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ABSTRACT
The sensitivity of pulsar timing arrays to gravitational waves is, at some level, limited by
timing noise. Red timing noise – the stochastic wandering of pulse arrival times with a red
spectrum – is prevalent in slow-spinning pulsars and has been identified in many millisecond
pulsars. Phenomenological models of timing noise, such as from superfluid turbulence, suggest
that the timing noise spectrum plateaus below some critical frequency, fc, potentially aiding
the hunt for gravitational waves. We examine this effect for individual pulsars by calculating
minimum observation times, Tmin(fc), over which the gravitational wave signal becomes larger
than the timing noise plateau. We do this in two ways: (1) in a model-independent manner,
and (2) by using the superfluid turbulence model for timing noise as an example to illustrate
how neutron star parameters can be constrained. We show that the superfluid turbulence model
can reproduce the data qualitatively from a number of pulsars observed as part of the Parkes
Pulsar Timing Array. We further show how a value of fc, derived either through observations
or theory, can be related to Tmin. This provides a diagnostic whereby the usefulness of timing
array pulsars for gravitational-wave detection can be quantified.
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1 IN T RO D U C T I O N

Pulsar timing arrays (PTAs; e.g. Kramer & Champion 2013;
McLaughlin 2013; Manchester et al. 2013) seek to detect nanohertz
gravitational waves from cosmological and extragalactic sources
by looking for correlations between contemporaneously measured
pulse arrival times from multiple radio pulsars (Hellings & Downs
1983). The sensitivity of a PTA is limited by pulsar timing noise, i.e.
stochastic wandering of pulse arrival times. External noise sources
include interstellar plasma turbulence, jitter noise and errors in ter-
restrial time standards; see Cordes (2013) for a description of all
dominant noise sources and an estimate of their magnitudes. Intrin-
sic noise sources have been attributed to microglitches (Cordes &
Downs 1985; D’Alessandro et al. 1995; Melatos, Peralta & Wyithe
2008), post-glitch recovery (Johnston & Galloway 1999), magneto-
spheric state switching (e.g. Kramer et al. 2006; Lyne et al. 2010),
fluctuations in the spin-down torque (Cheng 1987a,b; Urama, Link
& Weisberg 2006), variable coupling between the crust and core or
pinned and corotating regions (Alpar, Nandkumar & Pines 1986;
Jones 1990), asteroid belts (Shannon et al. 2013b) and superfluid
turbulence (Greenstein 1970; Link 2012; Melatos & Link 2014).
Analyses of long-term millisecond pulsar timing data indicate that
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timing noise power spectra are typically white above some fre-
quency and red below it (Kaspi, Taylor & Ryba 1994; Shannon &
Cordes 2010; van Haasteren et al. 2011; Shannon et al. 2013a).

Red timing noise power spectra cannot extend to arbitrarily low
frequencies, as the infinite integrated noise-power implies divergent
phase residuals and hence (if phase residuals arise from torque fluc-
tuations) unphysical pulsar angular velocities. One therefore expects
the spectrum to plateau, or even become blue, below some turn-
over frequency fc. A number of physical models naturally predict
low-frequency plateaus, including superfluid turbulence (Melatos
& Link 2014) and asteroid belts (Shannon et al. 2013b). We dis-
cuss the former in detail below. A low-frequency plateau enhances
prospects for the detection of a stochastic gravitational wave back-
ground. As the gravitational wave spectrum is a steep power law
for most cosmological sources (e.g. Maggiore 2000; Phinney 2001;
Grishchuk 2005), it rises above the plateau below some frequency
as long as it too does not have a low-frequency cut-off (e.g. Wyithe
& Loeb 2003; Sesana 2013a; Ravi et al. 2014; McWilliams, Ostriker
& Pretorius 2014, and discussion below).

In this paper, we quantify how a low-frequency timing noise
plateau affects the direct detection of gravitational waves with PTAs.
Specifically, we calculate the minimum observation time for any in-
dividual pulsar to become sensitive to gravitational wave stochastic
backgrounds from binary supermassive black holes (SMBHs) and
cosmic strings. We note this minimum observation time is only an
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indicative quantity for determining when a gravitational wave signal
will dominate the timing residuals for an individual pulsar; it does
not account for algorithms that correlate noise properties between
pulsars, a point we discuss in more detail throughout. We do this
in two ways, first by parametrizing the timing noise in a model in-
dependent way, and secondly by applying the superfluid turbulence
model of Melatos & Link (2014). In the first approach, we express
this minimum time in terms of three pulsar observables; the ampli-
tude and spectral index of the timing noise power spectral density
and the turn-over frequency. The second approach is included as an
example of how to relate PTA observables to neutron star internal
properties in the context of one particular physical model with only
two free parameters. It does not imply any theoretical preference
for the superfluid turbulence model, and will be extended to other
physical models in the future.

The paper is set out as follows. In Section 2, we define a phe-
nomenological model for timing noise, and review predictions for
the power spectral density of the phase residuals induced by grav-
itational waves from SMBHs and cosmic strings. In Section 3, we
calculate minimum observation times for hypothetical pulsars as
a function of their timing noise spectral index, normalization, and
turn-over frequency. In Section 4, we apply the superfluid turbu-
lence model to data and extract ‘by-eye’ parameter estimates for
various pulsars in the Parkes Pulsar Timing Array (PPTA). We then
determine criteria for selecting ‘optimal’ pulsars in Section 5 and
conclude in Section 6.

2 POW E R S P E C T RU M O F T H E PH A S E
RE SIDUALS

2.1 Timing noise

Let �TN(f) denote the Fourier transform of the autocorrelation func-
tion of the phase residuals, δφ(t), viz.

�TN(f ) =
∫ ∞

−∞
dτ e2πif τ 〈δφ(t)δφ(t + τ )〉 . (1)

If the timing noise is stationary, 〈δφ(t)δφ(t + τ )〉 is independent of
t, as is the mean-square phase residual

〈
δφ(t)2

〉 = 1

π

∫ ∞

0
df �TN(f ). (2)

In practice, the time spent observing the neutron star, Tobs, is finite.
Hence, one must replace the lower terminal of the integral in the
right-hand side of (2) by fobs ≡ 1/Tobs. In reality, fitting models to
timing data implies PTAs are sensitive to f < fobs [see Coles et al.
(2011) and van Haasteren & Levin (2013) for details of timing-
model fits in the presence of red noise] implying the lower terminal
in (2) depends on the PTA data analysis algorithm, with f � fobs.

Millisecond pulsar radio timing experiments measure
�TN(f) ∝ f−q at low frequencies, f � 1 yr−1, with q ≥ 0 (e.g. Kaspi
et al. 1994; Shannon & Cordes 2010; van Haasteren et al. 2011;
Shannon et al. 2013a). However, the observed power law must roll
over below some frequency, fc, otherwise equation (2) implies di-
vergent phase residuals. To capture this phenomenologically, we
model the spectrum in its entirety by

�TN(f ) = ATN(
1 + f 2/f 2

c

)q/2 + AW, (3)

which has the observed large-f behaviour and is even in f. In equation
(3), ATN (with units of time) is the dc power spectral density, i.e.
�TN(f 	 fc) = ATN, which cannot be measured directly in existing

data sets (Shannon et al. 2013a). In the regime where �TN(f) ∝ f−q,
we can express the more commonly used root-mean-square-induced
pulsar timing residuals, σ R, in terms of ATN and q as

σR = 5.64√
q − 1

(
ATN

10−10 yr

)1/2 (
fobs

1 yr−1

)1/2 (
P

1 ms

)
ns. (4)

where P is the pulsar spin period. For completeness, we include
a white noise component, AW, in equation (3), which is observed
in all pulsars, dominates for f � 1 yr−1, and is the only observed
noise component in some objects. The white component contributes
weakly to setting the minimum observation time for gravitational
wave detection by PTAs, the key concern of this paper.

Equation (3) can be compared against predictions of phase resid-
uals from the cosmological gravitational wave background, �GW(f).
The reciprocal of the frequency where the two curves intersect gives
the minimum observation time, Tmin, required before an individual
pulsar becomes sensitive to a gravitational wave background,

�TN

(
T −1

min

) = �GW

(
T −1

min

)
. (5)

Equation (5) provides a quantitative method for determining
when the gravitational wave signal will dominate the timing resid-
ual power spectrum. We emphasize that this is only an indicative
threshold for detection; it is not a substitute for a careful signal-to-
noise estimate given desired false alarm and false dismissal rates.
Cross-correlation search algorithms look simultaneously at a range
in f (e.g. Hellings & Downs 1983; Jenet et al. 2005; Anholm et al.
2009; van Haasteren et al. 2009). For example, our definition (5)
is equivalent to the boundary between the ‘weak signal limit’ and
the ‘intermediate regime’ as defined in Siemens et al. (2013). While
Siemens et al. (2013) calculate a scaling of gravitational wave de-
tection significance with time assuming only white timing noise,
they also perform simulations with red noise assuming q = −3. A
future research project is therefore to introduce red noise with and
without a low-frequency turn-over into the analytic calculations of
Siemens et al. (2013).

It is likely that the near future will see an increasing number of
PTA pulsars satisfy the condition �GW(f) > �TN(f), and that this
will occur before a statistically significant detection is announced.
Equation (5) and the analysis presented in this paper therefore pro-
vide an important input into the time-scale on which this condition
will be met by individual pulsars, as a prelude to a cross-correlation
detection strategy.

2.2 Cosmological gravitational wave background

PTAs are sensitive to gravitational wave backgrounds generated
by two cosmological sources1: binary SMBHs and vibrations from
cosmic strings.

2.2.1 Supermassive binary black holes

At binary separations where gravitational radiation dominates the
orbital dynamics, the SMBH background is parametrized as a power
law

hc(f ) = AGW

(
f

yr−1

)α

, (6)

1 Relic gravitational waves from inflation, such as those purportedly seen by
the BICEP2 experiment (Ade et al. 2014), are expected to be undetectably
weak in the pulsar timing band, but may be relevant for Advanced LIGO;
see Aasi et al. (2014) and references therein.
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Table 1. Theoretical spectral parameters for the gravitational wave background from SMBH
binaries and cosmic strings. Three predictions for the SMBH population are presented: the
68 per cent confidence interval from Sesana (2013b), and the 95 per cent confidence interval
from Ravi et al. (2015). The cosmic string models are from Maggiore (2000).

Source Amin
GW Amax

GW α

SMBHs (Sesana 2013b, 68 per cent) 3.5 × 10−16 1.5 × 10−15 −2/3
SMBHs (Ravi et al. 2015, 95 per cent) 5.1 × 10−16 2.4 × 10−15 −2/3
Cosmic strings 10−16 10−15 −1 � α � −0.8

with α =−2/3 (Phinney 2001). The normalization coefficient, AGW,
is the subject of intense debate. We utilize the most recent predic-
tions by Sesana (2013b) and Ravi et al. (2015), quoted in Table 1.
These two predictions assume that gravitational wave emission has
already circularized the binary orbits; at binary separations where
energy loss to environments dominates instead, the SMBH wave-
strain spectrum whitens (Sesana 2013a; Ravi et al. 2014). Whitening
of �GW(f) at low frequencies increases Tmin.

The one-sided power spectral density of the pulsar phase residuals
induced by hc(f) is given by

�GW(f ) = hc(f )2

12π2P 2f 3
. (7)

�GW(f) has units of time and can be compared directly with �TN(f)
as in equation (5).

2.2.2 Cosmic strings

Cosmic strings are topological defects that may form in phase transi-
tions in the early Universe and produce strong bursts of gravitational
radiation, which may be detectable in PTAs (Damour & Vilenkin
2000, 2001, 2005). A cosmic string-induced stochastic background
of gravitational waves is characterized by three-dimensionless pa-
rameters: the string tension, Gμ, the reconnection probability, p, and
a parameter, ε, related to the size of loops. The best quoted limit
of Gμ � 1.2 × 10−8 is derived from PTA limits of the stochastic
gravitational wave background (van Haasteren et al. 2011, 2012),
although a more stringent constraint (still to be computed), is pos-
sible with existing data sets [see Sanidas, Battye & Stappers (2013)
for projected constraints in the near future]. Combined observa-
tions using the ground-based Laser Interferometer Gravitational
Wave Observatory (LIGO) and Virgo constrain the ε–Gμ plane to
be 7 × 10−9 < Gμ < 1.5 × 10−7 and ε < 8 × 10−11 (Abbott
et al. 2009; Aasi et al. 2014). Limits on Gμ are model dependent;
the reconnection probability is inversely proportional to �GW(f),
and smaller values of ε increase the minimum gravitational wave
frequency emitted. This can take the maximum of the stochastic
background out of the sensitivity band for PTAs (e.g. Siemens,
Mandic & Creighton 2007; Ölmez, Mandic & Siemens 2010).

Despite the above caveats, a power-law model for the character-
istic strain spectrum from cosmic strings given by equation (6) with
−1 � α � 0.8 is a good approximation for the PTA frequency band
(Maggiore 2000). The predicted range for AGW is quoted in Table 1.

3 M O D E L I N D E P E N D E N T M I N I M U M
OB SERVATION TIME

To attain adequate sensitivity to gravitational waves at a frequency,
f, in the phase residuals of an individual pulsar, we must have
�GW(f) > �TN(f) for that pulsar, subject to the caveats regarding

Figure 1. Power spectral density of timing noise phase residuals, �TN,
and gravitational wave phase residuals, �GW (both in s) as func-
tions of frequency, f (in Hz). In both plots, the black, red and pur-
ple curves are indicative examples of pulsars described by equation
(3) with (fc, ATN, q) = (0.1yr−1, 10−10 yr, 4), (0.2yr−1, 10−10 yr, 2) and
(0.2yr−1, 10−8 yr, 2), respectively, and with a nominal white noise compo-
nent of AW = 10−5 s. The solid curves include the turnover at fc in equation
(3), and the dashed curves extrapolate backwards the high-f scaling ∝ f−q

(i.e. fc → 0). The shaded regions and the dotted black curves encompass the
regions covered by �GW for the parameter ranges quoted in Table 1, where
the left-hand plot is for SMBHs and the right-hand plot is for cosmic strings.
In the left-hand plot, the shaded blue region is the 95 per cent confidence
interval from Ravi et al. (2015), the region enclosed by the black dotted
curves is the 68 per cent confidence interval from Sesana (2013b) and the
shaded grey region is the predicted range from Ravi et al. (2014). In the
right-hand plot, the shaded green region represents cosmic string models
with 10−16 < AGW < 10−15 and α = −1. The dotted black curves have
p = ε = 1 and Gμ = 1.2 × 10−8 and 1.0 × 10−10 for the top and bottom
curves, respectively. The black dot labelled ‘PPTA’ is the lowest published
limit on the stochastic background (Shannon et al. 2013a).

specific data analysis algorithms expressed in the text following
equation (5). If equation (6) applies across all relevant frequencies,
and �TN(f) turns over below fc, then �GW(f) > �TN(f) is always
satisfied for some f = T −1

min, as in equation (5).
In Fig. 1, we plot �TN and �GW as functions of f. The coloured

shaded regions and the region enclosed by the black dotted curves in
the left-hand plot contain all the �GW curves in the parameter range
in Table 1 for SMBHs. The blue shaded region is the 95 per cent
confidence interval from Ravi et al. (2015) as described in Table 1.
The black dotted curves enclose the 68 per cent confidence interval
from Sesana (2013b). The shaded grey region is the predicted range
from Ravi et al. (2014) that includes low-frequency-whitening of
�GW(f) due to non-circular binaries. In the right-hand plot, the green
shaded region is the parameter space enclosed by the cosmic string
predictions from Table 1 with α = −1. The dotted black curves are
specific, representative calculations of the cosmic string background
with p = ε = 1 and Gμ = 1.2 × 10−8 (top curve) and 1.0 × 10−10
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 at U
niversity of M

elbourne on M
arch 29, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


3296 P. D. Lasky et al.

Figure 2. Minimum observation time, Tmin, defined by equation (5), as a
function of the high-frequency timing noise spectral index, q, with different
values of fc and ATN in each panel. The shaded blue and grey regions
represent the ranges of solution space for Tmin(q) for binary SMBHs from
Ravi et al. (2015) and Ravi et al. (2014), respectively, while the dotted black
curves encompass the solution space predicted by Sesana (2013b). The
shaded green regions are cosmic string predictions. The coloured dashed
curves are the corresponding limits where the timing noise spectrum does
not plateau at f � fc. The horizontal dashed black line is longest the PPTA
observing time in published data, viz. 11.3 yr (Shannon et al. 2013a).

(bottom curve)2. The black, red and purple curves in each panel are
indicative examples of pulsar timing noise as described by equation
(3), with values of fc, ATN, q and AW given in the caption to Fig. 1.
The correspondingly coloured dashed curves extrapolate backwards
the power-law scaling (equivalently assuming fc → 0). Finally,
the dot labelled ‘PPTA’ in both panels marks the lowest limit on
the stochastic gravitational wave background from Shannon et al.
(2013a).

Fig. 1 illustrates the principal idea of this paper. If �TN is a simple
power law without a low-frequency turn-over, and for moderate
values of q, timing noise masks the gravitational wave background
down to low frequencies, and Tmin is correspondingly long (we
quantify this below). A turn-over in �GW(f) at some fc is therefore
critical for practical PTA experiments with any millisecond pulsar
that exhibits a steep timing noise spectrum with q � 2. The low-
frequency plateau in �GW from elliptical binary SMBHs (the grey
shaded region in the left-hand panel of Fig. 1) makes the need for a
turn-over in �TN(f) even more acute.

In Fig. 2, we plot the minimum observation time, Tmin, defined by
equation (5), as a function of the asymptotic (high-f) timing noise
spectral index, q, for a hypothetical pulsar with P = 10 ms and vari-
ous values of fc and ATN in each panel. The shaded regions and dotted
black curves delineate the ranges of Tmin(q) for binary SMBHs and
cosmic strings, following the same colour scheme as in Fig. 1 and
as detailed in the caption of Fig. 2. The coloured dashed curves
give the limits on Tmin(q) if �TN does not turn-over (i.e. fc → 0).
The horizontal dashed black line marks the PPTA observing time
of 11.3 yr used for the lowest limit on the stochastic background
published to date (Shannon et al. 2013a).

To help interpret Figs 1 and 2, consider a hypothetical pulsar with
ATN = 10−8 yr (i.e. the two left-hand panels) and q = 2. If the timing

2 Calculations used the GWPlotter website: http://homepages.spa.umn.edu/
∼gwplotter.

noise spectral density turns over at fc = 1/5 yr−1 or 1/20 yr−1, the
minimum observation time given the most optimistic scenario from
Ravi et al. (2015) is Tmin = 20.5 yr or 37.2 yr, respectively. On the
other hand, if �TN(f) does not turn over, then the dashed blue curves
show that the pulsar is insensitive to a gravitational wave signal
until Tmin = 70.7 yr. The effect of a plateau in �TN(f) is therefore
quite striking. Pulsars without a plateau and q � 3 (depending less
sensitively on ATN) are relatively inferior as a tool for detecting
gravitational waves.

4 TI MI NG N OI SE FROM SUPERFLUI D
T U R BU L E N C E : A WO R K E D E X A M P L E

In Section 3, the description of timing noise is model independent, in
the sense that �TN is parametrized phenomenologically by equation
(3), without reference to a specific underlying, physical model. In
this section, we repeat the analysis in Section 3 for the timing
noise model of Melatos & Link (2014) and Melatos, Link & Lasky
(in preparation), which attributes the fluctuating phase residuals
to shear-driven turbulence in the interior of the neutron star. We
emphasize that we do not express any theoretical preference for this
model ahead of other models in the literature (see Section 1). We
focus on it here only because (i) it is predictive, (ii) its results can be
expressed in compact, analytic form and, (iii) the theoretical formula
for �TN(f) depends on just three internal neutron star parameters,
so it is easy to infer constraints on these parameters by combining
the model with data.

Consider an idealized neutron star model in which the rigid crust
is coupled to the charged electron-proton fluid which, in turn, cou-
ples through mutual friction to the inviscid neutron condensate. The
electromagnetic braking torque creates a crust-core shear layer that
excites turbulence in the high-Reynolds number superfluid (Peralta
et al. 2005, 2006a,b, 2008; Melatos & Peralta 2007). The turbulent
condensate reacts back to produce angular momentum fluctuations
in the crust, which are observed as timing noise (Greenstein 1970;
Melatos & Peralta 2010). In particular, Melatos et al., (in prepara-
tion) showed that the timing noise spectral density can be expressed
as

�TN (f ) = 15�(q/2)

8π1/2� [(q − 1)/2] λ2η
(
R−1

)

×
∫ ∞

2π

dx x−35/3
(
x4+3x2 + 9

)[
1+ 4π2f 2

η
(
R−1

)2
x4/3

]−q/2

,

(8)

where �(x) is the Gamma function. Equation (8) contains three free
parameters: the non-condensate fraction of the moment of inertia,
λ = Ic/I0, the decorrelation time-scale, η(R−1)−1, and q. Here, Ic is
the moment of inertia of the crust plus the rigidly rotating charged
fluid plus entrained neutrons, I0 is the total moment of inertia,
and we define η(R−1) = (2π)−1/2ε1/3R−2/3γ , where ε is the energy
dissipation rate per unit enthalpy (which, in general, is a function of
the spin-down rate), γ = τ eddy/τ turb ≤ 1 is the ratio of the eddy turn-
over time-scale to the characteristic time-scale over which turbulent
structures change (which is longer in general due to pinning), and
R is the stellar radius.

The value of the exponent, q, in equation (8) depends on
the form of the superfluid velocity two-point decorrelation func-
tion. Melatos & Peralta (2010) executed a first attempt to cal-
culate the velocity correlation function numerically on the ba-
sis of Hall–Vinen–Bekarevich–Khalatnikov superfluid simulations

MNRAS 449, 3293–3300 (2015)
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Figure 3. Phase residual power spectra, �(f) for four millisecond pulsars
from the PPTA (thick black curves). Overplotted are theoretical curves
generated by the superfluid turbulence model for the physical parameters
(λ, η, q) specified in the legend. The corresponding values of ATN and fc for
each curve are shown in Fig. 5.

(Peralta et al. 2008), but it is not well understood for terrestrial
turbulence experiments, let alone for a neutron star interior, espe-
cially when stratification plays a role (e.g. Lasky, Bennett & Melatos
2013, and references therein). An empirical choice is therefore made
that reproduces the asymptotic power-law dependence from timing
noise data, i.e. �TN ∝ f−q as f → ∞ [for details see Melatos & Link
(2014); Melatos et al., (in preparation)]. We emphasize equation
(8) is not a unique choice, nor can it be inverted uniquely to in-
fer the underlying velocity correlation function (Melatos et al., in
preparation).

In addition to the power-law scaling at high frequencies, the su-
perfluid turbulence model predicts a plateau at f � fc ≈ η(R−1). For
time intervals greater than ∼1/η(R−1), turbulent motions through-
out the star decohere, implying torque fluctuations exerted on the
crust become statistically independent. By expanding equation (8)
for f 	 fc and f � fc, and evaluating the resultant expression in
terms of equation (3), we find

ATN = 9�(q/2)

16(2π)67/6
√

2�[(q − 1)/2]η(R−1)λ2

×
(

16π4 + 120π2

13
+ 45

8

)
, (9)

fc = η(R−1)

(2π)1/3

[
− 10

(
16π4

q − 10
+ 12π2

q − 13
+ 9

q − 16

)

×
(

16π4 + 120π2

13
+ 45

8

)−1 ]1/q

. (10)

Equations (9) and (10) relate the phenomenological model in Sec-
tion 3 to the specific physical model in this section. A similar
approach applies equally to other models.

In Fig. 3, we show four examples of millisecond pulsar phase
residual power spectra measured by the PPTA (Manchester et al.

Figure 4. Same as for Fig. 3, but for PSRs J0437-4715 and J1909-3744,
two pulsars from the PPTA catalogue with the lowest level of timing noise.
Theoretical curves for the superfluid turbulence model require smaller values
of fc ≈ η(R−1) than in Fig. 3 to remain consistent with the data.

2013). Overplotted on the data are reasonable ‘by-eye’ fits generated
by the superfluid turbulence model for q = 2, 4 and 6. The fits are
neither unique nor optimal (e.g. in a least-squares sense), but they
are representative. It is outside the scope of this paper to extract
detailed fits and values for λ, η(R−1), and q for each pulsar3. We
simply note that a broad range of parameters fit the phase residuals
for any given pulsar. The pulsars shown in Fig. 3 have been chosen
as they appear to have moderate to high levels of timing noise, cf.
other PPTA pulsars. All exhibit a relatively red spectrum. In the
context of superfluid turbulence, they imply fc � 10−2 yr−1, so that
the plateau is potentially observable in the not-too-distant future4.

In Fig. 4, we plot two further examples of millisecond pulsar
phase residuals. These objects exhibit the lowest level of timing
noise in the PPTA sample. For the superfluid turbulence model
to remain consistent with these data, the objects must have long
decorrelation time-scales, i.e. fc � 102 yr−1. The data show the white
noise component, AW, and the turbulence-driven red-component sits
below AW. Under these circumstances, the turnover in �TN(f) occurs
too low in frequency to be observed, and the main factor limiting
PTA detection is AW.

5 O PTI MAL PULSARS

What pulsars are best placed to detect a gravitational wave back-
ground, given the longest time one is prepared to wait? In Fig. 5,
we plot 1/fc against ATN, for different values of q and Tmin in each
panel. The left-hand vertical axis displays the results for the model-
independent form of �TN in equation (3). The right-hand vertical
axis registers the decorrelation time 1/η(R−1), in the superfluid tur-
bulence model in Section 4. The dashed grey curves are curves of
constant λ. Overplotted are the superfluid turbulence model ‘fits’
to the PPTA pulsar data in Fig. 3, where the open circles, filled

3 The amplitude and spectral index of red-noise in pulsar timing residuals
are highly covariant, especially when only the lowest few frequency bins
show evidence for red noise (e.g. van Haasteren et al. 2009; van Haasteren
& Levin 2013). Finding best-fitting parameters for the superfluid turbulence
model is therefore a non-trivial task that will be the subject of future work.
4 We note that PSR J1824−2452A resides in a globular cluster (Lyne et al.
1987), implying most of the timing noise is likely a result of motions within
that cluster rather than superfluid turbulence. The curves shown in Fig. 3
therefore represent an upper limit on the contribution from superfluid tur-
bulence.
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Figure 5. Reciprocal of the timing noise turnover frequency, 1/fc, (left-hand vertical axis), as a function of the normalization, ATN, (horizontal axis) for
equation (3), for different values Tmin as defined by equation (5) and q. The right-hand vertical axis shows the decorrelation time-scale in the context of the
superfluid turbulence model in Section 4. The dashed grey curves are λ contours with λ = 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005 and 0.002 going from left to
right in each panel. The shaded blue, green and grey regions, the thick blue curve and the dotted black curves represent the same theoretical limits for SMBHs
and cosmic strings as in Fig. 2. Overplotted are the superfluid turbulence model fits to the PPTA observational data presented in Fig. 3, where the open circles,
filled circles, open squares and filled squares are PSRs J1024−0719, J1643−1224, J1824−2452A and J1939−2134, respectively.

circles, open squares and filled squares are PSRs J1024−0719,
J1643−1224, J1824−2452A and J1939−2134, respectively.

Fig. 5 allows us to ask whether, for example, 20 yr of timing a spe-
cific pulsar will allow for sensitivity to the most optimistic SMBH
gravitational wave strain of AGW = 2.4 × 10−15. In the middle set of
panels, the latter strain limit appears as the rightmost boundary of
the blue shaded region. A pulsar with timing noise below this curve
is sensitive to a gravitational wave signal in Tobs ≤ 20 yr. Sensitiv-
ity depends on q as illustrated in the three different panels running
vertically. It also depends on fc. For example, a hypothetical pulsar

with q = 4 and ATN ≈ 10−11 yr is only sensitive to a gravitational
wave background for 1/fc � 12 yr. This is an interesting constraint:
a pulsar in a PTA that tolerates Tmin ≤ 20 yr is sensitive to a gravi-
tational wave background if �TN(f) exhibits a plateau after � 12 yr
of timing.

The superfluid turbulence model fits from Fig. 3 give an indication
as to the usefulness of individual pulsars from the PPTA data set.
For example, consider PSR J1939−2134 (filled squares). If one
again tolerates Tmin ≤ 20 yr, the fits imply a pulsar is sensitive to
a conservative prediction for the gravitational wave background for
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q � 4, although for q ≈ 4 this requires the timing noise spectrum
to plateau after approximately 15 yr of timing. We emphasize again
that the model fits should only be taken as indicative; careful and
detailed analysis is required to extract the true timing noise signal
parameters from the data.

6 C O N C L U S I O N

PTA limits on the cosmological gravitational wave background are
continually dropping to the point where they usefully constrain
galaxy formation models (Shannon et al. 2013a). Positive detec-
tions, on the other hand, require a cross-correlation algorithm to si-
multaneously analyse timing residuals from multiple pulsars. Such
a detection will likely occur when the gravitational wave back-
ground is the largest component in the unmodelled portion of many
individual pulsar’s timing residuals (Siemens et al. 2013). If the
timing noise spectrum is steeper asymptotically (at high f) than the
gravitational wave spectrum, this is only possible if the timing noise
spectrum flattens below some frequency, fc. In this paper, we cal-
culate the minimum observation time required, given fc, before the
gravitational wave background rises above the timing noise plateau
in any specific pulsar. We calculate this minimum observation time
both in a model-independent way, and for timing noise arising from
superfluid turbulence. The latter model is selected not because it
is necessarily preferred physically, but because it is simple, predic-
tive and analytically tractable and therefore provides a test-bed for
repeating the calculation with other physical models in the future.

Our results rely on the timing noise spectrum whitening below
some threshold frequency, fc. This provides an observational diag-
nostic that can be used to infer the effectiveness of an individual
pulsar in a PTA. If, upon observing a pulsar for some T > 1/fc, one
finds that �TN(f) has not whitened below fc, that pulsar’s capacity
for assisting usefully in the detection of a gravitational wave back-
ground is severely diminished. The fc for a given pulsar is a function
of the rotational parameters of the pulsar, and the gravitational wave
amplitude and spectral index. Therefore, using the prescription out-
lined in this paper, one can predict fc for a given pulsar and a given
gravitational wave background.

In reality, measuring fc in a single pulsar is difficult. First, the
noise in a given pulsar timing power spectrum is large, and secondly,
the power in the lowest frequency bin is generally dominated by the
fact that a quadratic polynomial is fit to the timing residuals [see van
Haasteren & Levin (2013)]. These two effects potentially mimic a
low-frequency turn-over, implying multiple low-frequency bins are
required to confirm the existence of a low-frequency cut-off.

Many data analysis algorithms simultaneously fit the timing
model and the unknown noise contributions for any individual pul-
sar. In this sense, one can include a low-frequency plateau into
gravitational-wave detection algorithms, e.g. by way of a Bayesian
prior on the form of the power spectral density. Physically motivated
models for timing noise, such as the superfluid turbulence model
discussed herein, could be used to guide such priors.
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