2,161 research outputs found

    Assessing the Role of Spin Noise in the Precision Timing of Millisecond Pulsars

    Full text link
    We investigate rotational spin noise (referred to as timing noise) in non-accreting pulsars: millisecond pulsars, canonical pulsars, and magnetars. Particular attention is placed on quantifying the strength and non-stationarity of timing noise in millisecond pulsars because the long-term stability of these objects is required to detect nanohertz gravitational radiation. We show that a single scaling law is sufficient to characterize timing noise in millisecond and canonical pulsars while the same scaling law underestimates the levels of timing noise in magnetars. The scaling law, along with a detailed study of the millisecond pulsar B1937+21, leads us to conclude that timing noise is latent in most millisecond pulsars and will be measurable in many objects when better arrival time estimates are obtained over long data spans. The sensitivity of a pulsar timing array to gravitational radiation is strongly affected by any timing noise. We conclude that detection of proposed gravitational wave backgrounds will require the analysis of more objects than previously suggested over data spans that depend on the spectra of both the gravitational wave background and of the timing noise. It is imperative to find additional millisecond pulsars in current and future surveys in order to reduce the effects of timing noise.Comment: 16 pages and 6 figures. ApJ, accepte

    Pulsar timing noise and the minimum observation time to detect gravitational waves with pulsar timing arrays

    Get PDF
    The sensitivity of pulsar timing arrays to gravitational waves is, at some level, limited by timing noise. Red timing noise - the stochastic wandering of pulse arrival times with a red spectrum - is prevalent in slow-spinning pulsars and has been identified in many millisecond pulsars. Phenomenological models of timing noise, such as from superfluid turbulence, suggest that the timing noise spectrum plateaus below some critical frequency, fcf_c, potentially aiding the hunt for gravitational waves. We examine this effect for individual pulsars by calculating minimum observation times, Tmin(fc)T_{\rm min}(f_c), over which the gravitational wave signal becomes larger than the timing noise plateau. We do this in two ways: 1) in a model-independent manner, and 2) by using the superfluid turbulence model for timing noise as an example to illustrate how neutron star parameters can be constrained. We show that the superfluid turbulence model can reproduce the data qualitatively from a number of pulsars observed as part of the Parkes Pulsar Timing Array. We further show how a value of fcf_c, derived either through observations or theory, can be related to TminT_{\rm min}. This provides a diagnostic whereby the usefulness of timing array pulsars for gravitational-wave detection can be quantified.Comment: Accepted for publication in MNRA

    Red Noise in Anomalous X-ray Pulsar Timing Residuals

    Full text link
    Anomalous X-ray Pulsars (AXPs), thought to be magnetars, exhibit poorly understood deviations from a simple spin-down called "timing noise". AXP timing noise has strong low-frequency components which pose significant challenges for quantification. We describe a procedure for extracting two quantities of interest, the intensity and power spectral index of timing noise. We apply this procedure to timing data from three sources: a monitoring campaign of five AXPs, observations of five young pulsars, and the stable rotator PSR B1937+21.Comment: submitted to the proceedings of the "40 Years of Pulsars" conferenc

    An alternative interpretation of the timing noise in accreting millisecond pulsars

    Full text link
    The measurement of the spin frequency in accreting millisecond X-ray pulsars (AMXPs) is strongly affected by the presence of an unmodeled component in the pulse arrival times called 'timing noise'. We show that it is possible to attribute much of this timing noise to a pulse phase offset that varies in correlation with X-ray flux, such that noise in flux translates into timing noise. This could explain many of the pulse frequency variations previously interpreted in terms of true spin up or spin down, and would bias measured spin frequencies. Spin frequencies improved under this hypothesis are reported for six AMXPs. The effect would most easily be accounted for by an accretion rate dependent hot spot location.Comment: Submitted to ApJ Letter

    Timing Noise in SGR 1806-20

    Get PDF
    We have phase connected a sequence of RXTE PCA observations of SGR 1806-20 covering 178 days. We find a simple secular spin-down model does not adequately fit the data. The period derivative varies gradually during the observations between 8.1 and 11.7 * 10^-11 s/s (at its highest, ~40% larger than the long term trend), while the average burst rate as seen with BATSE drops throughout the time interval. The phase residuals give no compelling evidence for periodicity, but more closely resemble timing noise as seen in radio pulsars. The magnitude of the timing noise, however, is large relative to the noise level typically found in radio pulsars. Combining these results with the noise levels measured for some AXPs, we find all magnetar candidates have \Delta_8 values larger than those expected from a simple extrapolation of the correlation found in radio pulsars. We find that the timing noise in SGR 1806-20 is greater than or equal to the levels found in some accreting systems (e.g., Vela X-1, 4U 1538-52 and 4U 1626-67), but the spin-down of SGR 1806-20 has thus far maintained coherence over 6 years. Alternatively, an orbital model with a period P_orb = 733 days provides a statistically acceptable fit to the data. If the phase residuals are created by Doppler shifts from a gravitationally bound companion, then the allowed parameter space for the mass function (small) and orbital separation (large) rule out the possibility of accretion from the companion sufficient to power the persistent emission from the SGR.Comment: 11 pages, accepted for publication in ApJ Letter

    Particle Emission-dependent Timing Noise of Pulsars?

    Full text link
    Though pulsars spin regularly, the differences between the observed and predicted ToA (time of arrival), known as "timing noise", can still reach a few milliseconds or more. We try to understand the noise in this paper. As proposed by Xu & Qiao in 2001, both dipole radiation and particle emission would result in pulsar braking. Accordingly, possible fluctuation of particle current flow is suggested here to contribute significant ToA variation of pulsars. We find that the particle emission fluctuation could lead to timing noise which can't be eliminated in timing process, and that a longer period fluctuation would arouse a stronger noise. The simulated timing noise profile and amplitude are in accord with the observed timing behaviors on the timescale of years.Comment: 6 pages, 2 figures. (Accepted by Chin. Phys. Lett.

    Binary Pulsar Tests of General Relativity in the Presence of Low-Frequency Noise

    Get PDF
    The influence of the low-frequency timing noise on the precision of measurements of the Keplerian and post-Keplerian orbital parameters in binary pulsars is studied. Fundamental limits on the accuracy of tests of alternative theories of gravity in the strong-field regime are established. The gravitational low-frequency timing noise formed by an ensemble of binary stars is briefly discussed.Comment: 4 pages, contributed paper to the proceedings of the IAU167 colloquium on pulsars, Bonn, August-September 199
    • …
    corecore