1,369 research outputs found

    Time-varying Clock Offset Estimation in Two-way Timing Message Exchange in Wireless Sensor Networks Using Factor Graphs

    Full text link
    The problem of clock offset estimation in a two-way timing exchange regime is considered when the likelihood function of the observation time stamps is exponentially distributed. In order to capture the imperfections in node oscillators, which render a time-varying nature to the clock offset, a novel Bayesian approach to the clock offset estimation is proposed using a factor graph representation of the posterior density. Message passing using the max-product algorithm yields a closed form expression for the Bayesian inference problem.Comment: 4 pages, 2 figures, ICASSP 201

    TS-MUWSN: Time synchronization for mobile underwater sensor networks

    Get PDF
    Time synchronization is an important, yet challenging, problem in underwater sensor networks (UWSNs). This challenge can be attributed to: 1) messaging timestamping; 2) node mobility; and 3) Doppler scale effect. To mitigate these problems, we present an acoustic-based time-synchronization algorithm for UWSN, where we compare several message time-stamping algorithms in addition to different Doppler scale estimators. A synchronization system is based on a bidirectional message exchange between a reference node and a slave one, which has to be synchronized. Therefore, we take as reference the DA-Sync-like protocol (Liu et al., 2014), which takes into account node's movement by using first-order kinematic equations, which refine Doppler scale factor estimation accuracy, and result in better synchronization performance. In our study, we propose to modify both time-stamping and Doppler scale estimation procedures. Besides simulation, we also perform real tests in controlled underwater communication in a water test tank and a shallow-water test in the Mediterranean Sea.Peer ReviewedPostprint (author's final draft

    Cooperative Synchronization in Wireless Networks

    Full text link
    Synchronization is a key functionality in wireless network, enabling a wide variety of services. We consider a Bayesian inference framework whereby network nodes can achieve phase and skew synchronization in a fully distributed way. In particular, under the assumption of Gaussian measurement noise, we derive two message passing methods (belief propagation and mean field), analyze their convergence behavior, and perform a qualitative and quantitative comparison with a number of competing algorithms. We also show that both methods can be applied in networks with and without master nodes. Our performance results are complemented by, and compared with, the relevant Bayesian Cram\'er-Rao bounds

    Fully Distributed Clock Skew And Offset Estimation In Wireless Sensor Networks

    Get PDF
    In this paper, we propose a fully distributed algorithm for joint clock skew and offset estimation in wireless sensor networks. With the proposed algorithm, each node can estimate its clock skew and offset by communicating only with its neighbors. Such algorithm does not require any centralized information processing or coordination. Simulation results show that estimation mean-square-error at each node converge to the centralized Cramér-Rao bound with only a few number of message exchanges.published_or_final_versio

    Distributed Clock Skew and Offset Estimation in Wireless Sensor Networks: Asynchronous Algorithm and Convergence Analysis

    Get PDF
    In this paper, we propose a fully distributed algorithm for joint clock skew and offs et estimation in wireless sensor networks based on belief propagation. In the proposed algorithm, each node can estimate its clock skew and offset in a completely distributed and asynchronous way: some nodes may update their estimates more frequently than others using outdated message from neighboring nodes. In addition, the proposed algorithm is robust to random packet loss. Such algorithm does not require any centralized information processing or coordination, and is scalable with network size. The proposed algorithm represents a unified framework that encompasses both classes of synchronous and asynchronous algorithms for network-wide clock synchronization. It is shown analytically that the proposed asynchronous algorithm converges to the optimal estimates with estimation mean-square-error at each node approaching the centralized Cram ́er-Rao bound under any network topology. Simulation results further show that the convergence speed is faster than that corresponding to a synchronous algorithm.published_or_final_versio

    Timing Synchronization and Node Localization in Wireless Sensor Networks: Efficient Estimation Approaches and Performance Bounds

    Get PDF
    Wireless sensor networks (WSNs) consist of a large number of sensor nodes, capable of on-board sensing and data processing, that are employed to observe some phenomenon of interest. With their desirable properties of flexible deployment, resistance to harsh environment and lower implementation cost, WSNs envisage a plethora of applications in diverse areas such as industrial process control, battle- field surveillance, health monitoring, and target localization and tracking. Much of the sensing and communication paradigm in WSNs involves ensuring power efficient transmission and finding scalable algorithms that can deliver the desired performance objectives while minimizing overall energy utilization. Since power is primarily consumed in radio transmissions delivering timing information, clock synchronization represents an indispensable requirement to boost network lifetime. This dissertation focuses on deriving efficient estimators and performance bounds for the clock parameters in a classical frequentist inference approach as well as in a Bayesian estimation framework. A unified approach to the maximum likelihood (ML) estimation of clock offset is presented for different network delay distributions. This constitutes an analytical alternative to prior works which rely on a graphical maximization of the likelihood function. In order to capture the imperfections in node oscillators, which may render a time-varying nature to the clock offset, a novel Bayesian approach to the clock offset estimation is proposed by using factor graphs. Message passing using the max-product algorithm yields an exact expression for the Bayesian inference problem. This extends the current literature to cases where the clock offset is not deterministic, but is in fact a random process. A natural extension of pairwise synchronization is to develop algorithms for the more challenging case of network-wide synchronization. Assuming exponentially distributed random delays, a network-wide clock synchronization algorithm is proposed using a factor graph representation of the network. Message passing using the max- product algorithm is adopted to derive the update rules for the proposed iterative procedure. A closed form solution is obtained for each node's belief about its clock offset at each iteration. Identifying the close connections between the problems of node localization and clock synchronization, we also address in this dissertation the problem of joint estimation of an unknown node's location and clock parameters by incorporating the effect of imperfections in node oscillators. In order to alleviate the computational complexity associated with the optimal maximum a-posteriori estimator, two iterative approaches are proposed as simpler alternatives. The first approach utilizes an Expectation-Maximization (EM) based algorithm which iteratively estimates the clock parameters and the location of the unknown node. The EM algorithm is further simplified by a non-linear processing of the data to obtain a closed form solution of the location estimation problem using the least squares (LS) approach. The performance of the estimation algorithms is benchmarked by deriving the Hybrid Cramer-Rao lower bound (HCRB) on the mean square error (MSE) of the estimators. We also derive theoretical lower bounds on the MSE of an estimator in a classical frequentist inference approach as well as in a Bayesian estimation framework when the likelihood function is an arbitrary member of the exponential family. The lower bounds not only serve to compare various estimators in our work, but can also be useful in their own right in parameter estimation theory

    Distributed Clock Parameters Tracking in Wireless Sensor Network

    Get PDF
    Clock parameters (skew and offset) in sensor net- work are inherently time-varying due to imperfect oscillator circuits. This paper develops a distributed Kalman filter for clock parameters tracking. The proposed algorithm only requires each node to exchange limited information with its direct neighbors, thus is energy efficient, scalable with network size, and is robust to changes in network connectivity. A low-complexity distributed algorithm based on Coordinate-Descent with Bootstrap (CD-BS) is also proposed to provide rapid initialization to the tracking algorithm. Simulation results show that the performance of the proposed distributed tracking algorithm maintains long-term clock parameters accuracy close to the Bayesian Cramer-Rao Lower Bound.published_or_final_versio

    Synchronization of application-driven WSN

    Get PDF
    corecore