991 research outputs found

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    High-level modelling languages

    Get PDF
    This paper gives an introduction to the latest developments in modern electronic design methodology. It will give a brief history of the evolution of design software in an attempt to explain the seemingly haphazard development up to the present-day situation

    Privacy Leakages in Approximate Adders

    Full text link
    Approximate computing has recently emerged as a promising method to meet the low power requirements of digital designs. The erroneous outputs produced in approximate computing can be partially a function of each chip's process variation. We show that, in such schemes, the erroneous outputs produced on each chip instance can reveal the identity of the chip that performed the computation, possibly jeopardizing user privacy. In this work, we perform simulation experiments on 32-bit Ripple Carry Adders, Carry Lookahead Adders, and Han-Carlson Adders running at over-scaled operating points. Our results show that identification is possible, we contrast the identifiability of each type of adder, and we quantify how success of identification varies with the extent of over-scaling and noise. Our results are the first to show that approximate digital computations may compromise privacy. Designers of future approximate computing systems should be aware of the possible privacy leakages and decide whether mitigation is warranted in their application.Comment: 2017 IEEE International Symposium on Circuits and Systems (ISCAS

    Design of an Integrated Acceleration Acquisition Subsystem to Satisfy High-Speed and Low-Area Requirements for CubeSats

    Get PDF
    Cal Poly San Luis Obispo’s PolySat team is designing the Multipurpose Orbital Spring Ejection System (MOSES) in order to record acceleration data during the launch of CubeSats as well as to provide GPS coordinates to locate the position of CubeSats once they are injected into orbit. This work focuses on the design and development of the acceleration data acquisition (DAQ) subsystem of MOSES. This subsystem is designed around the need for a high-speed sampling system of at least 200 kHz across four channels of data, plus low-area limitations in the MOSES form factor which is roughly half the size of a standard CubeSat. To address these specifications, the design explores system implementation around a Xilinx Artix-7 FPGA with a built-in analog-to-digital converter and a custom hardware solution

    Master of Science

    Get PDF
    thesisThis thesis designs, implements, and evaluates modular Open Core Protocol (OCP) interfaces for Intellectual Property (IP) cores and Network-on-Chip (NoC) that re- duces System-On-Chip (SoC) design time and enables research on di erent architectural sequencing control methods. To utilize the NoCs design time optimization feature at the boundaries, a standardized industry socket was required, which can address the SoC shorter time-to-market requirements, design issues, and also the subsequent reuse of developed IP cores. OCP is an open industry standard socket interface speci cation used in this research to enable the IP cores reusability across multiple SoC designs. This research work designs and implements clocked OCP interfaces between IP cores and On-Chip Network Fabric (NoC), in single- and multi- frequency clocked domains. The NoC interfaces between IP cores and on-chip network fabric are implemented using the standard network interface structure. It consists of back-end and front-end submodules corresponding to customized interfaces to IP cores or network fabric and OCP Master and Slave entities, respectively. A generic domain interface (DI) protocol is designed which acts as the bridge between back-end and front-end submodules for synchronization and data ow control. Clocked OCP interfaces are synthesized, placed and routed using IBM's 65nm process technology. The implemented designs are veri ed for OCP compliance using SOLV (Sonics OCP Library for Veri cation). Finally, this thesis reports the performance metrics such as design target frequency of operation, latency, area, energy per transaction, and maximum bandwidth across network on-chip for single- and multifrequency clocked designs

    Build Testbenches for Verification in Shift Register ICs using SystemVerilog

    Get PDF
    A testbench is built to verify a functionality of a shift register IC (Integrated Circuit) from stuck-at-faults, stuck-at-1 as well as stuck-at-0. The testbench is supported by components, i.e., generator, interface, driver, monitor, scoreboard, environment, test, and testbench top. The IC consists of sequential logic circuits of D-type flip-flops. The faults may occur at interconnects between the circuits inside the IC. In order to examine the functionality from the faults, both the testbench and the IC are designed using SystemVerilog and simulated using Questasim simulator. Simulation results show the faults may be detected by the testbench. Moreover, the detected faults may be indicated by error statements in transcript results of the simulato

    Master of Science

    Get PDF
    thesisIntegrated circuits often consist of multiple processing elements that are regularly tiled across the two-dimensional surface of a die. This work presents the design and integration of high speed relative timed routers for asynchronous network-on-chip. It researches NoC's efficiency through simplicity by directly translating simple T-router, source-routing, single-flit packet to higher radix routers. This work is intended to study performance and power trade-offs adding higher radix routers, 3D topologies, Virtual Channels, Accurate NoC modeling, and Transmission line communication links. Routers with and without virtual channels are designed and integrated to arrayed communication networks. Furthermore, the work investigates 3D networks with diffusive RC wires and transmission lines on long wrap interconnects
    • …
    corecore