. Constrained by the maximum power budgets set for the central unit (CU) and RRHs, we aim to maximize the network sum-rate and minimize the total transmit power for all user equipments (UEs). Moreover, we present a separate optimization design and compare its performance, feasibility, and computational efficiency with the proposed joint design. Considering the uplink transmission, we utilize a compress-and-forward (CF) scheme at the RRHs. Assuming that perfect CSI is available at the CU, our objective is to optimize the precoding matrix of the access link while adopting conventional precoding methods for the fronthaul link. This thesis also proposes an unmanned aerial vehicle (UAV)-enabled CRAN architecture with a massive MIMO CU as a supplement system to the terrestrial communication networks. The locations of UAVs are optimized along with compression noise, precoding matrices, and transmit power. To tackle the non-convex optimization problems described above, we employ efficient iterative algorithms and conduct a thorough exploration of practical simulations, yielding promising results that outperform benchmark schemes. In summary, this thesis explores future wireless CRAN architectures, leveraging promising technologies including massive MIMO and UAV-enabled communications. Furthermore, this work presents comprehensive optimization designs aimed at further enhancing the network efficiency

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Heterogeneous Acceleration for 5G New Radio Channel Modelling Using FPGAs and GPUs

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives
    • …
    corecore