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Distributed Clock Skew and Offset Estimation in
Wireless Sensor Networks: Asynchronous

Algorithm and Convergence Analysis
Jian Du and Yik-Chung Wu

Abstract—In this paper, we propose a fully distributed algo-
rithm for joint clock skew and offset estimation in wireless sensor
networks based on belief propagation. In the proposed algorithm,
each node can estimate its clock skew and offset in a completely
distributed and asynchronous way: some nodes may update their
estimates more frequently than others using outdated message
from neighboring nodes. In addition, the proposed algorithm
is robust to random packet loss. Such algorithm does not
require any centralized information processing or coordination,
and is scalable with network size. The proposed algorithm
represents a unified framework that encompasses both classes
of synchronous and asynchronous algorithms for network-wide
clock synchronization. It is shown analytically that the proposed
asynchronous algorithm converges to the optimal estimates with
estimation mean-square-error at each node approaching the
centralized Cramér-Rao bound under any network topology.
Simulation results further show that the convergence speed is
faster than that corresponding to a synchronous algorithm.

Index Terms—Clock synchronization, wireless sensor network,
factor graph, asynchronous algorithm.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been widely
used in environmental and emergency monitoring [1],

[2], event detection [3] and object tracking [4]. To perform
distributed information processing in WSNs, a common clock
across the network is usually required to guarantee the nodes
act in a collaborative and synchronized fashion. Unfortunately,
clock oscillator in each sensor node has its own imperfection
and both clock skew (frequency difference) and clock offset
(phase difference) are present. Therefore, time synchronization
[5] appears as one of the most important research challenges
in the design of WSNs.

Existing time synchronization algorithms can be categorized
into two main classes. One is pairwise synchronization [6]–
[17] where protocols are primarily designed to synchronize
two nodes. The other is network-wide synchronization where
protocols are designed to synchronize a large number of
nodes in the network [18]–[30]. Network-wide clock syn-
chronization is much more challenging due to limited radio

Manuscript received March 28, 2013; revised June 25 and August 13, 2013;
accepted August 25, 2013. The associate editor coordinating the review of this
paper and approving it for publication was A. Vosoughi.

Part of this manuscript appeared at the 2013 IEEE International Conference
on Acoustics, Speech, and Signal Processing [30].

The authors are with the Department of Electrical and Electronic Engi-
neering, The University of Hong Kong, Pokfulam Road, Hong Kong (e-mail:
{dujian, ycwu}@eee.hku.hk).

Digital Object Identifier 10.1109/TWC.2013.100213.130553

range. Nodes in a sensor network cannot directly communicate
with every other node, but they have to do it via multi-hop.
Traditionally, network-wide clock synchronization in WSNs
relies on spanning tree or clustered-based structure. Under
such structures, synchronization is achieved through layer-
by-layer pairwise synchronization. Such protocols, like time-
synchronization protocol for sensor network (TPSN) [18] and
pairwise broadcast synchronization (PBS) [19], suffer large
overhead in building and maintaining the tree or cluster
structure, and are vulnerable to sudden node failures.

Without global structure or special nodes, by exchanging
pulses emitted by oscillators, sensors are synchronized to
transmit and receive at the same time in [20]–[22]. However,
these algorithms cannot provide a precise clock reading at
the sensor node. On the other hand, fully distributed synchro-
nization based on averaged consensus algorithms have been
proposed in [23]–[28]. Unfortunately, as shown in [26], [29],
consensus protocol is not optimal and the performance will
deteriorate when message delay exists. Besides, as average-
consensus based algorithm seeks to reach global average in
the whole network, it has slow convergence [27] (in order
of hundreds of iterations before convergence). More recently,
[29] pioneered the fully distributed network-wide clock offset
estimation algorithm based on belief propagation (BP), and
found that its performance is superior to consensus algorithms.
However, ignoring the effect of clock skew would significantly
increase the re-synchronization frequency. Moreover, [29]
considers a parallel implementation with message exchange
carried out in a synchronous fashion. Notwithstanding, in
many practical scenarios, the inter-sensor message exchange
is asynchronous since random data packet losses may occur,
and different nodes may update at different frequencies. At
present, it is not clear the impact of these disturbance factors
on the performance of synchronization algorithms.

This work advances the state-of-the-art distributed synchro-
nization in the following ways: 1) The distributed algorithm
is fairly general and can cope with both clock skews as
well as offsets over the whole network in parallel. 2) It
represents a unified framework that encompasses both classes
of synchronous [29], [30] and asynchronous algorithms. 3)
The convergence of the proposed method under asynchronous
environments is formally proved. The convergence result is de-
rived for vector variable case, in which the Perron-Frobenious
theorem used in [29] is not applicable. 4) With the adoption
of a different message passing rule from [29], the mean-
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square error (MSE) performance of the derived algorithm is
shown to approach the centralized Cramér-Rao bound (CRB)
asymptotically. Simulations show that the convergence speed
of asynchronous algorithm is faster than its synchronous
counterpart.

The rest of this paper is organized as follows. The system
model is presented in Section II. A fully distributed asyn-
chronous clock skew and offset estimation algorithm based on
BP is derived in Section III. The convergence of the proposed
asynchronous algorithm is analyzed in Section IV. Simulation
results are given in Section V and, finally, conclusions are
drawn in Section VI.

Notations: Boldface uppercase and lowercase letters are
used for matrices and vectors, respectively. Superscript T
denotes transpose. The symbol IN represents the N × N
identity matrix. Notation N (x|μ,R) stands for the probability
density function (pdf) of a Gaussian random vector x with
mean μ and covariance matrix R. The symbol ∝ represents
the linear scalar relationship between two real valued functions
and |V| denotes the cardinality of set V . For two matrices X
and Y , X � Y means that X − Y is a positive definite
matrix, and X � Y means that X − Y is a positive semi-
definite matrix.

II. SYSTEM MODEL

Consider a general multi-hop sensor network with M
sensor nodes distributed in a field as shown in Fig. 1. Let
V = {1, . . . ,M} denotes the set of nodes and E ⊆ V × V
is the set of edges. An edge is denoted by {i, j} if node i
and node j can communicate directly. In the example shown
in Fig. 1, the vertices are depicted by circles and the edges
by lines connecting these circles. The set of neighbors of
node i is denoted by I(i) ⊆ V with the definition that
I(i) � {j ∈ V|{i, j} ∈ E}. It is assumed that the radio
coverage area of a node is circular with a specific radius so
that each pair of nodes can exchange message only when their
distance is less than both of their communication radiuses.
Furthermore, it is assumed that any two distinct nodes can
communicate with each other through a finite number of hops.
Such a network will be referred to as a strongly connected
network.

With the imperfection of oscillators and possible environ-
mental changes, each node has a local clock with possibly
different clock skew and offset. The relationship between real
time t and the local clock reading is modeled as

ci(t) = αit+ θi, i = 1, · · · ,M, (1)

where αi and θi are the clock skew and offset of node i,
respectively.

To estimate and compensate such clock skews and offsets,
a two-way time-stamp message exchange mechanism was
proposed for pairwise clock synchronization [19]. Specifically,
as shown in Fig. 2, between one-hop neighboring nodes i
and j, at the nth round of time-stamp exchange, node i
sends a synchronization message to node j at t1n with its
local clock reading ci(t

1
n) embedded in the message. Node

j records its time cj(t
2
n) at the reception of that message and

replies to node i at cj(t3n). The replied message contains both
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Fig. 1. WSN topology with 25 nodes randomly distributed.
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Fig. 2. Two way message exchange between node i and j in the WSN.

time stamps cj(t
2
n) and cj(t

3
n). Then, node i records the

reception time from node j’s reply as ci(t
4
n). N rounds of

such message exchange are performed between each pair of
nodes to establish a relationship between the nodes i’s and j’s
clocks. In particular, for the nth round time-stamp exchange,
we can write

1

αj
[cj(t

2
n)− θj ] =

1

αi
[ci(t

1
n)− θi] + di,j + wj,n, (2)

and

1

αj
[cj(t

3
n)− θj ] =

1

αi
[ci(t

4
n)− θi]− dj,i − wi,n, (3)

where wj,n and wi,n denote independent and identically
distributed (i.i.d.) Gaussian random delay during the nth round
of time-stamp exchange, with zero mean and variances σ2

j ,
σ2
i , respectively; di,j and dj,i represent the fixed message

delay during which node i/j sends message to node j/i,
respectively. Under the assumption that the network topology
does not change during the clock synchronization process, we
have di,j = dj,i. Adding (2) and (3) and stacking all resultant
equations for N rounds of time-stamp exchange, we obtain

Aj,iβj +Ai,jβi = zj,i, (4)

where Aj,i and Ai,j are N -by-2 matrices with the nth row
being [cj(t

2
n)+cj(t

3
n),−2] and −[ci(t

1
n)+ci(t

4
n),−2], respec-

tively; βj � [ 1
αj

,
θj
αj

]T and βi � [ 1
αi
, θi
αi
]T ; and zj,i is an N

dimensional vector with the nth element being wj,n − wi,n.
Since wj,n and wi,n are both i.i.d. Gaussian, it is easy to obtain
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zj,i ∼ N (zj,i|0, σ2
i,jIN ), where σ2

i,j = σ2
i + σ2

j . The goal is
to establish global synchronization (i.e., estimate αi and θi in
each node) based on the local observations Aj,i and Ai,j .

III. ASYNCHRONOUS DISTRIBUTED ESTIMATION

In this section, the asynchronous distributed clock parameter
estimation algorithm is derived based on BP. In the following,
message exchange means BP message passing since two-way
time-stamp exchange has been completed.

A. BP Framework

For the reason that the established clock relationships during
two-way time-stamp exchanges involve interaction between
neighboring nodes, the optimal clock estimate at each node
requires the marginalization of joint posterior distribution of
all βi, which is

gi(βi) ∝
∫

...

∫ M∏
i=1

p(βi)
∏

{i,j}∈E
p(Ai,j ,Aj,i|βi,βj)

dβ1...dβi−1dβi+1dβM ,

(5)

where p(βi) is the prior distribution of βi;
p(Ai,j ,Aj,i|βi,βj) = N (Aj,iβj |Ai,jβi, σ

2
i,jIN ) is the

likelihood function obtained from (4). Node 1 is assumed
to be the reference node with p(β1) = δ(β1 − [1, 0]T ), and
its parameters need not to be estimated. The computation
of gi(βi) in (5) needs to gather all information in a central
processing unit. Besides, for the arbitrary network topology,
the corresponding |V| and |E| can be very large leading to
the computationally demanding integration (5).

Although the joint posterior distribution of β1, . . . ,βM

(integrand in (5)) is complicated due to the local interactions
of sensor nodes, it is a product of local likelihood functions,
each of which depends on a subset of the variables. Such
a nice property can be conveniently revealed in a factor
graph [31], over which the computation of gi(βi) for all i
can be efficiently accomplished in a distributed way. One
example of factor graph is shown in Fig. 3. In this factor
graph, local synchronization parameters βi, i = 1, · · · ,M , are
represented by variables nodes (circles). If two sensor nodes
i and j are within the communication range of each other,
the corresponding variables βi and βj are linked by a factor
node (local function) fi,j = fi,j � p(Ai,j ,Aj,i|βi,βj). On
the other hand, the factor node fi � p(βi) denotes the prior
information.

The message passing algorithm operated on the factor graph
involves two kinds of messages: One is the message from
factor node fj,i to a variable node βi, defined as [31]

m
(l)
fj,i→i(βi) =

∫
m

(l)
j→fj,i

(βj)fj,idβj , (6)

where l denotes the time of message exchange and
m

(l)
j→fj,i

(βj) is the other kind of message from the variable
node to the factor node, which is simply the product of the
incoming messages on the other links, i.e.,

m
(l)
j→fj,i

(βj) =
∏

f∈B(βj)\fj,i
m

(l−1)
f→j (βj), (7)
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Fig. 3. The factor graph for clock synchronization in a WSNs.

where B(βj) denotes the set of neighboring factors of βj on
the factor graph. In particular, under such message computa-
tion rule, the message from factor node fi to βi is always
equals to the prior distribution p(βi) [31].

During the first round of message passing, it is reasonable
to set initial messages from factor node to variable node
m

(0)
fi→i(βi) and m

(0)
fj,i→i(βi) as p(βi) and non-informative

message N (βi|0,+∞I2), respectively. Assuming p(βi) =

m
(1)
fj,i→i(βi) is in Gaussian form (if there is no prior informa-

tion, we can set the mean to be zero and set the variance to be
a large value, i.e., non-informative prior). Then, m(1)

j→fj,i
(βj)

being the product of Gaussian functions in (7) is also a
Gaussian function [37]. Furthermore, based on the fact that
the likelihood function fj,i is also Gaussian, according to (6),
m

(1)
fj,i→i(βi) is a Gaussian function. Thus during each round

of message exchange, all the messages are Gaussian functions
and only the mean vectors and covariance matrices need to
be exchanged between neighboring factor nodes and variable
nodes.

In general, for the lth (l = 2, 3, · · · ) round of message
exchange, factor node fj,i receives message m

(l)
j→fj,i

(βj) in

the form of N (βj |v(l)
j→fj,i

,C
(l)
j→fj,i

) from their neighboring
variable nodes and then computes a message using (6):

m
(l)
fj,i→i(βi) =

∫
m

(l)
j→fj,i

(βj)fj,idβj

=

∫
N (βj |v(l)

j→fj,i
,C

(l)
j→fj,i

)

×N (Ai,jβi|Aj,iβj , σ
2
i,jIN )dβj

(8)

As the convolution of a pair of Gaussian function is also
Gaussian function [37], after some algebraic manipulations,
we obtain m

(l)
fj,i→i(βi) ∝ N (βi|v(l)

fj,i→i,C
(l)
fj,i→i), where the

covariance matrix and mean vector are given by

[
C

(l)
fj,i→i

]−1
= AT

i,j

[
σ2
i,jIN +Aj,iC

(l)
j→fj,i

AT
j,i

]−1

Ai,j , (9)
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and

v
(l)
fj,i→i =C

(l)
fj,i→iA

T
i,jAj,i

{
AT

j,iAj,i + σ2
i,j

[
C

(l)
j→fj,i

]−1
}−1

× [
C

(l)
j→fj,i

]−1
v
(l)
j→fj,i

.

(10)

On the other hand, using (7), the message passed from the
variable node to the factor node is given by the product of
Gaussian distributions, which is

m
(l)
j→fj,i

(βj) =
∏

f∈B(βj)\fj,i
m

(l−1)
f→j (βj)

∝ N (βj |v(l)
j→fj,i

,C
(l)
j→fj,i

),

(11)

where [
C

(l)
j→fj,i

]−1 =
∑

f∈B(βj)\fj,i

[
C

(l−1)
f→j

]−1
(12)

and

v
(l)
j→fj,i

= C
(l)
j→fj,i

∑
f∈B(βj)\fj,i

[
C

(l−1)
f→j

]−1
v
(l−1)
f→j .(13)

Furthermore, during each round of message passing, each
node can compute the belief for βi as the product of all the
incoming messages from neighboring factor nodes, which is
given by

b(l)(βi) =
∏

f∈B(βi)

m
(l−1)
f→i (βi). (14)

According to (9), (10) and (14), we can easily obtain (15) at
the bottom of this page. Finally, the estimate of βi in the lth

iteration is (16).

B. Asynchronous Message Update

In practical WSNs, there is neither factor nodes nor
variable nodes. These two kinds of messages m

(l)
j→fj,i

(βj)

and m
(l)
fj,i→i(βi) are computed locally at node j, and only

m
(l)
fj,i→i(βi) is sent from node j to node i during each round of

message exchange of BP. Let m(l)
j→i(βi) = N (βi|γ(l)

j→i,Γ
(l)
j→i)

represent the physical message from node j to node i. Putting
(12) and (13) into (9) and (10), we have (17) and (18), where
Γj and γj are the covariance matrix and mean vector of prior
distribution of βj , respectively, and they will never change
during the updating process.

As shown in (17) and (18), from the perspective of node j,
the outgoing message covariance Γ

(l)
j→i and mean vector γ(l)

j→i

computed by node j at time l depends on the incoming mes-
sage covariance Γ

(l−1)
k→j and γ

(l−1)
k→j from node j’s neighbour

(i.e., k ∈ I(j) \ i) at time l− 1. However, in many situations,
the inter-sensor message exchange is possibly asynchronous
due to random data packet dropouts, and different nodes may
update their messages at different frequencies. If every node
is allowed to update its belief only after receiving updated
messages from all its neighbors, the convergence speed of
the distributed algorithm would be slow. Thus, some nodes
should be allowed to update their beliefs more frequently
than others, as long as they receive some of the updates from
their neighboring nodes within a predetermined time period.
It means that when node j computes Γ

(l)
j→i, it may only have

Γ
(s)
k→j computed by node k ∈ I(j)\i with s ≤ l−1. In order to

capture these asynchronous properties of message exchanges,
we introduce the totally asynchronous model [32] as follows.

Let the message covariance matrices and mean vectors

available to node j at time l are Γ
(τk

j (l−1))

k→j and γ
(τk

j (l−1))

k→j ,
where 0 � τkj (l − 1) � l − 1. Without loss of generality,
we assume that node j computes its outgoing messages
to its neighboring nodes according to a discrete time set
Lj ⊆ {0, 1, 2, . . .}. According to (17) and (18), the asyn-
chronous message covariance and mean evolution are defined
as (19) and (20) at the bottom of the next page. We assume
liml→∞ τkj (l) = ∞ for all {k, j} ∈ E , which guarantees
that old information is eventually purged out of the network,
and that each node eventually exchanges messages with its
neighboring nodes.

The asynchronous iterative algorithm is summarized as

b(l)(βi) ∼ N (
βi|
[ ∑
f∈B(βi)

[
C

(l−1)
f→i

]−1]−1 ∑
f∈B(βi)

[
C

(l−1)
f→i

]−1
v
(l−1)
f→i ,

[ ∑
f∈B(βi)

[
C

(l−1)
f→i

]−1]−1)
. (15)

β̂
(l)
i =

∫
βib

(l)(βi)dβi =
[ ∑
f∈B(βi)

[
C

(l−1)
f→i

]−1]−1 ∑
f∈B(βi)

[
C

(l−1)
f→i

]−1
v
(l−1)
f→i . (16)

[
Γ
(l)
j→i

]−1
= AT

i,j

[
σ2
i,jIN +Aj,i

[
Γ−1
j +

∑
k∈I(j)\i

[
Γ
(l−1)
k→j

]−1
]−1

AT
j,i

]−1

Ai,j . (17)

γ
(l)
j→i = Γ

(l)
j→iA

T
i,j

[
σ2
i,jIN +Aj,i

[
Γ−1
j +

∑
k∈I(j)\i

[
Γ
(l−1)
k→j

]−1
]−1

AT
j,i

]−1

(18)

×Aj,i

[
Γ−1
j +

∑
k∈I(j)\i

[
Γ
(l−1)
k→j

]−1
]−1[

Γ−1
j γj +

∑
k∈I(j)\i

[
Γ
(l−1)
k→j

]−1
γ
(l−1)
k→j

]
,
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follows. The algorithm is started by setting the messages
from node j to node i as m

(0)
j→i(βi) = N (βi;0,+∞I2)

1. Each node i computes its outgoing message according to
(19) and (20) at independent time l ∈ Li with its available[
Γ
(τ j

i (l−1))
j→i

]−1
and γ

(τ j
i (l−1))

j→i . The corresponding belief of
node i at time l is computed as

b(l)(βi) ∼ N (
βi|μ(l)

i ,P
(l)
i

)
, (21)

where the belief covariance matrix is

P
(l)
i =

[
Γ−1
i +

∑
j∈I(i)

[
Γ
(τ j

i (l−1))
j→i

]−1
]−1

, (22)

and mean vector is

μ
(l)
i = P

(l)
i

[
Γ−1
i γi +

∑
j∈I(i)

[
Γ
(τ j

i (l−1))
j→i

]−1
γ
(τ j

i (l−1))
j→i

]
. (23)

The iterative computation terminates when (21) converges
or the maximum number of iterations is reached. Then each
sensor computes its clock skew and offset according to

α̂i = 1/μ
(l)
i (1), θ̂i = μ

(l)
i (2)/μ

(l)
i (1), (24)

where μ
(l)
i (k) denotes the kth element of μ(l)

i .

IV. ASYNCHRONOUS BP CONVERGENCE ANALYSIS

It is important to note that the BP message updates (8) and
(11) are specially designed for the computation of marginal
functions (e.g., gi(βi) in (5)) on cycle-free FG and it is
known that the beliefs will converge to the exact marginal
functions. On the other hand, the BP algorithm may be applied
to FG with cycles, but since messages will be passed multiple
times on a given edge, no convergence can be guaranteed
[34]. Although some of the most exciting applications of
BP algorithm like the decoding of turbo codes and low-
density parity-check codes [31] do not exhibit divergence in
the simulations even under loopy FG, there are still many
applications where BP do diverge. General sufficient condition
for convergence of loopy FGs is available in [35] but it
requires the knowledge of the joint posterior distribution of

1Since the message updating using (19) and (20) only involves inverse of
covariance matrix, in practice, we can set the inverse of the initial covariance
matrix as 0.

all unknown variables as shown in the integrand of (5),
and is difficult to verify for large-scale dynamic networks.
Reference [29] proved the convergence of BP in the context
of distributed clock offset synchronization, by exploiting the
Perron-Frobenius theorem in the context of matrices with
nonnegative elements. However, in the vector variable case
(both clock skew and offset), the BP message covariance
matrices contain negative elements, and the analysis in [29] is
not applicable. Besides, the effect of asynchronous message-
update was not addressed in [29]. In the following, we will
prove the convergence of asynchronous vector BP messages
in distributed clock synchronization.

Defining the operator Fj→i(·) corresponding to the update
of the message covariance in (19), the following properties are
first established.

Lemma 1. The updating operator Fj→i(·) satisfies the
following properties:
Property i): Fj→i(0) = 0.
Property ii): Fj→i(X) � 0, if X � 0.
Property iii): Fj→i(X) � Fj→i(Y ), if X � Y � 0.
Proof : Property i) is apparent according to (19). The proof of
property ii) is given as follows. Let X � 0, it is obvious
that X−1 � 0, which means yTX−1y ≥ 0 for any y.
Putting y = AT

j,ix, we have xTAj,iX
−1AT

j,ix ≥ 0. As
sum of positive definite and positive semi-definite matrices
is positive definite, we have

[
σ2
i,jIN +Aj,iX

−1AT
j,i

]−1 � 0.
Since Ai,j is of full column rank, we obtain AT

i,j

[
σ2
i,jIN +

Aj,iX
−1AT

j,i

]−1
Ai,j � 0. Thus, property ii) is proved.

For the proof of property iii), let X � Y � 0, then
we have Y −1 − X−1 � 0 [39], which means yT (Y −1 −
X−1)y ≥ 0 for any y. Let y = AT

j,ix, we have
xTAj,iY

−1AT
j,ix ≥ xTAj,iX

−1AT
j,ix. Hence, we have[

σ2
i,jIN + Aj,iX

−1AT
j,i

]−1 � [
σ2
i,jIN + Aj,iY

−1AT
j,i

]−1
.

Due to the fact that Ai,j is of full column rank, we
have AT

i,j

[
σ2
i,jIN + Aj,iX

−1AT
j,i

]−1
Ai,j � AT

i,j

[
σ2
i,jIN +

Aj,iY
−1AT

j,i

]−1
Ai,j , which is equivalent to Fj→i(X) �

Fj→i(Y ). �
To consider the updates of all message covariance matri-

ces, we introduce the following definitions. Let Ξ(τ(l−1)) �[
[Γ

(τ1
k(l−1))

1→k ]−1; . . . ; [Γ
(τ j

i (l−1))
j→i ]−1; . . . ; [Γ

(τr
M (l−1))

r→M ]−1;Γ−1
1 ;

. . . ;Γ−1
M

]
be the collection of all available message covariance

[
Γ
(l)
j→i

]−1
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

AT
i,j

[
σ2
i,jIN +Aj,i

[
Γ−1
j +

∑
k∈I(j)\i

[
Γ
(τk

j (l−1))

k→j

]−1
]−1

AT
j,i

]−1

Ai,j

︸ ︷︷ ︸
�Fj→i

(
Γ−1

j +
∑

k∈I(j)\i
[
Γ

(τk
j

(l−1))

k→j

]−1)
, l ∈ Lj ,

[
Γ
(l−1)
j→i

]−1
, otherwise.

(19)

γ
(l)
j→i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Γ
(l)
j→iA

T
i,j

[
σ2
i,jIN+Aj,i

[
Γ−1
j +

∑
k∈I(j)\i

[
Γ
(τk

j (l−1))

k→j

]−1
]−1

AT
j,i

]−1

Aj,i

×
[
Γ−1
j +

∑
k∈I(j)\i

[
Γ
(τk

j (l−1))

k→j

]−1
]−1[

Γ−1
j γj+

∑
k∈I(j)\i

[
Γ
(τk

j (l−1))

k→j

]−1
γ
(τk

j (l−1))

k→j

]
, l ∈ Lj ,

γ
(l−1)
j→i , otherwise.

(20)
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(including prior covariance) matrices in the network at time
l, and Ξ(l) �

[
[Γ

(l)
1→k]

−1; . . . ; [Γ
(l)
j→i]

−1; . . . ; [Γ
(l)
r→M ]−1

]
be

the collection of all outgoing message covariances in the
network at time l. Define Ξ(l) �b 0 if its component
[Γ

(l)
j→i]

−1 � 0; and Ξ(l) �b Ξ(l−1) if their corresponding

components satisfy [Γ
(l)
j→i]

−1 � [Γ
(l−1)
j→i ]−1. The same defi-

nitions apply to Ξ(τ(l)). Furthermore, we define the function
F � (F1→k, . . . ,Fj→i, . . . ,Fr→M ) which satisfies Ξ(l+1) =
F(Ξ(τ(l))). Then we have the following lemma.

Lemma 2. Ξ(l) and Ξ(τ(l−1)) satisfy the following proper-
ties:
Property iv): If Ξ(l) �b Ξ(l−1), then Ξ(τ(l)) �b Ξ(τ(l−1)).
Property v): If Ξ(τ(l)) �b Ξ(τ(l−1)), then F(Ξ(τ(l))) �b

F(Ξ(τ(l−1))) or equivalently Ξ(l+1) �b Ξ(l).
Proof : The proofs of properties iv) and v) rest on the basic
definitions that [Γ

(l)
j→i]

−1 represents the message covariance

matrix sends from node j to node i at time l, and [Γ
(τ(l))
j→i ]−1

represents message covariance matrix received by node i at
time l. If [Γ

(l)
j→i]

−1 � [Γ
(l−1)
j→i ]−1, it is obvious that the

received covariance will satisfy [Γ
(τ(l))
j→i ]−1 � [Γ

(τ(l−1))
j→i ]−1.

Since Ξ(l) and Ξ(τ(l)) contain [Γ
(l)
j→i]

−1 and [Γ
(τ(l))
j→i ]−1 as

components respectively, property iv) is obvious. On the other
hand, property v) is apparent since each of the corresponding
components in Ξ(τ(l)) and Ξ(τ(l−1)) satisfies property i) or
iii) in Lemma 1. �

Now we present the convergence property of the covariance
matrix in the local beliefs.

Theorem 1. For the totally asynchronous clock synchro-
nization algorithm, the covariance matrix P

(l)
i of belief

b
(l)
i (βi) at each node converges to a positive definite matrix

regardless of network topology.
Proof : Initially, all messages are non-informative, that is,
Γ
τ(−1)
j→i = Γ

(0)
j→i = ∞I2. From (19), properties i)

and ii), we obtain that
[
Γ
(l)
j→i

]−1 � 0 only if Γ−1
j +∑

k∈I(j)\i
[
Γ
(τk

j (l−1))

k→j

]−1 � 0. Therefore, the first batch

of nodes having outgoing covariance
[
Γ
(l)
j→i

]−1 � 0 must
have Γ−1

j � 0, i.e., informative prior. Let the first message
updating event in the network occurs at time s. We have
Ξ(s) �b Ξ(s−1). Applying property iv), we further obtain
Ξτ(s) �b Ξτ(s−1).

Suppose Ξ(τ(l)) �b Ξ(τ(l−1)) for l ≥ s, according to
property v), Ξ(l+1) �b Ξ(l). Thus Ξ(τ(l+1)) �b Ξ(τ(l)) for
l ≥ s due to property iv). Hence, by induction the updating

relationship of Ξ(τ(l)) is

. . . �b Ξ(τ(l)) . . . �b Ξ(τ(s)) �b 0. (25)

Focusing on node i, we obtain

. . . � Γ−1
i +

∑

j∈I(i)

[
Γ

(τ
j
i
(l))

j→i

]−1
. . . � Γ−1

i +
∑

j∈I(i)

[
Γ

(τ
j
i
(s))

j→i

]−1
.

(26)
Since a strongly connected network is considered, there

must be one of [Γ
(τ j

i (l
′−1))

j→i ]−1 � 0 for some l′ ≥ s,
and therefore (26) is lower bounded by the all-zero matrix.

Furthermore, since ∞I2 � Γ−1
j +

∑
k∈I(j)\i

[
Γ
(τk

j (l−1))

k→j

]−1
,

according to property iii), Fj→i

(∞I2
) � Fj→i

(
Γ−1
j +∑

k∈I(j)\i
[
Γ
(τk

j (l−1))

k→j

]−1)
. Using the definition of Fj→i(·)

in (19), this is equivalent to 1
σ2
i,j
AT

i,jAi,j � [
Γ
(τ j

i (l))
j→i

]−1
.

Therefore, we can add an upper bound to (26) and obtain (27).
Then, applying matrix inverse to (27) and using the definition
of P (l)

i in (22) results in

P
(l′)
i � P

(l′+1)
i � . . . � [

Γ−1
i +

∑
j∈I(i)

1

σ2
i,j

AT
i,jAi,j

]−1 � 0,

(28)
where the inequality relationship is due to the fact that if
X,Y � 0 and X � Y , then Y −1 � X−1 [39]. Conse-
quently, such non-increasing positive definite matrix sequence
P

(l)
i in (28) converges to a positive definite matrix [40]. �
The importance of Theorem 1 is that the covariance matrices

of belief always converge regardless of network topology as
long as informative prior exists. Next, we show the conver-
gence of belief mean vectors.

Theorem 2. For the totally asynchronous clock synchro-
nization algorithm, the mean vector μ(l)

i of the belief b(l)(βi)
converges to a constant vector regardless of the network
topology.
Proof : From (25) in the proof of Theorem 1, we can readily

see that Γ
(τk

j (l))

k→j satisfies: . . . � [Γ
(τk

j (l))

k→j ]−1 � . . . �
[Γ

(τk
j (s))

k→j ]−1 � 0. If there is a path from any node with
informative prior to node k, according to property ii), there

must be a time instant l′ after which . . . � [Γ
(τk

j (l′+1))

k→j ]−1 �
. . . � [Γ

(τk
j (l′))

k→j ]−1 � 0. Hence Γ
(τk

j (l′))
k→j is convergent [40].

On the other hand, if there is no path from any node with

informative prior to node k, we have . . . = [Γ
(τk

j (l))

k→j ]−1 =

. . . = [Γ
(τk

j (0))

k→j ]−1 = 0. Either case implies Γ
(τk

j (l))

k→j converges

Γ−1
i +

∑
j∈I(i)

1

σ2
i,j

AT
i,jAi,j � . . . � Γ−1

i +
∑

j∈I(i)

[
Γ
(τ j

i (l
′+1))

j→i

]−1 � Γ−1
i +

∑
j∈I(i)

[
Γ
(τ j

i (l
′))

j→i

]−1 � 0. (27)

γ
(l)
j→i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Γ
(∗)
j→iA

T
i,j

[
σ2
i,jIN +Aj,i

[
Γ−1
j +

∑
k∈I(j)\i

[
Γ
(∗)
k→j

]−1
]−1

AT
j,i

]−1

Aj,i

×
[
Γ−1
j +

∑
k∈I(j)\i

[
Γ
(∗)
k→j

]−1
]−1[

Γ−1
j γj +

∑
k∈I(j)\i

[
Γ
(∗)
k→j

]−1
γ
(τk

j (l−1))

k→j

]
, l ∈ Lj ,

γ
(l−1)
j→i , otherwise.

(29)
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to a matrix Γ
(∗)
k→j . From (19), if Γ

(τk
j (l))

k→j converges, we have

Γ
(l)
j→i also converges to a fixed matrix Γ

(∗)
j→i. Then, (20) can

be rewritten as (29). Without loss of generality, define γ(l)

as a vector containing all γj and outgoing message mean
γ
(l)
j→i with ascending index first on j and then on i (γj can

be interpreted as γj→j for the ordering), and γ(l−1) is the
vector constituted by available message means with the same
ordering. It should be noticed that the order of γ(l)

j→i arranged
in γ(l) can be arbitrary as long as it does not change after the
order is fixed. Then, (29) can be expressed as

γ(l) = Q(l)γ(l−1), (30)

where the specific structure of Q(l) depends on the messages
sent and received at time l. Notice that Q(l) is time-varying
due to asynchronous updating. The convergence condition for
the asynchronous system (30) turns out to be related to the
system matrix of the corresponding synchronous system [32,
p. 434], [33, p. 14]. Consider Lj = {0, 1, 2, . . .} for all
j = 1, 2, . . . ,M , the asynchronous system (30) becomes a
synchronous one:

γ(l) = Qγ(l−1), (31)

where Q is now independent of iteration number l. The neces-
sary and sufficient convergence condition for the asynchronous
iteration (30) is ρ(|Q|) < 1 [32, p. 434], where |Q| denotes
the matrix whose elements are the absolute values of those in
Q. Next, we prove that ρ(|Q|) < 1.

First, construct the new linear iteration as

x(r) = Q̃x(r−1), (32)

where Q̃ = |Q|, x(r) is a vector with the same structure as
γ(r) and x(0) = γ(0). Since there is always a positive value
η, satisfying η >

∑
i�=j |[Q̃]i,j | for all i, we have ηI + Q̃ is

strictly diagonally dominant and then ηI + Q̃ is nonsingular
[41]. Hence, the arbitrary initial value x(0) can be expressed
in terms of the eigenvectors of ηI+ Q̃ as x(0) =

∑D
d=1 cdqd,

where D is the dimension of matrix Q̃ and q1, q2,· · · , qD are
the eigenvectors of ηI+ Q̃. Since the eigenvectors of ηI+ Q̃
are the same as those of Q̃, and the eigenvalues of ηI + Q̃
are η + λd (1 � d � D), where λd is the eigenvalue of Q̃,
we have

x(r) = Q̃rx(0) =

D∑
d=1

cdλ
r
dqd. (33)

Without loss of generality, suppose λd are arranged in de-
scending order as

|λ1| ≥ |λ2| ≥ · · · ≥ |λD|. (34)

Let the eigenvalue with the largest magnitude has a multiplic-
ity of d0. Then λd/λ1 < 1 for d > d0 and (λd/λ1)

r = 0 if r
is large enough. We then obtain

lim
r→∞x(r) = λr

1

d0∑
d=1

cdqd. (35)

On the other hand, putting j = 1 into (19), and noting
Γ−1
1 = ∞I2, we obtain [Γ

(l)
1→i]

−1 = 1
σ2
i,1

AT
i,1Ai,1, for

l ∈ Li. But since this outgoing covariance from the reference

node is independent of time l, we can combine the two
cases in (19). Substituting this result into (20), we have
γ
(l)
1→i =

1
σ2
i,1

[
AT

i,1Ai,1

]−1
AT

i,1A1,iβ1, which shows that γ(l)
1→i

is also independent of time l. Consequently, according to
(31), γ

(l)
1→i = [Q]1:2,1:Dγ(l−1) and [Q]1:2,1:D = [I2,0].

Hence, |[Q]1:2,1:D|x(0) = x
(0)
1→i = x

(1)
1→i. In general, we

also have x
(r)
1→i = x

(0)
1→i for all r. Therefore, we can put

x(r)(mi) = γ
(l)
1→i � ξc being a constant into (35) to obtain

λr
1 = ξc

∑d0
d=1 cdqd(mi)

for r large enough. Substituting it back

into (35) yields

lim
r→∞x(r) =

ξc
∑d0

d=1 cdqd∑d0

d=1 cdqd(mi)
. (36)

It is obvious that x(r) does not change when r is large enough,
and therefore, x(r) in (32) converges. Hence, the spectrum
radius ρ(Q̃) = ρ(|Q|) < 1 [42], and according to [32, p.
434], the asynchronous version of the iteration given by (30)
converges. Finally, with μ

(l)
i defined in (23), since P

(l)
i , Γ(l)

j→i

and γ
(l)
j→i converge, we can draw the conclusion that the vector

sequence {μ(1)
i ,μ

(2)
i , . . .} converges. �

Theorems 1 and 2 reveal that the BP messages converge.
Next, we address how good is the clock parameters
estimate (24) based on the converged message mean
μ∗

i = liml→+∞ μ
(l)
i . Since the prior p(βi) and likelihood

function p(Ai,j ,Aj,i|βi,βj) are both Gaussian distribution
and it is known that if Gaussian BP (synchronous or
asynchronous) converges, the means of the beliefs
computed by BP equal the means of the marginal
posterior distribution [35], [36], i.e., μ∗

i = β̂MMSE
i �∫ · · · ∫ βip

(
β1,β2, . . . ,βM |{Ai,j}{i,j}∈E

)
dβ2 · · · dβM .

Stacking β̂MMSE
i into a block vector β̂MMSE =

[(β̂MMSE
2 )T , . . . , (β̂MMSE

M )T ]T gives

β̂MMSE =

∫
...

∫
[βT

2 , . . . ,β
T
M ]T

× p
(
β1,β2, . . . ,βM |{Ai,j}{i,j}∈E

)
dβ2 . . . dβM .

(37)

It is obvious that μ∗ =
[
(μ∗

2)
T , . . . , (μ∗

M )T
]T

equals the
centralized joint MMSE estimator β̂MMSE. In case of non-
informative prior, β̂MMSE is the mean of the joint likelihood
function. Since the mean and maximum of a Gaussian distri-
bution are the same, μ∗ equals the centralized joint maximum
likelihood (ML) estimator under non-informative prior.

Theorem 3. Under non-informative prior of βi, the
MSE of the estimator [ 1

μ∗
2(1)

,
μ∗

2(2)
μ∗

2(1)
, . . . , 1

μ∗
M (1) ,

μ∗
M (2)

μ∗
M (1) ]

T ob-
tained from the converged BP message mean vectors μ∗

i

asymptotically approaches the centralized CRB of ζ =
[θ2, α2, . . . , θM , αM ]T , where the CRB is given by (42) in
the Appendix.
Proof : As discussed after (37), under non-informative
prior, μ∗ equals the centralized joint ML estimator
of [βT

2 , . . . ,β
T
M ]T . Due to βi = [ 1

αi
, θi
αi
]T and

from the invariance property of ML estimator [38],
[ 1
μ∗

2(1)
,
μ∗

2(2)
μ∗

2(1)
, . . . , 1

μ∗
M (1) ,

μ∗
M (2)

μ∗
M (1) ]

T is the ML estimator

of ζ = [θ2, α2, . . . , θM , αM ]T , with the corresponding MSE
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Fig. 4. Convergence performance of estimated clock skew at two nodes.

asymptotically approaches the centralized CRB of ζ derived
in (42) in the Appendix. �

Synchronous message updating, i.e., L1 = . . . = LM and
τkj (l−1) = l−1, is obviously a special case of (19) and (20).
Hence, Theorem 1, Theorem 2 and Theorem 3 also apply to
the synchronous BP.

V. SIMULATION RESULTS

This section presents numerical results to assess the per-
formance of the proposed algorithm. Simulation results of
estimation mean-square-error (MSE) are presented for random
networks with 25 nodes randomly located in an area of
size [0, 300] × [0, 300]. Each node can only communicate
with the sensor nodes that are within its radio range, which
is assumed to be 90. In each simulation, clock skews αi

and clock offsets θi are uniformly distributed in the range
[−0.945, 1.055] and [−5.5, 5.5], respectively. The fixed delay
di,j is uniformly distributed in [8, 12] and variance of random
delay σ2

i = 0.05 is assumed to be identical for all nodes.
5000 Monte-carlo simulation trials were performed to obtain
the average performance of each point in all the figures
presented in this section. Without loss of generality, Node
1 is selected as the reference node with β1 = [1, 0]T , and
p(β1) = δ(β1− [1, 0]T ). For the other nodes, non-informative
prior is assumed p(βi) = N (βi;0,+∞I2). The probability
of node i successfully pass a message to its direct neighboring
node j is pi,j for {i, j} ∈ E . With pi,j �= 1, we can emulate
an asynchronous network. To serve as a reference of the
distributed estimation performance, the CRB for centralized
estimation is derived in the Appendix.

Fig. 4 shows the MSE of the clock skew estimations in
nodes 19 and 5 as a function of updating time {0, 1, 2, . . .}
for the topology of WSN shown in Fig. 1. The number of
time-stamp exchange rounds is N = 20 at the beginning.
Synchronous schedule, asynchronous schedule and centralized
CRB are plotted for comparison. The synchronous algorithm
can only be updated when each node has successfully received
updated messages from all its neighboring nodes. It can be
seen from the figure that for both synchronous and asyn-
chronous algorithms, MSEs touch the corresponding CRBs,
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Fig. 5. Convergence performance of estimated clock offset at two nodes.
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Fig. 6. MSE of clock skew and offset averaged over the whole network
under random network topologies.

which are supported by Theorem 3. However, due to the ran-
dom packet losses, their convergence speeds differ. Even for
high probability of successful transmission (pi,j = 0.99), the
network with synchronous schedule has to wait for all nodes to
receive newly updated information from all neighbours, thus
it presents slow convergence. For the same pi,j , asynchronous
scheduling shows extremely fast convergence, since each node
updates independently. Furthermore, even with very low prob-
ability of successful transmission (pi,j = 0.2), asynchronous
scheduling can also converge within 10 iterations. However,
with such a small pi,j , synchronous scheduling would waste
most of its time in waiting for updated messages,

and shows extremely slow convergence. The convergence
properties of nodes 5 and 19 are also compared in Fig. 4.
As node 5 being a neighbour of the reference node, while
node 19 being much far away, node 5 converges faster than
node 19. Besides, we observe that the further away from
the reference node, the larger is the corresponding CRB,
i.e., CRB(α19) > CRB(α5). Fig. 5 shows the corresponding
results for the clock offset estimation. It can be seen from the
figure that same conclusions as in Fig. 4 can be drawn. Finally,
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Fig. 6 shows the MSE for clock skews and offsets averaged
over all nodes versus the number of time-stamp exchange
rounds N . pi,j = 0.2 is assumed for the network. The MSE
is computed after the asynchronous BP algorithm runs for
30 updating iterations. 5000 random network topologies were
generated for averaging. As shown in the figure, the network
MSE achieves the best performance as it reaches the CRB.
This figure also shows that the proposed algorithm can achieve
the best performance even under a small number of time-
exchange rounds.

VI. CONCLUSIONS

In this paper, an asynchronous fully distributed clock skew
and offset estimation algorithm for WSNs was proposed.
The algorithm is based on asynchronous BP and is easy to
be implemented by exchanging limited information between
neighboring sensor nodes. The proposed algorithm can handle
random packet losses and allows some nodes to compute
faster and execute more iterations than others. It was shown
analytically that the totally asynchronous algorithm converges
regardless of the network topology, and the MSE of the
clock parameter estimates reaches the centralized CRB asymp-
totically. Simulations further showed that the asynchronous
algorithm converges faster than its synchronous counterpart.

APPENDIX

We derive the centralized CRB under the assumption that
all information over the network can be gathered in a center.
First, rewrite (2) and (3) as

[
cj(t

2
n) −1

][ 1
αj
θj
αj

]
︸ ︷︷ ︸

βj

=
[
ci(t

1
n) −1

][ 1
αi
θi
αi

]
︸ ︷︷ ︸

βi

+di,j+wj,n,

(38)
and

[
cj(t

3
n) −1

][ 1
αj
θj
αj

]
︸ ︷︷ ︸

βj

=
[
ci(t

4
n) −1

][ 1
αi
θi
αi

]
︸ ︷︷ ︸

βi

−dj,i−wi,n.

(39)
Stacking (38) and (39) in matrix form with the assumption
di,j = dj,i, we have (40), where 1N is an all one N
dimensional vector and nj,i ∼ N (nj,i|0, diag[σ2

j , σ
2
i ] ⊗ IN )

where the symbol ⊗ denotes the Kronecker product.
Define y ∈ R

2N |E|×1 with −T1,iβ1 arranged in ascending
order with respect to index i, with i ∈ I(1) and the remaining

elements being zeros, and define ξ � [βT
2 , . . . ,β

T
M ,dT ]T with

vector d containing elements di,j with ascending order first
with respect to j and then with respect to i. Then stacking
(40) for all i and j, we obtain

y = Hξ + n, (41)

where n contains ni,j with ascending order first with re-
spect to j and then with respect to i. Notice that n ∼
N (n|0,Δ) with Δ is a block diagonal matrix containing
Δi,j = diag[σ2

j , σ
2
i ] ⊗ IN as diagonal block. Since (41)

is a standard linear model, the CRB for ξ is given by
CRB(ξ) =

[
HTΔ−1H

]−1
[38].

The ultimate goal is to estimate the clock offsets and
skews ζ � [θ2, α2, . . . , θM , αM ]T . Since ξ is a related to
κ � [ζT ,dT ]T through a transformation, thus we can express
the CRB matrix of ζ as [38]

CRB(ζ) =

(
∂κ

∂ξ

)
CRB(ξ)

(
∂κ

∂ξ

)T

. (42)

It can be easily inferred that ∂κ/∂ξ =

[
Σ 0
0 I 1

2 |E|]

]
with

Σ being a 2(M −1)-by-2(M−1) block diagonal matrix with

the mth diagonal block being

[ −αm+1θm+1 αm+1

−α2
m+1 0

]
.
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