183 research outputs found

    ANTHROPOMORPHIC ROBOTIC ANKLE-FOOT PROSTHESIS WITH ACTIVE DORSIFLEXION- PLANTARFLEXION AND INVERSION-EVERSION

    Get PDF
    The main goal of the research presented in this paper is the development of a powered ankle-foot prosthesis with anthropomorphic characteristics to facilitate turning, walking on irregular grounds, and reducing secondary injuries on bellow knee amputees. The research includes the study of the gait in unimpaired human subjects that includes the kinetics and kinematics of the ankle during different types of gait, in different gait speeds at different turning maneuvers. The development of a robotic ankle-foot prosthesis with two active degrees of freedom (DOF) controlled using admittance and impedance controllers is presented. Also, a novel testing apparatus for estimation of the ankle mechanical impedance in two DOF is presented. The testing apparatus allows the estimation of the time-varying impedance of the human ankle in stance phase during walking in arbitrary directions. The presented work gives insight on the turning mechanisms of the human ankle and how they can be mimicked by the prosthesis to improve the gait and agility of below-knee amputees

    Simulation of Human Ankle Trajectory during Stance Phase of Gait

    Get PDF
    A simulation was developed which mimics the human gait characteristics based on the input of an individual’s gait trajectory. This simulation also estimates the impedance of the human ankle based on the ground reaction forces measured by the force plate. This simulation will accept alterations of the following parameters: total body weight, weight of the shank, weight of the foot, trajectories of the shank and foot of the individual and orientation of the force plate, which would generate a new gait trajectory for the ankle during the stance phase of gait. The goal of this simulation was to validate the protocols followed during experiments conducted on human participants to estimate the impedance of the ankle. It also allowed us to understand and explore different system identification methods. The gait data of two individuals measured experimentally was used to build this simulation model. The simulation implements proportional-integral-derivative (PID) control and impedance control to regenerate the ankle trajectories with time-varying impedance of the ankle joint. This model was tested using the trajectories of the shank and foot from two additional individuals and replicated experimentally obtained ankle trajectories of these individuals, with a mean relative error of 0.53±0.3%, 5.74±4.85% and 4.94±3.13%, in ankle translational trajectory and ankle angular trajectories in dorsi-plantarflexion and inversion-eversion respectively

    Using Lower Extremity Muscle Activations to Estimate Human Ankle Impedance in the External-Internal Direction

    Get PDF
    For millions of people, mobility has been afflicted by lower limb amputation. Lower extremity prostheses have been used to improve the mobility of an amputee; however, they often require additional compensation from other joints and do not allow for natural maneuverability. To improve upon the functionality of ankle-foot prostheses, it is necessary to understand the role of different muscle activations in the modulation of mechanical impedance of a healthy human ankle. This report presents the results of using artificial neural networks (ANN) to determine the functional relationship between lower extremity electromyography (EMG) signals and ankle impedance in the transverse plane. The Anklebot was used to apply pseudo-random perturbations to the human ankle in the transverse plane, while motion of the ankle in the sagittal and frontal planes was constrained. Using a stochastic system identification method, the mechanical impedance of the ankle in external-internal (EI) direction was determined as a function of the applied torque and corresponding ankle motion. The impedance of the ankle and muscle EMG signals were determined for three muscle activation levels, including with relaxed muscles, and with muscles activated and 10% and 20% of the subject’s maximum voluntary contraction (MVC). This information was used as the input and target matrices to train an ANN for each subject. The resulting ankle impedance from the proposed ANN was effectively predicted within 85% accuracy for nine out of ten subjects, and was within ±5 Nm/rad of the target impedance for all subjects. This work provides more understanding of the neuromuscular characteristics of the ankle and provides insight toward future design and control of ankle-foot prostheses

    ANKLE IMPEDANCE AND ANKLE ANGLES DURING STEP TURN AND STRAIGHT WALK: IMPLICATIONS FOR THE DESIGN OF A STEERABLE ANKLE-FOOT PROSTHETIC ROBOT

    Get PDF
    During locomotion, turning is a common and recurring event which is largely neglected in the current state-of-the-art ankle-foot prostheses, forcing amputees to use different steering mechanisms for turning, compared to non-amputees. A better understanding of the complexities surrounding lower limb prostheses will lead to increased health and well-being of amputees. The aim of this research is to develop a steerable ankle-foot prosthesis that mimics the human ankle mechanical properties. Experiments were developed to estimate the mechanical impedance of the ankle and the ankles angles during straight walk and step turn. Next, this information was used in the design of a prototype, powered steerable ankle-foot prosthesis with two controllable degrees of freedom. One of the possible approaches in design of the prosthetic robots is to use the human joints’ parameters, especially their impedance. A series of experiments were conducted to estimate the stochastic mechanical impedance of the human ankle when muscles were fully relaxed and co-contracting antagonistically. A rehabilitation robot for the ankle, Anklebot, was employed to provide torque perturbations to the ankle. The experiments were performed in two different configurations, one with relaxed muscles, and one with 10% of maximum voluntary contraction (MVC). Surface electromyography (sEMG) was used to monitor muscle activation levels and these sEMG signals were displayed to subjects who attempted to maintain them constant. Time histories of ankle torques and angles in the lateral/medial (LM) directions, inversion-eversion (IE), and dorsiflexionplantarflexion (DP) were recorded. Linear time-invariant transfer functions between the measured torques and angles were estimated providing an estimate of ankle mechanical impedance. High coherence was observed over a frequency range up to 30 Hz. The main effect of muscle activation was to increase the magnitude of ankle mechanical impedance in all degrees of freedom of the ankle. Another experiment compared the three-dimensional angles of the ankle during step turn and straight walking. These angles were measured to be used for developing the control strategy of the ankle-foot prosthesis. An infrared camera system was used to track the trajectories and angles of the foot and leg. The combined phases of heel strike and loading response, mid stance, and terminal stance and pre-swing were determined and used to measure the average angles at each combined phase. The Range of motion (ROM) in IE increased during turning while ML rotation decreased and DP changed the least. During the turning step, ankle displacement in DP started with similar angles to straight walk and progressively showed less plantarflexion. In IE, the ankle showed increased inversion leaning the body toward the inside of the turn. ML rotation initiated with an increased medial rotation during the step turn relative to the straight walk transitioning to increased lateral rotation at the toe off. A prototype ankle-foot prosthesis capable of controlling both DP and IE using a cable driven mechanism was developed and assessed as part of a feasibility study. The design is capable of reproducing the angles required for straight walk and step turn; generates 712N of lifting force in plantarflexion, and shows passive stiffness comparable to a nonload bearing ankle impedance. To evaluate the performance of the ankle-foot prosthesis, a circular treadmill was developed to mimic human gait during steering. Preliminary results show that the device can appropriately simulate human gait with loading and unloading the ankle joint during the gait in circular paths

    ESTIMATION OF MULTI-DIRECTIONAL ANKLE IMPEDANCE AS A FUNCTION OF LOWER EXTREMITY MUSCLE ACTIVATION

    Get PDF
    The purpose of this research is to investigate the relationship between the mechanical impedance of the human ankle and the corresponding lower extremity muscle activity. Three experimental studies were performed to measure the ankle impedance about multiple degrees of freedom (DOF), while the ankle was subjected to different loading conditions and different levels of muscle activity. The first study determined the non-loaded ankle impedance in the sagittal, frontal, and transverse anatomical planes while the ankle was suspended above the ground. The subjects actively co-contracted their agonist and antagonistic muscles to various levels, measured using electromyography (EMG). An Artificial Neural Network (ANN) was implemented to characterize the relationship between the EMG and non-loaded ankle impedance in 3-DOF. The next two studies determined the ankle impedance and muscle activity during standing, while the foot and ankle were subjected to ground perturbations in the sagittal and frontal planes. These studies investigate the performance of subject-dependent models, aggregated models, and the feasibility of a generic, subject-independent model to predict ankle impedance based on the muscle activity of any person. Several regression models, including Least Square, Support Vector Machine, Gaussian Process Regression, and ANN, and EMG feature extraction techniques were explored. The resulting subject-dependent and aggregated models were able to predict ankle impedance with reasonable accuracy. Furthermore, preliminary efforts toward a subject-independent model showed promising results for the design of an EMG-impedance model that can predict ankle impedance using new subjects. This work contributes to understanding the relationship between the lower extremity muscles and the mechanical impedance of the ankle in multiple DOF. Applications of this work could be used to improve user intent recognition for the control of active ankle-foot prostheses

    ESTIMATION AND PREDICTION OF THE HUMAN GAIT DYNAMICS FOR THE CONTROL OF AN ANKLE-FOOT PROSTHESIS

    Get PDF
    With the growing population of amputees, powered prostheses can be a solution to improve the quality of life for many people. Powered ankle-foot prostheses can be made to behave similar to the lost limb via controllers that emulate the mechanical impedance of the human ankle. Therefore, the understanding of human ankle dynamics is of major significance. First, this work reports the modulation of the mechanical impedance via two mechanisms: the co-contraction of the calf muscles and a change of mean ankle torque and angle. Then, the mechanical impedance of the ankle was determined, for the first time, as a multivariable and time-varying system. These findings reveal the importance of recognizing the state of the user during the gait when the user interacts with the environment. In addition to studying the ankle impedance, a wearable device was designed and evaluated to further the studies on robotic perception for ankle-foot prostheses. This device is capable of characterizing the ground environment and estimating the gait state using visual-inertial sensors. Finally, this study contributes to the field of ankle-foot prostheses by identifying the mechanical behavior of the human ankle and developing a platform to test perception algorithms for the control of robotic prostheses

    System for powered ankle-foot prosthesis with active control of dorsiflexion-plantarflexion and inversion-eversion

    Get PDF
    A system and method for operating a prosthesis is provided. The system includes a socket configured to engage a residual limb of a subject and a shaft having a first end connected to the socket and an opposing second end. The system also includes a foot piece connected to the second end of the shaft. The foot piece includes an ankle plate and a sole piece configured to contact a surface. The system also includes at least one computer configured to detect a state of the foot piece and to transmit an indication of the state of the foot. The system further includes a motor assembly configured to receive the indication of the state of the foot and to control a position and impedance of the ankle plate based on the state of the foot.https://digitalcommons.mtu.edu/patents/1136/thumbnail.jp

    Humanoid Robot Soccer Locomotion and Kick Dynamics: Open Loop Walking, Kicking and Morphing into Special Motions on the Nao Robot

    Get PDF
    Striker speed and accuracy in the RoboCup (SPL) international robot soccer league is becoming increasingly important as the level of play rises. Competition around the ball is now decided in a matter of seconds. Therefore, eliminating any wasted actions or motions is crucial when attempting to kick the ball. It is common to see a discontinuity between walking and kicking where a robot will return to an initial pose in preparation for the kick action. In this thesis we explore the removal of this behaviour by developing a transition gait that morphs the walk directly into the kick back swing pose. The solution presented here is targeted towards the use of the Aldebaran walk for the Nao robot. The solution we develop involves the design of a central pattern generator to allow for controlled steps with realtime accuracy, and a phase locked loop method to synchronise with the Aldebaran walk so that precise step length control can be activated when required. An open loop trajectory mapping approach is taken to the walk that is stabilized statically through the use of a phase varying joint holding torque technique. We also examine the basic princples of open loop walking, focussing on the commonly overlooked frontal plane motion. The act of kicking itself is explored both analytically and empirically, and solutions are provided that are versatile and powerful. Included as an appendix, the broader matter of striker behaviour (process of goal scoring) is reviewed and we present a velocity control algorithm that is very accurate and efficient in terms of speed of execution

    Joint Trajectory Generation and High-level Control for Patient-tailored Robotic Gait Rehabilitation

    Get PDF
    This dissertation presents a group of novel methods for robot-based gait rehabilitation which were developed aiming to offer more individualized therapies based on the specific condition of each patient, as well as to improve the overall rehabilitation experience for both patient and therapist. A novel methodology for gait pattern generation is proposed, which offers estimated hip and knee joint trajectories corresponding to healthy walking, and allows the therapist to graphically adapt the reference trajectories in order to fit better the patient's needs and disabilities. Additionally, the motion controllers for the hip and knee joints, mobile platform, and pelvic mechanism of an over-ground gait rehabilitation robotic system are also presented, as well as some proposed methods for assist as needed therapy. Two robot-patient synchronization approaches are also included in this work, together with a novel algorithm for online hip trajectory adaptation developed to reduce obstructive forces applied to the patient during therapy with compliant robotic systems. Finally, a prototype graphical user interface for the therapist is also presented

    Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 115-120).Walking is an easy task for most humans and animals. Two characteristics which make it easy are the inherent robustness (tolerance to variation) of the walking problem and the natural dynamics of the walking mechanism. In this thesis we show how understanding and exploiting these two characteristics can aid in the control of bipedal robots. Inherent robustness allows for the use of simple, low impedance controllers. Natural dynamics reduces the requirements of the controller. We present a series of simple physical models of bipedal walking. The insight gained from these models is used in the development of three planar (motion only in the sagittal plane) control algorithms. The first uses simple strategies to control the robot to walk. The second exploits the natural dynamics of a kneecap, compliant ankle, and passive swing-leg. The third achieves fast swing of the swing-leg in order to enable the robot to walk quickly (1.25m). These algorithms are implemented on Spring Flamingo, a planar bipedal walking robot, which was designed and built for this thesis. Using these algorithms, the robot can stand and balance, start and stop walking, walk at a range of speeds, and traverse slopes and rolling terrain. Three-dimensional walking on flat ground is implemented and tested in simulation. The dynamics of the sagittal plane are sufficiently decoupled from the dynamics of the frontal and transverse planes such that control.-of each can be treated separately. We achieve three-dimensional walking by adding lateral balance to the planar algorithms. Tests of this approach on a real three-dimensional robot will lead to a more complete understanding of the control of bipedal walking in robots and humans.by Jerry E. Pratt.Ph.D
    • …
    corecore