74 research outputs found

    A 250-ps integrated ultra-wideband timed array beamforming receiver in 0.18 um CMOS

    Get PDF
    This paper presents a 4-channel ultra-wideband (UWB) timed array beamforming receiver designed in a standard 0.18-um CMOS technology. The proposed timed array receiver achieves a maximum delay of 250 ps at the maximum beam steering angle of +/-42o with 10.5o (8 steps) steering resolution and 2-cm antenna spacing. Each receiver channel provides gains ranging from 3.6 to -35 dB and less than 8% delay variation for all delay settings over a 3.1-10.6-GHz frequency range, while consuming a maximum of 58 mW power from a 1.8-V supply. The average -1-dB compression point P1dB is -9.9 dBm. The proposed architecture is modeled and simulated by using Virtuoso Cadence.This work has been partially supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades (MICINN)- ´ Agencia Estatal de Investigacion (AEI) and the European ´ Regional Development Funds (FEDER), by project PGC2018- 098946-B-I00.Peer ReviewedPostprint (author's final draft

    Evolutionary Trends in True Time Delay Line Technologies for Timed Array Radars

    Get PDF
    Timed array technology is rapidly evolving in multiple areas such as high resolution imaging radar, automotive, medical, high data rate communication applications etc. Timed arrays by utilising True Time Delay (TTD) lines in place of phase shifters mitigate beam squint and pulse dispersion issues associated with wide instantaneous bandwidth arrays. This paper presents on review of evolutionary trends in TTD line architectures starting from coaxial cable to photonic integrated circuit. The paper also reports on critical parameters of TTD lines, their importance and implication in design of typical X-band imaging radar. Comparison of different TTD line architectures in terms of configuration, implementation, merits and demerits are discussed in detail for wideband array application. The paper also brings out the integration aspects of TTD lines as part of T/R modules and proposes suitable design schemes towards performance optimization and realisation of timed arrays

    Timed array antenna system : application to wideband and ultra-wideband beamforming receivers

    Get PDF
    Antenna array systems have a broad range of applications in radio frequency (RF) and ultra-wideband (UWB) communications to receive/transmit electromagnetic waves from/to the sky. They can enhance the amplitude of the input signals, steer beams electronically, and reject interferences thanks to beamforming technique. In an antenna array beamforming system, delay cells with the tunable capability of delay amount compensate the relative delay of signals received by antennas. In fact, each antenna almost acts individually depending upon time delaying effects on the input signals. As a result, the delay cells are the basic elements of the beamforming systems. For this purpose, novel active true time delay (TTD) cells suitable for RF antenna arrays have been presented in this thesis. These active delay cells are based on 1st- and 2nd-order all-pass filters (APFs) and achieve quite a flat gain and delay within up to 10-GHz frequency range. Various techniques such as phase linearity and delay tunability have been accomplished to improve the design and performance. The 1st-order APF has been designed for a frequency range of 5 GHz, showing desirable frequency responses and linearity which is comparable with the state-of-the-art. This 1st-order APF is able to convert into a 2nd-order APF via adding a grounded capacitor. A compact 2nd-order APF using an active inductor has been also designed and simulated for frequencies up to 10 GHz. The active inductor has been utilized to tune the amount of delay and to reduce the on-chip size of the filter. In order to validate the performance of the delay cells, two UWB four-channel timed array beamforming receivers realized by the active TTD cells have been proposed. Each antenna channel exploits digitally controllable gain and delay on the input signal and demonstrates desirable gain and delay resolutions. The beamforming receivers have been designed for different UWB applications depending on their operating frequency ranges (that is, 3-5 and 3.1-10.6 GHz), and thus they have different system requirements and specifications. All the circuits and topologies presented in this dissertation have been designed in standard 180-nm CMOS technologies, featuring a unity gain frequency ( ft) up to 60 GHz.Els sistemes matricials d’antenes tenen una àmplia gamma d’aplicacions en radiofreqüència (RF) i comunicacions de banda ultraampla (UWB) per rebre i transmetre ones electromagnètics. Poden millorar l’amplitud dels senyals d’entrada rebuts, dirigir els feixos electrònicament i rebutjar les interferències gràcies a la tècnica de formació de feixos (beamforming). En un sistema beamforming de matriu d’antenes, les cèl·lules de retard amb capacitat ajustable del retard, compensen aquest retard relatiu dels senyals rebuts per les diferents antenes. De fet, cada antena gairebé actua individualment depenent dels efectes de retard de temps sobre el senyals d’entrada. Com a resultat, les cel·les de retard són els elements bàsics en el disseny dels actuals sistemes beamforming. Amb aquest propòsit, en aquesta tesi es presenten noves cèl·lules actives de retard en temps real (TTD, true time delay) adequades per a matrius d’antenes de RF. Aquestes cèl·lules de retard actives es basen en cèl·lules de primer i segon ordre passa-tot (APF), i aconsegueixen un guany i un retard força plans, en el rang de freqüència de fins a 10 GHz. Diverses tècniques com ara la linealitat de fase i la sintonització del retard s’han aconseguit per millorar el disseny i el rendiment. La cèl·lula APF de primer ordre s’ha dissenyat per a un rang de freqüències de fins a 5 GHz, mostrant unes respostes freqüencials i linealitat que són comparables amb l’estat de l’art actual. Aquestes cèl·lules APF de primer ordre es poden convertir en un APF de segon ordre afegint un condensador més connectat a massa. També s’ha dissenyat un APF compacte de segon ordre que utilitza una emulació d’inductor actiu per a freqüències de treball de fins a 10 GHz. S’ha utilitzat l'inductor actiu per ajustar la quantitat de retard introduït i reduir les dimensions del filtre al xip. Per validar les prestacions de les cel·les de retard propostes, s’han proposat dos receptors beamforming basats en matrius d’antenes de 4 canals, realitzats por cèl·lules TTD actives. Cada canal d’antena aprofita el guany i el retard controlables digitalment aplicats al senyal d’entrada, i demostra resolucions de guany i retard desitjables. Els receptors beamforming s’han dissenyat per a diferents aplicacions UWB segons els seus rangs de freqüències de funcionament (en aquest cas, 3-5 i 3,1-10,6 GHz) i, per tant, tenen diferents requisits i especificacions de disseny del sistema. Tots els circuits i topologies presentats en aquesta tesi s’han dissenyat en tecnologies CMOS estàndards de 180 nm, amb una freqüència de guany unitari (ft) de fins a 60 GHz.Postprint (published version

    A CMOS Digital Beamforming Receiver

    Full text link
    As the demand for high speed communication is increasing, emerging wireless techniques seek to utilize unoccupied frequency ranges, such as the mm-wave range. Due to high path loss for higher carrier frequencies, beamforming is an essential technology for mm-wave communication. Compared to analog beamforming, digital beamforming provides multiple simultaneous beams without an SNR penalty, is more accurate, enables faster steering, and provides full access to each element. Despite these advantages, digital beamforming has been limited by high power consumption, large die area, and the need for large numbers of analog-to-digital converters. Furthermore, beam squinting errors and ADC non-linearity limit the use of large digital beamforming arrays. We address these limitations. First, we address the power and area challenge by combining Interleaved Bit Stream Processing (IL-BSP) with power and area efficient Continuous-Time Band-Pass Delta-Sigma Modulators (CTBPDSMs). Compared to conventional DSP, IL-BSP reduces both power and area by 80%. Furthermore, the new CTBPDSM architecture reduces ADC area by 67% and the energy per conversion by 43% compared to previous work. Second, we introduce the first integrated digital true-time-delay digital beamforming receiver to resolve the beam squinting. True-time-delay beamforming eliminates squinting, making it an ideal choice for large-array wide-bandwidth applications. Third, we present a new current-steering DAC architecture that provides a constant output impedance to improve ADC linearity. This significantly reduces distortion, leading to an SFDR improvement of 13.7 dB from the array. Finally, we provide analysis to show that the ADC power consumption of a digital beamformer is comparable to that of the ADC power for an analog beamformer. To summarize, we present a prototype phased array and a prototype timed array, both with 16 elements, 4 independent beams, a 1 GHz center frequency, and a 100 MHz bandwidth. Both the phased array and timed array achieve nearly ideal conventional and adaptive beam patterns, including beam tapering and adaptive nulling. With an 11.2 dB array gain, the phased array achieves a 58.5 dB SNDR over a 100 MHz bandwidth, while consuming 312 mW and occupying 0.22 mm2. The timed array achieves an EVM better than -37 dB for 5 MBd QAM-256 and QAM-512, occupies only 0.29 mm2, and consumes 453 mW.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147716/1/smjang_1.pd

    Phased-Array antenna beam squinting related to frequency dependency of delay circuits

    Get PDF
    Abstract-Practical time delay circuits do not have a perfectly linear phase-frequency characteristic. When these delay circuits are applied in a phased-array system, this frequency dependency shows up as a frequency dependent beam direction (“beam squinting”). This paper quantifies beam squinting for a linear one-dimensional phased array with equally spaced antenna elements. The analysis is based on a (frequency-dependent) linear approximation of the phase transfer function of the delay circuit. The resulting relation turns out to be invariant for cascaded cells. Also a method is presented to design time-delay circuits to meet a maximum phased-array beam squinting requirement

    A Scalable 6-to-18 GHz Concurrent Dual-Band Quad-Beam Phased-Array Receiver in CMOS

    Get PDF
    This paper reports a 6-to-18 GHz integrated phased- array receiver implemented in 130-nm CMOS. The receiver is easily scalable to build a very large-scale phased-array system. It concurrently forms four independent beams at two different frequencies from 6 to 18 GHz. The nominal conversion gain of the receiver ranges from 16 to 24 dB over the entire band while the worst-case cross-band and cross-polarization rejections are achieved 48 dB and 63 dB, respectively. Phase shifting is performed in the LO path by a digital phase rotator with the worst-case RMS phase error and amplitude variation of 0.5° and 0.4 dB, respectively, over the entire band. A four-element phased-array receiver system is implemented based on four receiver chips. The measured array patterns agree well with the theoretical ones with a peak-to-null ratio of over 21.5 dB

    5GHz CMOS all-pass filter-based true time delay cell

    Get PDF
    Analog CMOS time-delay cells realized by passive components, e.g., lumped LC delay lines, are inefficient in terms of area for multi-GHz frequencies. All-pass filters considered as active circuits can, therefore, be the best candidates to approximate time delays. This paper proposes a broadband first-order voltage-mode all-pass filter as a true-time-delay cell. The proposed true-time-delay cell is capable of tuning delay, demonstrating its potential capability to be used in different systems, e.g., RF beam-formers. The proposed filter achieves a flat group delay of over 60 ps with a pole/zero pair located at 5 GHz. This proposed circuit consumes only 10 mW power from a 1.8-V supply. To demonstrate the performance of the proposed all-pass filter, simulation results are conducted by using Virtuoso Cadence in a standard TSMC 180-nm CMOS process.Postprint (published version

    Integrated On-Silicon and On-glass Antennas for Mm-Wave Applications

    Get PDF
    The paper presents several integrated high frequency antenna prototypes based on Si/CMOS and on-glass technologies for millimeter-wave (mm-wave) applications. On-chip loop antenna and dipole radiator are presented. In addition, a wide-band dipole-patch antenna design for the range of 74 – 104 GHz is integrated into a CMOS chip with an on-chip pulse generator. In addition, an implementation of a fully on-Silicon antenna array integrated with a timed-array transmitter. To control the beam-forming of this array, a digital-based time adjustment circuit is integrated together with the antenna array. Simulated and measured data including return loss, and radiation patterns are presented. This paper also introduces an on-glass antenna prototypes fabricated on quartz substrate. The on-glass antenna is to demonstrate for handset or automobile’s windshield/windows applications where radio waves could be transmitted and received from various directions. The results show several compact antenna candidates integrated by both Silicon and quartz substrates towards mm-Wave/sub-mm-Wave sensing and communication applications

    270 nm Ultra-Thin Self-Adhesive Conformable and Long-Term Air-Stable Complimentary Organic Transistors and Amplifiers

    Get PDF
    Lightweight, flexible, and conformal bioelectronics are essential for wearable technologies. This paper introduces 270 nm thin organic electronics amplifying circuits that are self-adhesive, skin conformal, and long-term air-stable. This report studies the effect of total device thickness, namely 3 μm and 270 nm devices, on the characterization of organic devices before and after buckling, the longevity of organic field-effect transistors (OFETs) over 5 years, and the lamination of OFETs on the human skin. A single-stage organic complementary inverter and a pseudo-complementary amplifier are fabricated to compare their electrical characteristics, with amplification gains of 10 and 64, respectively. Finally, the study demonstrates a five-stage organic complementary inverter can successfully amplify artificial electromyogram and electrocardiogram signals with gains of 1000 and 1088, respectively
    • …
    corecore