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Distributed Clock Parameters Tracking in
Wireless Sensor Network

Bin Luo and Yik Chung Wu

Abstract—Clock parameters (skew and offset) in sensor net-
work are inherently time-varying due to imperfect oscillator
circuits. This paper develops a distributed Kalman filter for clock
parameters tracking. The proposed algorithm only requires each
node to exchange limited information with its direct neighbors,
thus is energy efficient, scalable with network size, and is robust
to changes in network connectivity. A low-complexity distributed
algorithm based on Coordinate-Descent with Bootstrap (CD-BS)
is also proposed to provide rapid initialization to the tracking
algorithm. Simulation results show that the performance of the
proposed distributed tracking algorithm maintains long-term
clock parameters accuracy close to the Bayesian Cramer-Rao
Lower Bound.

Index Terms—Distributed clock synchronization, wireless sen-
sor networks (WSNs), distributed Kalman filter, Bayesian
Cramer-Rao lower bound.

I. INTRODUCTION

W IRELESS Sensor Networks (WSNs) typically consist
of inexpensive, small-sized, power-limited terminals

(known as senor nodes) capable of onboard sensing, com-
puting and communications. WSNs are used to monitor data
that would be difficult or inconvenient to monitor using
wired equipment. These applications include monitoring habi-
tat environments, controlling industrial machines and home
appliances, object tracking and event detection, etc. [1], [2].
Most of these applications require collaborative execution
of a distributed task amongst a set of synchronized sensor
nodes. Moreover, data fusion, power management, transmis-
sion scheduling, localization and tracking protocols demand all
the nodes running on a common time frame. However, each
sensor in a WSN has its own clock. Different clocks will drift
from each other over time owning to imperfection in oscilla-
tor circuits. This necessitates synchronization algorithms that
achieve and maintain global clock synchronization.

Over the last decade, a wide variety of clock synchro-
nization protocols have been proposed. Existing synchro-
nization protocols can be divided into two categories de-
pending on how synchronization is executed: pairwise-based
and fully distributed. In the pairwise-based protocols, clock
synchronization is achieved by building a hierarchical network
structure (spanning tree or cluster) and performing pairwise
synchronization between adjacent levels or clusters. Two of
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the most representative protocols in this category are Time
synchronization Protocol for Sensor Network (TPSN) [3], and
Reference Broadcast Synchronization (RBS) [4]. Some other
similar algorithms include Flooding Time Synchronization
Protocol (FTSP) [5], Lightweight Tree-based Synchronization
(LTS) [6], Tiny-sync [7], Pairwise Broadcast Synchronization
(PBS) [8], Delay Measurement Time Synchronization [9],
and Hierarchy Referencing Time Synchronization (HRTS)
[10]. The disadvantages of this kind of approach are that it
requires large overhead to maintain the hierarchical structure
and rapid accumulation of synchronization error as distance
from reference node increases.

On the other hand, for fully distributed synchronization
algorithms, there is no special network structure. All sensors
only have to communicate with their neighboring nodes,
thus these protocols are robust to dynamic networks and are
scalable with network size. This kind of algorithms can be
further divided into two subclasses: pulse-coupled based and
packet-coupled based. For the former, sensors are synchro-
nized using physical layer pulses [14]–[16]. Despite the easy
implementation and elegant theoretical support, pulse-coupled
synchronization only provides a unified ticking rhythm but
not precise clock reading. On the other hand, for the latter,
timing messages between any two nodes are exchanged in
the form of data package. Examples in this class include
the average consensus principle based clock synchronization
[11]–[13], and belief propagation based methods [23], [24].
Unfortunately, in consensus based methods, message delays
are not considered, which causes large mean-square-error in
converged clocks, while for existing belief propagation based
methods, only clock offset is considered, resulting in the need
of frequent re-synchronization.

Even after global synchronization in sensor network, indi-
vidual clock would drift away from each other, and eventually
call for re-synchronization. It is obvious that we can re-
perform the distributed synchronization algorithms mentioned
above. However, due to the slow-varying nature of clock
parameters, the previously estimated clock parameters are use-
ful in predicting the clock parameters in re-synchronization.
Therefore, instead of discarding the previous estimated clock
parameters, clock parameter tracking received some attentions
recently. By assuming clock skew and clock offset can be
directly observed subjected to noise, clock skews are tracked
by Kalman filter in [21], while both clock skew and offset are
tracked in [22]. Recently, graphical models are used in [25],
[26] to derive a message-passing method for the clock offsets
tracking in the presence of exponential family distributed
random delays. However, all the above tracking algorithms
were derived for synchronizing a pair of nodes only.

1536-1276/13$31.00 c© 2013 IEEE
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Fig. 1: Topology of a network with 25 sensors {Si}25i=1.

In this paper, with clock parameters evolution equations
developed based on the oscillator phase noise model, a fully-
distributed clock offset and skew tracking algorithm using
Kalman filtering is proposed. The distributed Kalman filter
can achieve global synchronization in a distributed way, and
the accuracy of clock parameters can be maintained close to
Bayesian Cramer-Rao Lower Bound (Bayesian CRLB). It also
performs well even when there is node failure, packet loss or
new node joining in.

The rest of the paper is organized as follows. In Section
II, the state-space model for the synchronization problem
is developed. In Section III, distributed clock parameters
tracking algorithm based on Kalman filter is proposed with
a low-complexity initialization presented in Section IV. The
Bayesian CRLB for global clock parameters tracking is de-
rived in Section V. Simulation results are presented in Section
VI. Finally, conclusions are drawn in Section VII.

Notation: The operator Tr {A} takes the trace of matrix
A and the operator vec (A) represents the vectorization of
matrix A. Superscript (·)T denotes the transpose operator and
IN indicates an N ×N identity matrix. Notation E {·} takes
the expectation. Ni denotes the set of neighbors of node Si,
with Ni(j) indicates the jth element in set Ni. N[i] describes
the subsystem formed by the node Si and the nodes in its
neighbor set. Finally, ⊗ stands for the Kronecker product.

II. SYSTEM MODEL

Consider a network with N sensor nodes {S1, S2, · · · , SN}.
These sensors are randomly distributed in the field and can
be self-organized into a network by establishing connections
between neighbor nodes lying within each other’s communi-
cation range. An example of 25 sensor nodes is shown in
Figure 1, where each edge represents the ability to transmit
and receive packets between the pair of nodes. Each sensor
Si has an analog clock characterized by an oscillator [16]:

ρi(t) = cosΦi(t), (1)

where Φi(t) is the instantaneous phase, which evolves as:

Φi(t) = 2π(f0 +Δfi)t+Φi(0) + ςi(t), (2)

where f0 is the center frequency; Δfi is the frequency offset
that depends on hardware imperfections; Φi(0) is the initial
phase; ςi(t) = 2πf0

√
piB(t) is a random process modelling

phase noise, with B(t) represents the standard Wiener process
[30], and pi is a parameter describing degree of phase noise.
In particular, pi can be computed based on phase noise level
L(f) = 10log10

(
pif

2
0 /f

2
)

at certain frequency offset f with
respect to the oscillator center frequency f0, which is available
in datasheet. On the other hand, pi can also be computed
based on the RMS period jitter or RMS phase jitter. Details
have been given in Appendix A. From (2), the clock reading
evolves as:

ci(t) =
Φi(t)

2πf0
=

f0 +Δf

f0
t+

Φi(0)

2πf0
+

ςi(t)

2πf0

� ξit+ θ0i +
√
piB(t) (3)

where ξi is the normalized frequency, and θ0i represents the
initial clock offset of node Si.

The above clock reading model can also be expressed in
terms of a time-varying skew and initial clock offset as:

ci(t) =

∫ t

0

βi(τ)dτ + θ0i . (4)

Comparing (3) and (4), the time-varying clock skew and phase
noise are related by:

∫ t

0 βi(τ)dτ = ξit +
√
piB(t), and then

differentiating both sides with respect to t, we can obtain

βi(t) = ξi +
√
piB

′
(t). (5)

After sampling with sampling period τ0, (4) can be approxi-
mated by1

ci(l) =

l∑
m=1

βi(m)τ0 + θ0i

= lτ0 +

l−1∑
m=1

[βi(m)− 1]τ0 + θ0i︸ ︷︷ ︸
ϑi(l−1)

+[βi(l)− 1]τ0

= lτ0 + ϑi(l − 1) + [βi(l)− 1]τ0 (6)

where ϑi(l) and βi(l) are the accumulated clock offset and
instantaneous clock skew at the lth sample, respectively.

In order to achieve global clock synchronization, all ci(l)
must be adjusted to be a common value. Without loss of
generality, suppose S1 is selected as the reference node
with accurate clock (i.e., β1(l) = 1 and ϑ1(l) = 0), then
based on (6) the task of global clock synchronization is to
track time-varying clock skews {βi(l)}Ni=2 and accumulated
offsets {ϑi(l)}Ni=2 with respect to the reference node. Before
presenting the distributed tracking algorithm, we first set up
the clock skew and accumulated clock offset evolution models,
and then localized timestamp measurement model.

Remark 1: If the clock skew is not time-varying, (4) can
be written as: ci(t) = βit+ θ0i , which is the first order model
widely used in the literature [9], [13], [21], [23].

1The same symbols ci(·) and βi(·) are used for both continuous and
discrete quantities but t and τ are reserved exclusively for continuous time
argument.
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Fig. 2: Two-way time-stamp exchange between nodes i and j at standard time
t.

A. Accumulated Clock Offset and Skew Evolution Model

After sampling (5), we can obtain: βi(l) = ξi +
√
piB

′
(l),

where B
′
(l) stands for the derivative of B(t) at the lth

sample time. Since the derivative of standard Wiener process is
Gaussian white noise, we can further take the Gauss-Markov
model to describe the time-varying skew of node Si:

βi(l) = βi(l − 1) + ui(l), (7)

where ui(l) =
√
pi[B

′
(l)−B

′
(l− 1)] is Gaussian noise with

mean 0 and variance σ2
ui

= 2pi.
On the other hand, based on the definition of accumulated

clock offset in (6), we can rewrite ϑi(l) in a recursive form:

ϑi(l) = ϑi(l − 1) + (βi(l)− 1)τ0. (8)

Substituting (7) into (8) gives:

ϑi(l) = ϑi(l − 1) + τ0 · βi(l − 1) + τ0 · ui(l)− τ0. (9)

Defining xi(l) = [βi(l) ϑi(l)]
T and combining (7) and (9),

the state evolution model for clock parameters of Si can be
written in a matrix form:

xi(l) =

[
1 0
τ0 1

]
xi(l − 1) +

[
ui(l)
τ0ui(l)

]
+

[
0

−τ0

]
. (10)

B. Localized Timestamp Measurement Model

In order to establish clock relationship between two neigh-
boring nodes, two-way time-stamp exchange is performed.
The time-stamp exchange model between Si and Sj is shown
in Figure 2. In the time-stamp exchange process, node Si

sends a synchronization message to node Sj with its sending
time T

{i,j}
1 , Sj records its time T

{i,j}
2 at the reception of that

message and replies Si at time T
{i,j}
3 . The replied message

contains both T
{i,j}
2 and T

{i,j}
3 . Then Si records the reception

time of Sj’s reply as T
{i,j}
4 . Since the total time elapsed in

one round of time-stamp exchange is very small [5], we denote
the set of time stamps in one round of message exchange as{
T

{i,j}
1,t , T

{i,j}
2,t , T

{i,j}
3,t , T

{i,j}
4,t

}
, where t is the reference time

at the message exchange, and clock parameters do not change
within one round of time-stamp exchange.

Now, expressing the clock model (4) in terms of reference
time and accumulated clock offset as:

ci(t) =

∫ t

0

βi(τ)dτ + θ0i = t+

∫ t

0

[βi(τ) − 1]dτ + θ0i

= t+ ϑi(t). (11)

With (11), the above time-stamp exchange procedure can be
modeled as:

T
{i,j}
2,t − ϑj(t) = T

{i,j}
1,t − ϑi(t) + dij +X

{i,j}
t (12)

T
{i,j}
3,t − ϑj(t) = T

{i,j}
4,t − ϑi(t)− dij − Y

{i,j}
t (13)

where dij stands for the fixed portion of message delay
between Si and Sj ; X{i,j}

t and Y
{i,j}
t are variable portions of

the message delay. Considering X
{i,j}
t and Y

{i,j}
t are due to

numerous independent random processes, it is assumed that
X

{i,j}
t and Y

{i,j}
t are independent and identically distributed

(i.i.d.) Gaussian random variables with zero mean and variance
σ2, and this assumption was experimentally verified in [4].

Adding (12) to (13), defining V
{i,j}
t � X

{i,j}
t − Y

{i,j}
t ,

T
{i,j}
s,t � T

{i,j}
1,t +T

{i,j}
4,t and T

{i,j}
r,t � T

{i,j}
2,t +T

{i,j}
3,t , and after

sampling, we obtain the discrete-time localized measurement
model as:

T
{i,j}
r,l − T

{i,j}
s,l = 2ϑj(l)− 2ϑi(l) + V

{i,j}
l , (14)

where l is the sample index. Stacking (14) for all j ∈ Ni and
defining x(l) = [xT

2 (l) x
T
3 (l) · · · xT

N (l)]T , we have

zi,l = Ci,lx(l) + vi(l), (15)

where zi,l(j) = T
{i,Ni(j)}
r,l − T

{i,Ni(j)}
s,l with j ∈ {1, · · · , λi}

(λi = |Ni| is the number of neighbors of Si), and the elements
of Ci,l ∈ Rλi×2(N−1) are represented as:

Ci,l(j,m) =

⎧⎨⎩
−2 if m = 2i− 2,
2 if m = 2Ni(j)− 2,
0 otherwise,

with j ∈ {1, · · · , λi} and m ∈ {1, · · · , 2(N − 1)}. Further-
more, vi(l) ∈ R

λi×1 is the measurement noise, and clearly
its mean is zero and the covariance is Ri = E

[
vi(l)v

T
i (l)
]
=

2σ2Iλi .
The measurement model (15) can also be described in terms

of local state vector as

zi,l = C̃i,lxN[i]
(l) + vi(l), (16)

where xN[i]
(l) = Λix(l) is the clock parameters vector of

local subsystem including the node Si and all its neighbors
(except reference node), and C̃i,l = Ci,lΛ

T
i is the reduced

matrix excluding columns of Ci,l corresponding to non-
neighbors of node i, and Λi is the selection matrix with
ΛT

i Λi = I.

III. DISTRIBUTED CLOCK PARAMETERS TRACKING

ALGORITHM

In wireless sensor network, clock skews and offsets are
time-varying. This calls for frequent resynchronization. In this
section we will design distributed Kalman filer (DKF) to track
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the clock parameters. Since clock synchronization should only
occupy a small portion of the resource in WSNs, it is assumed
that one round of Kalman filter is executed every Δ unit of
τ0 with Δ � 1.

A. Distributed Kalman Filtering (DKF) Approach

Define lk = Δk and based on (10) and (16), we can obtain
the state-space equations for local subsystem of node Si as{

xi(lk) = Aixi(lk−1) +wi(lk) + bi

zi,lk = C̃i,lkxN[i]
(lk) + vi(lk)

(17)

with

Ai =

[
1 0

Δτ0 1

]
, wi(lk) =

⎡⎢⎣
√
pi[B

′
(lk)−B

′
(lk−1)]

lk∑
m=lk−1+1

(lk −m+ 1)τ0ui(m)

⎤⎥⎦
and bi = [0 −Δτ0]

T , where wi(lk) can be interpreted as the
random disturbance in the evolution equation. It clearly has a
zero mean and the covariance matrix is:

Qi(lk)=E
[
wi(lk)w

T
i (lk)

]
=σ2

ui

[
1 0

0 Δ(1+Δ)(2Δ+1)
6 τ20

]
.

(18)
The goal is to track the time-varying clock skews {βi(lk)}Ni=2

and accumulated offsets {ϑi(lk)}Ni=2, based on local informa-
tion (17). The optimal solution is the Kalman filter, which
requires gathering of (17) for all Si in a central processing
unit, resulting the dynamic equation:{

x(lk) = Ax(lk−1) +w(lk) + b

zlk = Clk · x(lk) + v(lk)
(19)

where A = diag(A2, · · · ,AN ); w(lk) =
[wT

2 (lk) · · · wT
N (lk)]

T ∈ R2×(N−1) with E [w(lk)] = 0 and
Q(lk) = E

[
w(lk)w

T (lk)
]

= diag(Q2(lk), · · · ,QN(lk));
b = [bT

2 · · · bT
N ]T ; zlk = [zT2,lk · · · zTN,lk

]T ;

Clk = [CT
2,lk

· · · CT
N,lk

]T ∈ R
λ×2(N−1) (λ =

∑N
i=2 λi); and

v(lk) = [vT
2 (lk) · · · vT

N (lk)]
T ∼ N (0, R) with R = 2σ2Iλ.

Based on (19), the standard Kalman filter is

Prediction step : x̂(lk|lk−1) = Ax̂(lk−1|lk−1) + b (20)

Update step : x̂(lk|lk) = x̂(lk|lk−1) +K(lk)

· (zlk−Clk x̂(lk|lk−1)). (21)

The covariance matrix P(lk|lk−1) of prediction-step and co-
variance matrix P(lk|lk) of update-step are given by:

P(lk|lk−1) = AP(lk−1|lk−1)A
T +Q(lk) (22)

P(lk|lk) = (I−K(lk)Clk)P(lk|lk−1)(I−CT
lkK

T (lk))

+K(lk)RKT (lk) (23)

where the global Kalman gain K(lk) is chosen to minimize
the Tr(P(lk|lk)).

Since the centralized optimal solution is not convenient in
large scale systems, now we decompose (20) and (21) into
distributed form. From (20) and (21), it is noticed that the
state vector xi(lk) in x(lk), observation zi,lk in zlk , system
matrices Ai in A, C̃i,lk in Clk , bi in b are all localized.
Only the global Kalman gain K(lk) is not localized and

has to be computed in centralized way. In order to make
the optimal solution decomposed into distributed form, we
enforce an additional constraint that K(lk) is a block diagonal
matrix. With this additional constraint, the standard KF can be
decomposed into following distributed form:{

x̂i(lk|lk−1)=Aix̂i(lk−1|lk−1)+bi

x̂i(lk|lk)= x̂i(lk|lk−1)+Ki(lk)(zi,lk−C̃i,lk x̂N[i]
(lk|lk−1))

(24)
where Ki(lk) is the local Kalman gain chosen as:

K(lk) = argmin
K(lk)

Tr P(lk|lk)

s.t. K(lk) =
N∑
i=2

UT
i Ki(lk)Ωi, (25)

where Ui =
[
02×2(i−2) I2×2 02×2(N−i−1)

]
and Ωi =

[0λi×
∑i−1

j=2 λj
Iλi×λi 0λi×

∑
N
j=i λj

] are used to enforce the
block diagonal structure of K(lk).

To solve this optimization problem, the covariance matrix
P(lk|lk) in (23) is written as:

P(lk|lk)=L11+K(lk)L12+L21K(lk)
T
+K(lk)L22K(lk)

T
,

(26)
where L11 = P(lk|lk−1), L12 = −P(lk|lk−1)Clk

T , L21 =
−ClkP(lk|lk−1), and L22 = ClkP(lk|lk−1)C

T
lk
+R. With

the matrix equality Tr(A) = Tr(AT ) and the symmetry of
P(lk|lk) = PT (lk|lk), Tr P(lk|lk) becomes

Tr P(lk|lk)=Tr(L11)+2Tr
[
L21K

T (lk)
]
+Tr
[
K(lk)L22K

T (lk)
]
.

Now differentiating Tr(P(lk|lk)) with respect to Ki(lk) gives:

vec

[
d TrP(lk|lk)
d Ki(lk)

]
=

d TrP(lk|lk)
d vec[Ki(lk)]

=
d TrP(lk|lk)
d vec[K(lk)]

d vec[K(lk)]

d vec[Ki(lk)]
. (27)

With the matrix differentiation rules [29], the derivatives in
(27) are given by⎧⎪⎪⎨⎪⎪⎩

d TrP(lk|lk)
d vec[K(lk)]

= 2 (vec [L12 +K(lk)L22])
T

d vec[K(lk)]

d vec[Ki(lk)]
= (Ωi ⊗Ui)

T
(28)

Putting (28) into (27), we obtain

d TrP(lk|lk)
d vec[Ki(lk)]

= 2 ((Ωi ⊗Ui)vec [L12 +K(lk)L22])
T

= 2
(
vec[Ui(L12 +K(lk)L22)Ω

T
i ]
)T

.

The optimal Ki(lk) can be obtained by setting the result to
zero: Ui(L12 +K(lk)L22)Ω

T
i = 0. Using (25) leads to

0 = Ui(L12)Ω
T
i +

N∑
j=2

⎛⎜⎝ UiU
T
j︸ ︷︷ ︸

=0 if i�=j

Kj(lk)ΩjL22Ω
T
i

⎞⎟⎠
= Ui(L12)Ω

T
i +Ki(lk)ΩiL22Ω

T
i . (29)

Therefore, the optimal Kalman gain Ki(lk) can be solved to
be:

Ki(lk)=−[UiP(lk|lk−1)C
T
i,lk

][
Ci,lkP(lk|lk−1)C

T
i,lk

+Ri

]−1
.

(30)
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To fully distribute the calculation of the Kalman gain Ki(lk)
in (30), it can be rewritten in the following alternative form:

Ki(lk)=−
[
p[i](lk|lk−1)C̃

T
i,lk

][
C̃i,lkPN[i]

(lk|lk−1)C̃T
i,lk

+Ri

]−1
(31)

where PN[i]
(lk|lk−1) = ΛiP(lk|lk−1)(Λi)

T is the covariance
matrix of the estimate xN[i]

(lk|lk−1) in local subsystem and
p[i](lk|lk−1) is the rows of PN[i]

(lk|lk−1) corresponding to
xi.

From (31), we can notice that PN[i]
(lk|lk−1) is required.

Now based on (22), left multiplying both sides by Λi and
right multiplying both sides by (Λi)

T , and with the matrix
equality Λi(Λi)

T = (Λi)
TΛi = I, we can obtain local update

of PN[i]
(lk|lk−1) as

PN[i]
(lk|lk−1) = AN[i]

PN[i]
(lk−1|lk−1)A

T
N[i]

+QN[i]
(lk),

(32)
where PN[i]

(lk−1|lk−1) is the covariance matrix of
the estimate xN[i]

(lk−1|lk−1) in local subsystem,
AN[i]

= diag(Am1 , · · · ,Amj , · · · ,Am(λi+1)
), and

QN[i]
= diag(Qm1 , · · · ,Qmj , · · · ,Qm(λi+1)

), where
mj ∈ {Ni, i}. Without loss of generality, it is assumed that
m1 < m2 < · · · < m(λi+1).

On the other hand, (32) depends on PN[i]
(lk−1|lk−1), which

can be obtained by first expressing (23) in its alternative form:
P(lk|lk) = P(lk|lk−1)−K(lk)ClkP(lk|lk−1) [17], and then
left multiplying both sides by Λi and right multiplying both
sides by (Λi)

T , so the local update of PN[i]
(lk|lk) is given

by

PN[i]
(lk|lk)=PN[i]

(lk|lk−1)−KN[i]
(lk)CN[i],lkPN[i]

(lk|lk−1),
(33)

where the Kalman gain KN[i]
(lk) =

diag(Km1(lk), · · · ,Kmj (lk), · · · ,Km(λi+1)
(lk)), and

CN[i],lk = [CT
m1,lk

, · · · ,CT
mj ,lk

, · · · ,CT
m(λi+1),lk

]T .

B. Asynchronous Implementation, Handling Node Failure and
New Neighbors

In practice, due to the broadcasting nature and the half-
duplex operation of wireless nodes, some data packets may
loss. Updating one’s estimate only after getting information
from all neighbors may not be advisable. But the proposed
algorithm can be easily modified to work in an asynchronous
way. More specifically, nodes will wait for a “time-out” period
for receiving update information from their neighbors. If
update information from some neighbors (say node j) does
not arrive in this period of time, the previously stored estimate
x̂j and its covariance matrix Pj will be used instead.

On the other hand, the proposed algorithm can also easily
handle node failure during tracking operation. If node j is
a neighbor of node i, and suddenly fails, it can simply be
removed from the subsystem of node i, and the estimation
updates can be carried out in the new subsystem. More
specifically, local matrices AN[i]

, QN[i]
, CN[i],lk , C̃i,lk , local

estimate x̂N[i]
, local Kalman gain KN[i]

, and local covari-
ance matrix PN[i]

can be modified by deleting the rows
and columns that correspond to node j. If the node j go
online again, the connection between node i and j resumes

to work, the local matrices will be modified by inserting
rows and columns correspond to node j. More specifically,
we modify PN[i]

as P̃N[i]
= diag(PN[i]

,Pj), where Pj is
node j’s covariance matrix (possibly from previous estimate).
For the case of new neighbors, if a new node m joins the
neighborhood of node i, a new connection is established
between node i and m. The local matrices can be updated
as in the case of a missing node resume working. The only
difference is that Pm is set as δ−1I2×2 with δ being a small
value due to the absence of prior information about the new
node.

The distributed accumulated clock offset ϑi(lk) and skew
βi(lk) tracking algorithm is summarized in Algorithm 1.
This algorithm is localized, implying that the nodes in WSN
communicate only with their neighbors to obtain the desired
results. This localized algorithm can also work under the
conditions of node failures, packet loss, and new neighbors,
and the communication overhead scales well with increasing
network size.

C. Computational Complexity Analysis

The computational complexity of one iteration of the
distributed tracking algorithm at node i depends mainly
on the costs of four terms: AN[i]

PN[i]
(lk−1|lk−1)A

T
N[i]

at covariance prediction, C̃i,lkPN[i]
(lk|lk−1)C̃

T
i,lk

,[
C̃i,lkPN[i]

(lk|lk−1)C̃
T
i,lk

+Ri

]−1

at Kalman filter

gain calculations and KN[i]
(lk)CN[i],lkPN[i]

(lk|lk−1)
at covariance update based on observations. Since the
computational complexity order of these four terms are
O(8(λi + 1)3), O(2λi(λi + 1)(3λi + 2)), O(λ3

i ), and
O(4(λi + 1)2[λ2

i + 2(λi + 1)]), respectively, the total
cost of one iteration at node i can be approximately as
O(4λ4

i + 31λ3
i + 66λ2

i + 52λi + 16).

IV. LOW-COMPLEXITY DISTRIBUTED CLOCK

PARAMETERS INITIALIZATION

It is noticed that in the distributed clock parameters tracking
algorithm, we need initial values and initial covariance matri-
ces to start the distributed Kalman filtering. In the absence of
prior information, we can set x̂i(0|0) = [1 0]T and P(0|0) =
δ−1I with δ being a small value. However, such initialization
may result in a slow convergence speed. Furthermore, this
method involves lots of matrix multiplications and inversions.
In this section, we propose a low-complexity distributed clock
parameters initialization algorithm to obtain good initial values
x̂i(0|0) and the covariance matrix PN[i]

(0|0).
Since the accumulated offsets ϑi(l) varies sample by sam-

ple, it is not suitable for batch mode estimation. On the
other hand, since the clock skews vary relatively slow, and
can be considered constant if the elapse time of batch mode
estimation is small. Therefore, in the initialization, we use the
clock model mentioned in Remark 1: ci(t) = βit+ θ0i , since
the procedure of batch mode estimation is very short. Equating
this model with (4), we have

ci(l)− ϑi(l) =
ci(l)− θ0i

βi
. (34)
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Algorithm 1 Distributed accumulated offset and skew tracking
algorithm at node i

1: Initialization:
2: Initialize with x̂i(0|0) and PN[i]

(0|0).
3: Broadcast variance σ2

ui
to neighboring sensors;

4: Iteration:
5: for k = 1, 2, · · · do
6: Run two-way timestamp exchange with neighbors and

obtain new measurements zi,lk ;
7: construct AN[i]

, QN[i]
, C̃i,lk and PN[i]

(lk−1|lk−1);
8: Prediction step:
9: Calculate{

x̂i(lk|lk−1) = Aix̂i(lk−1|lk−1) + bi

PN[i]
(lk|lk−1) = AN[i]

PN[i]
(lk−1|lk−1)A

T
N[i]

+QN[i]

and

Ki(lk)=−
[
p[i](lk|lk−1)C̃T

i,lk

][
C̃i,lkPN[i]

(lk|lk−1)C̃T
i,lk

+Ri

]−1
10: Broadcast x̂i(lk|lk−1), Ki(lk) and C̃i,lk to neighboring

sensors;
11: Update step:
12: Construct x̂N[i]

(lk|lk−1), KN[i]
(lk) and CN[i],lk ;

13: Update x̂i(lk|lk) and PN[i]
(lk|lk) according to{̂

xi(lk|lk)=x̂i(lk|lk−1)+Ki(lk)(zi,lk−C̃i,lk x̂N[i]
(lk|lk−1))

PN[i]
(lk|lk)=PN[i]

(lk|lk−1)−KN[i]
(lk)CN[i],lkPN[i]

(lk|lk−1)
14: end for

Applying (34) into (12) and (13), and recognizing that
T i,j
1,t , T

i,j
4,t are the clock reading of node i (i.e., ci(t)) while

T i,j
2,t , T

i,j
3,t are that of node j, the measurement model (14) can

be written as

1
/
βj ·
[
T

{i,j}
r,l − 2θ0j

]
= 1/βi·

[
T

{i,j}
s,l − 2θ0i

]
+ V

{i,j}
l , (35)

where l ∈ {1, · · · , L1}, V
{i,j}
l are i.i.d. Gaussian random

variables with zero mean and variance 2σ2. Based on (35) and
suppose we have L1 round of time-stamp exchanges between
any pair of nodes in the network, the initial parameters
estimation can be considered as the following optimization
problem:

min
θ0
i ,βi

L1∑
l=1

N∑
i=1

∑
j∈Ni

(
1/βi·

[
T

{i,j}
s,l −2θ0i

]
−1/βj ·

[
T

{i,j}
r,l −2θ0j

])2
,

(36)
However, we can easily notice that the above problem is not a

convex optimization problem, thus it is difficult to obtain the
global optimal solution.

On the other hand, with a simple transformation, αi = 1/βi,
γi = θ0i /βi, and since node 1 is selected as the reference, (i.e.,
[α1, γ1] = [1, 0]), (36) can be transformed into

min
αi,γi

LF
(
{αi}Ni=2 , {γi}Ni=2

)
=min

αi,γi

L1∑
l=1

N∑
i=1

∑
j∈Ni

(
αiT

{i,j}
s,l −2γi−αjT

{i,j}
r,l +2γj

)2
, (37)

and we can see that (37) is a convex Quadratic problem. We
can then apply coordinate descent (CD) algorithm to iteratively
minimize (37), which provides a fully distributed algorithm.
More specifically, differentiating the objective function (37)
w.r.t. variables αi and γi respectively gives

∂LF

∂αi
=

L1∑
l=1

∑
j∈Ni

{
2
(
αiT

{i,j}
s,l −2γi−αjT

{i,j}
r,l +2γj

)
·T {i,j}

s,l

+2
(
αiT

{j,i}
r,l −2γi−αjT

{j,i}
s,l +2γj

)
·T {j,i}

r,l

}
(38)

∂LF

∂γi
=

L1∑
l=1

∑
j∈Ni

{
4
(
αjT

{i,j}
r,l −2γj−αiT

{i,j}
s,l +2γi

)
+4
(
αjT

{j,i}
s,l −2γj−αiT

{j,i}
r,l +2γi

)}
. (39)

Setting (38) and (39) to zero yields the iteration formulas
(40) and (41) shown at the bottom of the page. Notice that for
j = 1, the variables α1 and γ1 correspond to that of reference
node S1, thus we have α1 = 1, γ1 = 0 for all the iterations.
During the procedure, each node update its estimates αi and
γi according to (40) and (41) until convergence. After conver-
gence, the estimate of initial clock offset and clock skew can
be calculated by the transformation: β̂i = 1/α̂i, θ̂

0
i = γ̂i/α̂i.

Finally, the initial values of accumulated offset and skew can
be calculated as: x̂i(0|0) = [β̂i θ̂0i + (β̂i − 1)κi]

T , where
κi = [ci(te) − ci(ts)]/β̂i is the elapsed time for node i
initialization.

Since the objective function (37) is strictly convex and con-
tinuously differentiable, the coordinate descent based method
converges to the global optimal solution. And from [18], [19],
the convergence rate is at least linear.

On the other hand, we can further use the Bootstrap
technique [20] to estimate the covariance matrix PN[i]

(0|0)
based on L1 rounds of time-stamp exchange during initializa-
tion. Denoting the L1 rounds of time-stamp measurements

α̂
(m+1)
i =

L1∑
l=1

∑
j∈Ni

[
2γ̂

(m)
i − 2γ̂

(m)
j

] [
T

{i,j}
s,l + T

{j,i}
r,l

]
+ α̂

(m)
j

[
T

{i,j}
r,l · T {i,j}

s,l + T
{j,i}
s,l · T {j,i}

r,l

]
L1∑
l=1

∑
j∈Ni

[(
T

{i,j}
s,l

)2
+
(
T

{j,i}
r,l

)2] (40)

γ̂
(m+1)
i =

1

4L1 · λi

⎧⎨⎩
L1∑
l=1

∑
j∈Ni

4γ̂
(m)
j + α̂

(m)
i

[
T

{i,j}
s,l + T

{j,i}
r,l

]
− α̂

(m)
j

[
T

{i,j}
r,l + T

{j,i}
s,l

]⎫⎬⎭ . (41)
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TABLE I: Complexity Comparison During Initialization

Initialization method pre-computation per iteration total cost
DKF 0 O(4λ4

i + 31λ3
i + 66λ2

i + 52λi + 16) O(NKF (4λ4
i + 31λ3

i + 66λ2
i + 52λi + 16))

CD-BS B(6L1 + 3λiL1) B(9λi + 2) B[6L1 + 3λiL1 +NCD(9λi + 2)]

{
T

{i,j}
1,l , T

{i,j}
2,l , T

{i,j}
3,l , T

{i,j}
4,l

}L1

l=1
as
{
T
{i,j}
l

}L1

l=1
, the pro-

cedure of Coordinate Descent with Bootstrap (CD-BS) for
covariance matrix estimation is illustrated as follows:

� Step 1. Resampling and repetition. In each node, draw
B random samples {S{i,j}

1 , · · · ,S{i,j}
B } of size L1, with

replacement, from S{i,j} = {T{i,j}
1 , · · · ,T{i,j}

L1
}.

� Step 2. Calculation of the bootstrap estimates using
CD. Each node broadcasts B groups of current estimates
{[α̂i, γ̂i]1, · · · , [α̂i, γ̂i]B} to its neighbors. After receiving
the estimates, each node update its estimates according
to (40) and (41) with the corresponding time-stamp sam-
ple {S{i,j}

1 , · · · ,S{i,j}
B }. This procedure iterates until

convergence, and then we obtain a total of B bootstrap
estimates x̂N[i],1, . . . , x̂N[i],B .

� Step 3. Estimation of the covariance matrix PN[i]
.

Estimate the covariance matrix of x̂N[i]
by

PN[i]
(0|0) = 1

B − 1

B∑
j=1

(
x̂N[i],j −

1

B

B∑
k=1

x̂N[i],k

)2

.

In terms of computational complexity for node i, the method
of Coordinate Descent with Bootstrap involves B(4L1+λiL1)
additions and B(2L1 + 2λiL1) multiplications before it-
erations, and then for each iteration, 4Bλi additions and
B(5λi + 2) multiplications are required. Assuming that the
computational costs of multiplication and addition operations
are the same, the total cost for node i can be expressed as
B[6L1 +3λiL1 +NCD(9λi +2)], where NCD is the number
of iterations for the convergence of CD-BS.

The computational complexities of CD-BS and DKF for
initialization are listed in Table I for comparison. In case of
DKF for initialization, we can set Δ = 1, and NKF in Table I
is the number of iteration of DKF to reach convergence during
initialization. As shown in Table I, the computation of DKF
method takes complexity order O(λ4

i ) while that of CD-BS is
only O(λi). Detail complexity comparison will be presented
in simulation section.

V. BAYESIAN CRAMER-RAO LOWER BOUND

In this section, we derive the centralized Bayesian Cramer-
Rao Lower Bound for the accumulated offsets and clock skews
estimation which served as a benchmark for the distributed
tracking algorithm.

Define X0:k = {x(0),x(l1), · · · ,x(lk)}, C1:k =
{Cl1 , · · · ,Clk}, and Z1:k = {zl1 , · · · , zlk}. The estimation
covariance of x̂(lk) is bounded below by J−1

k , i.e., Σx̂(lk) �
J−1
k , where Jk is the lower-right [2(N − 1)× 2(N − 1)]

submatrix of the inverse of the Bayesian information matrix

J(X0:k) [27],

J(X0:k)=

⎡⎢⎢⎣E
{
− ∂2 log pk

∂X0:(k−1)∂X
T
0:(k−1)

}
E
{
− ∂2 log pk

∂X0:(k−1)∂xT (lk)

}
E

{
− ∂2 log pk

∂x(lk)∂XT
0:(k−1)

}
E
{
− ∂2 log pk

∂x(lk)∂xT (lk)

}
⎤⎥⎥⎦ ,

(42)
with the probability distribution pk = p(Z1:k,C1:k,X0:k)
= p (x(0))

∏k
j=1 p

(
Clj , zlj |x(lj)

)∏k
m=1 p (x(lm)|x(lm−1)),

and the expectation is taken with respect to the X0:k, C1:k

and Z1:k. It can be shown that [28] the submatrix Jk can be
computed in a recursive way:

Jk+1 = D22
k − (D12

k )T (Jk +D11
k )−1D12

k , (43)

where

D11
k = E

{
− ∂2

∂x(lk)∂xT (lk)
log p (x(lk+1)|x(lk))

}
D12

k = E

{
− ∂2

∂x(lk)∂xT (lk+1)
log p (x(lk+1)|x(lk))

}
D22

k = E

{
− ∂2

∂x(lk+1)∂xT (lk+1)
log p (x(lk+1)|x(lk))

}
+ E

{
− ∂2

∂x(lk+1)∂xT (lk+1)
log p

(
Clk+1

, zlk+1
|x(lk+1)

)}
.

(44)
Based on the dynamic system model (19), the two condi-

tional probability distribution in (44) are:

− log p (x(lk+1)|x(lk))
= c1+

1

2
[x(lk+1)−Ax(lk)−b]TQ−1[x(lk+1)−Ax(lk)−b] ,

(45)

− log p
(
Clk+1

, zlk+1
|x(lk+1)

)
= c2+

1

2

[
zlk+1

−Clk+1
x(lk+1)

]T
R−1

[
zlk+1

−Clk+1
x(lk+1)

]
,

(46)

where c1 and c2 are constants. Substituting (45) and (46) into
(44), we obtain D11

k = ATQ−1A, D12
k = −ATQ−1, and

D22
k = Q−1+CT

lk+1
R−1Clk+1

, and then the recursive formula
(43) can be rewritten as:

Jk+1=Q−1+CT
lk+1

R−1Clk+1
−Q−TA(Jk+ATQ−1A)−1ATQ−1.

(47)
After applying the matrix inversion lemma [32], it can be
further simplified as:

Jk+1 = (Q+AJ−1
k AT )−1 +CT

lk+1
R−1Clk+1

. (48)

If we take the DKF as the initialization method, the
initial information submatrix J0 can be set as: J0 = δI.
On the other hand, if the CD-BS method is taken, J0

can be set as: J0 = [CRLB(x)]−1, where CRLB(x) is
the CRLB for the initial values x(0|0). Since x̂i(0|0) =[
β̂i θ̂0i + (1− 1/β̂i)[ci(te)− ci(ts)]

]T
, we can define that
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x(0|0) � g([βT θT ]T ), where β = [β2, · · · , βN ]T and
θ = [θ02, · · · , θ0N ]T . Thus the CRLB for x(0|0) can be
calculated as:

CRLB(x) = Π CRLB
(
[βT θT ]T

)
ΠT , (49)

where Π = [ ∂g∂β
∂g
∂θ ]=

[
δ2 ⊕ · · · ⊕ δN IN−1 ⊗ ([0 1]T )

]
with

δi=
[
1 [ci(te)− ci(ts)]/β

2
i

]T
and ⊕ denotes the direct sum.

The centralized CRLB for [βT θT ]T was derived in Appendix
B.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, numerical simulations will be presented to
assess the performance of proposed clock parameters initial es-
timation and tracking algorithm in Wireless Sensor Networks.
The measure of parameter estimate fidelity at time l is Root
Average Mean Squared Error (RAMSE) of clock skew and
accumulated offset over the whole network:

RAMSE(ζ(l)) =

√√√√ 1

N − 1

N∑
i=2

(ζ̂i(l)− ζi(l))2,

where ζ ∈ {β, ϑ}. Each sensor node is equipped with an
oscillator having RMS period jitter 3ps and f0 = 150MHz
[33], with τ0 = 0.1s is assumed. Network of 25 nodes are
randomly deployed in an area 5×5 with communication radius
1.5. 1000 independent networks are generated for averaging
the RAMSE in the figures. In the simulations, initial clock
skew, initial clock offsets and fixed delays are uniformly se-
lected from ranges [0.9, 1.1], [−5τ0, 5τ0] and [0.01τ0, 0.02τ0],
respectively. The variance of random delay is 0.5τ0. For
initialization, 5 rounds of two-way time-stamp exchange are
performed. For all algorithms in the simulations, it is assumed
that one iteration of distributed processing (including message
exchanges and local computations) can be completed within
τ0.

A. Clock Parameters Initialization

The performance of the proposed CD-BS initialization al-
gorithm, and DKF initialization (set Δ = 1, x̂i(0|0) = [1 0]T

and P(0|0) = δ−1I with δ = 0.01) and consensus algorithm
[13] are first compared. For consensus algorithm, it seeks
to converge to the average value of all the nodes’ clock
parameters θ0i and βi. Therefore, the estimated clock param-
eters from consensus algorithm are transformed by x̂i(l) =[
β̂i θ̂0i + (1− 1/β̂i)(lτ0)

]T
. Furthermore, the RAMSE for

consensus algorithm is defined as

RAMSE(ζ(l))con =

√√√√ 1

N

N∑
i=1

(
ζ̂i(l)− 1

N

N∑
i=1

ζi(l)

)2

.

Finally, the CRLB(x) in (49) is also plotted as performance
limit.

The RAMSEs of ϑ̂i and β̂i averaged over all nodes and
all network topologies are shown in Figure 3. It can be seen
that for the CD-based algorithm, as the number of iteration
increases, RAMSE gradually decreases and finally approaches
the batch mode CRLB, while there is a constant gap between
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Fig. 3: RAMSE of accumulated clock offsets ϑ and skews β estimation.

the performance of the consensus algorithm and the CRLB
even after consensus algorithm converged. On the other hand,
DKF initialization has a slower convergence than CD-based
method. It is noticed that for CD-based method, 13 iterations
(in addition to 5 rounds of time-stamp exchange at the be-
ginning) are performed till convergence while approximately
35 iterations (one iteration includes two-way time-stamp
exchange and current estimate dissemination) are required
for DKF method. However, DKF method, with performance
coinciding with the Bayesian CRLB, has a smaller RAMSE
than CD-based method after convergence. This shows that
CD-based method is suitable for rapid initialization but not
for long-term synchronization. In terms of complexity, the
corresponding parameters in Table I are L1 = 5, NCD =
13, NKF = 35. If we set λi = 5 and B = 25, the total
cost for DKF at node i is O(290535), which is at least 17
times of 17275, the cost for CD-BS method.

On the other hand, the performance of covariance matrix
estimation by CD-BS is measured by the Frobenius norm of
the difference between estimated covariance matrix PN[i]

(0|0)
and the centralized true value (the entries of CRLB(x) in
(49) corresponding to N[i]). From Figure 4, we can notice
that the Frobenius norm errors become smaller as the number
of iteration increases and finally converge to stable values.
Furthermore, the larger the number of bootstrap samples, the
smaller the Frobenius norm of error after convergence.

B. Distributed Clock Parameters Tracking

For assessing the performance of distributed tracking al-
gorithm, after CD-BS initialization, Δ = 2000 is set, i.e.,
re-synchronization using a single Kalman filter update every
Δ×τ0. The idle periods between Kalman filter updates allows
the sensor network to perform operations other than synchro-
nization. Figures 5 and 6 show the performance of the tracked
accumulated offsets and skews versus the number of Kalman
filter iterations (notice that one iteration represents Δ × τ0),
respectively. Both the prediction and posterior RAMSEs are
shown, illustrating both the error due to pure prediction step
and improvement due to observation updates. Firstly, it is
noticed that as the number of iterations increases, the posterior
RAMSE decreases, and finally touching the Bayesian CRLB.
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But there is a significant difference in the convergence speed
for different bootstrap samples used in the initialization. For
B = 25, the posterior RAMSE basically touches the Bayesian
CRLB in the first round of re-synchronization. This is not
the case for smaller B. This is because in the first round
of Kalman filter update, the estimated P(0|0) will be used
as weighting for combining the prior estimate (which is an
estimate touching the CRLB as shown in Figure 3) with
that due to the new observations. If P(0|0) is not accurately
estimated, it would degrade the RAMSE of the first re-
synchronized clock parameters estimate. Only more obser-
vations are obtained, the effect of P(0|0) estimate becomes
insignificant and then the RAMSE approaches the Bayesian
CRLB. Furthermore, we can notice that the RAMSE can be
maintained within a limited range from Bayesian CRLB after
convergence. This is an important feature in the proposed
method, as there is a guarantee in the RAMSE being kept
close to Bayesian CRLB.

Finally, we conducted simulations to verify the algorithm is
robust to nodes failure and new neighbors, and can also works
in asynchronous scheduling. In the simulations, the network
starts with 25 nodes at the beginning of tracking. Two nodes
are chosen at random to fail at iteration 5, and then the failed
nodes resume working or two newly joined nodes are added
at iteration 20. Figures 7 and 8 show the posterior RAMSE

0 5 10 15 20 25

10
−2

10
−1

Kalman filter iterations

Pr
ed

ic
tio

n 
an

d 
Po

st
er

io
r 

R
A

M
SE

 o
f 

tr
ac

ke
d 

cl
oc

k 
sk

ew
 (β

)

 

 
Proposed DKF algorithm with initial values based on CD−BS method (B=5)
Proposed DKF algorithm with initial values based on CD−BS method (B=15)
Proposed DKF algorithm with initial values based on CD−BS method (B=25)

Bayesian CRLB with J
0
−1=CRLB(x) in (49)

Fig. 6: RAMSE of tracked clock skews.

0 5 10 15 20 25 30 35 40

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

10
−0.1

Kalman filter iterations

Po
st

er
io

r 
R

A
M

SE
 o

f 
tr

ac
ke

d 
ac

cu
m

ul
at

ed
 c

lo
ck

 o
ff

se
t (

ϑ)

 

 

Asynchronous update
with packet loss probability P

f
=15%

2 nodes failed at iteration 5 and
2 new nodes join at iteration 20

2 nodes failed at iteration 5 and
resume working at iteration 20
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0
−1=CRLB(x)

in (49) (network with 23 nodes)
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0
−1=CRLB(x)
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resume working

2 nodes fail

2 new nodes join the network

Fig. 7: Performance of accumulated offsets tracking in asynchronous schedul-
ing, and in the presence of nodes failure and newly joined nodes.

(RAMSE after observation updates) of accumulated clock
offset and skew respectively, versus the number of Kalman
filter iterations (with Δ = 2000, and B = 15 in CD-BS
initialization). It can be seen that the Bayesian CRLB for
network with 25 nodes would be lower than that of 23 nodes
on average, since more timing information is present in the
network with 25 nodes. Furthermore, we notice that with 2
nodes failure at iteration 5, the proposed DKF converges to
the Bayesian CRLB for network with 23 nodes. If the two
failed nodes resume working at iteration 20, the RAMSE can
further decrease to approach the Bayesian CRLB of network
with 25 nodes. On the other hand, if 2 new nodes join the
network at iteration 20, the RAMSE initially shows a sharp
increase since it is assumed that the newly joined nodes do not
have any prior information on their clock parameters. But the
RAMSE decreases quickly and finally touches the Bayesian
CRLB of network with 25 nodes. Figures 7 and 8 also show
the asynchronous implementation of DKF by imposing a 15%
probability that any any local state exchange packet will be
lost in the data transmission. From the figures, it is observed
that the proposed DKF also works in asynchronous scheduling,
and it can converge to the Bayesian CRLB with only a slightly
slower convergence speed than synchronous scheduling.
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2 nodes failed at iteration 5 and
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Fig. 8: Performance of skew tracking in asynchronous scheduling, and in the
presence of nodes failure and newly joined nodes.

VII. CONCLUSIONS

In this paper, a fully-distributed Kalman filter for tracking
the time-varying clock parameters in wireless sensor network
was proposed. The proposed algorithm only requires com-
munications between neighboring nodes and is scalable with
network size. Furthermore, it can perform well in dynamic
networks where there is node failure or new nodes joining in.
A low-complexity Coordinate-Descent with bootstrap method
was also proposed for rapid initialization for the tracking
algorithm. Simulation results show that the proposed initializa-
tion method achieves higher accuracy than average consensus
approach, and the proposed distributed Kalman filter maintains
long-term clock parameters accuracy, and is robust to network
topology changes during tracking process.

APPENDIX A
CALCULATION OF THE OSCILLATOR PARAMETER

This Appendix derives the relationship between oscillator
quality parameter p and the oscillator period jitter or phase
jitter commonly available in data sheet.

A. Period Jitter

The relationship between the phase noise and RMS period
jitter [31] can be expressed as:

JPER =

√
8T 2

0

4π2

∫ ∞

0

10
L(f)
10

[
sin2 (πfT0)

]
df, (50)

where f is the frequency offset with respect to the oscillator
frequency f0, L(f) is the phase noise power spectral density

used to describe oscillator performance, and T0 = 1/f0.
Since the relationship between L(f) and parameter p for free-
running oscillator is given [30] by

L(f) = 10log10
(
pf2

0/f
2
)
, (51)

the RMS period jitter can be derived as:

JPER =

√
8T 2

0

4π2

∫ ∞

0

pf2
0

f2

[
sin2(πfT0)

]
df =

√
pT0, (52)

and the oscillator quality parameter p can be calculated as
p = J2

PERf0.

B. Phase Jitter

The relationship between the phase noise and RMS phase
jitter [31] can be expressed as:

JPHA =
1

2πf0

√
2

∫ f2

f1

10
L(f)
10 df, (53)

where f1 and f2 are the lower and upper frequency offsets with
respect to RMS phase jitter. Substituting the power spectral
density (51) into (53), RMS phase jitter can be derived as:

JPHA=
1

2πf0

√
2

∫ f2

f1

pf2
0

f2
df=

1

2π

√
2p

(
1

f1
− 1

f2

)
, (54)

and then the oscillator quality parameter p can be calculated
as p = 2π2J2

PHA · f1f2/(f2 − f1).

APPENDIX B
CENTRALIZED CRAMER RAO LOWER BOUND FOR INITIAL

CLOCK OFFSET AND SKEW ESTIMATION

Based on (12), (13) and using (34), the centralized log-
likelihood function for θ0i , βi and dij is written in (55), shown
at the bottom of the page, where Nt is the total number of
rounds of time-stamp exchange in the entire network, and it
is assumed that dij = dji.

Define

�ij =

{
1 if j ∈ Ni

0 otherwise
,

the Fisher Information Matrix (FIM) for β = [β2, · · · , βN ]T ,
θ = [θ02 , · · · , θ0N ]T , and d (d is a vector containing dij as
elements where j ∈ Ni and the indexes are arranged in
ascending order on i and then on j) is given by [17]

F = −E

⎛⎜⎜⎝
∂2 ln f
∂β∂βT

∂2 ln f
∂β∂θT

∂2 ln f
∂β∂dT

∂2 ln f
∂θ∂βT

∂2 ln f
∂θ∂θT

∂2 ln f
∂θ∂dT

∂2 ln f
∂d∂βT

∂2 ln f
∂d∂θT

∂2 ln f
∂d∂dT

⎞⎟⎟⎠ , (56)

ln f

({
T

{i,j}
1,l , T

{i,j}
2,l , T

{i,j}
3,l , T

{i,j}
4,l

}L1

l=1
|θ0i , βi, dij

)
=

Nt

2
· ln 1

2πσ2
− 1

2σ2

×
L1∑
l=1

N∑
i=1

∑
j∈Ni

{(
1/βj ·

[
T

{i,j}
2,l − θ0j

]
− 1/βi ·

[
T

{i,j}
1,l − θ0i

]
− dij

)2
+
(
1/βi ·

[
T

{i,j}
4,l − θ0i

]
− 1/βj ·

[
T

{i,j}
3,l − θ0j

]
− dij

)2}
(55)
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where the expressions of different elements are shown at the
bottom of the page. The centralized CRLB for [βT θT ]T can
be obtain as the upper-left [2(N − 1)× 2(N − 1)] submatrix
of F−1.
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