33,064 research outputs found

    Dynamic clustering of residential electricity consumption time seriesdata based on Hausdorff distance

    Full text link
    [EN] As the analysis of electrical loads is reaching data measured from low voltage power distribution networks, there is a need for the main agents involved in the operation and management of the power grids to segment the end users as a function of their shapes of daily energy consumption or load profiles, and to obtain patterns that allow to classify the users in groups based on how they consume the energy. However, this analysis is usually limited to the analysis of single days. Since the smart metering data are time series formed by sequential measurements of energy through each hour or quarter of hour of the day, and also through each day, thanks to the implementation of Advanced Metering Infrastructure (AMI) and the Smart Grid technologies, it becomes clear that the analysis of the data needs to be extended to consider the dynamic evolution of the consumption patterns through days, weeks, months, seasons, and even years. This is the objective of the present work. A new framework is presented that addresses the dynamic clustering, visualization and identification of temporal patterns in load profiles time series, fulfilling the detected gap in this area. The present development is a generic framework that allows the clustering and visualization of load profiles time series applying different classical clustering algorithms. A novel dynamic clustering algorithm is also presented, based on an initial segmentation of the energy consumption time series data in smaller surfaces, and the computation of a similarity measure among them applying the Hausdorff distance. Following, these developments are presented and tested on two dataset of energy consumption load profiles from a sample of residential users in Spain and London.The data set for the Spanish case used in this work has been provided by the Spanish DSO Iberdrola Distribucion Electrica S.A. as part of the works developed in the Spanish R&D project GAD. The GAD or "Active Demand Management" (in Spanish) project was a project financed by the INGENIO 2010 program and supported by the CDTI (Technological Development Centre of the Ministry of Science and Innovation of Spain).Benítez Sánchez, IJ.; Diez Ruano, JL.; Quijano Lopez, A.; Delgado Espinos, I. (2016). Dynamic clustering of residential electricity consumption time seriesdata based on Hausdorff distance. Electric Power Systems Research. 140:517-526. doi:10.1016/j.epsr.2016.05.023S51752614

    Submodular Load Clustering with Robust Principal Component Analysis

    Full text link
    Traditional load analysis is facing challenges with the new electricity usage patterns due to demand response as well as increasing deployment of distributed generations, including photovoltaics (PV), electric vehicles (EV), and energy storage systems (ESS). At the transmission system, despite of irregular load behaviors at different areas, highly aggregated load shapes still share similar characteristics. Load clustering is to discover such intrinsic patterns and provide useful information to other load applications, such as load forecasting and load modeling. This paper proposes an efficient submodular load clustering method for transmission-level load areas. Robust principal component analysis (R-PCA) firstly decomposes the annual load profiles into low-rank components and sparse components to extract key features. A novel submodular cluster center selection technique is then applied to determine the optimal cluster centers through constructed similarity graph. Following the selection results, load areas are efficiently assigned to different clusters for further load analysis and applications. Numerical results obtained from PJM load demonstrate the effectiveness of the proposed approach.Comment: Accepted by 2019 IEEE PES General Meeting, Atlanta, G

    Electricity clustering framework for automatic classification of customer loads

    Get PDF
    Clustering in energy markets is a top topic with high significance on expert and intelligent systems. The main impact of is paper is the proposal of a new clustering framework for the automatic classification of electricity customers’ loads. An automatic selection of the clustering classification algorithm is also highlighted. Finally, new customers can be assigned to a predefined set of clusters in the classificationphase. The computation time of the proposed framework is less than that of previous classification tech- niques, which enables the processing of a complete electric company sample in a matter of minutes on a personal computer. The high accuracy of the predicted classification results verifies the performance of the clustering technique. This classification phase is of significant assistance in interpreting the results, and the simplicity of the clustering phase is sufficient to demonstrate the quality of the complete mining framework.Ministerio de Economía y Competitividad TEC2013-40767-RMinisterio de Economía y Competitividad IDI- 2015004

    Clustering Methods for Electricity Consumers: An Empirical Study in Hvaler-Norway

    Get PDF
    The development of Smart Grid in Norway in specific and Europe/US in general will shortly lead to the availability of massive amount of fine-grained spatio-temporal consumption data from domestic households. This enables the application of data mining techniques for traditional problems in power system. Clustering customers into appropriate groups is extremely useful for operators or retailers to address each group differently through dedicated tariffs or customer-tailored services. Currently, the task is done based on demographic data collected through questionnaire, which is error-prone. In this paper, we used three different clustering techniques (together with their variants) to automatically segment electricity consumers based on their consumption patterns. We also proposed a good way to extract consumption patterns for each consumer. The grouping results were assessed using four common internal validity indexes. We found that the combination of Self Organizing Map (SOM) and k-means algorithms produce the most insightful and useful grouping. We also discovered that grouping quality cannot be measured effectively by automatic indicators, which goes against common suggestions in literature.Comment: 12 pages, 3 figure

    Modeling and Recognition of Smart Grid Faults by a Combined Approach of Dissimilarity Learning and One-Class Classification

    Full text link
    Detecting faults in electrical power grids is of paramount importance, either from the electricity operator and consumer viewpoints. Modern electric power grids (smart grids) are equipped with smart sensors that allow to gather real-time information regarding the physical status of all the component elements belonging to the whole infrastructure (e.g., cables and related insulation, transformers, breakers and so on). In real-world smart grid systems, usually, additional information that are related to the operational status of the grid itself are collected such as meteorological information. Designing a suitable recognition (discrimination) model of faults in a real-world smart grid system is hence a challenging task. This follows from the heterogeneity of the information that actually determine a typical fault condition. The second point is that, for synthesizing a recognition model, in practice only the conditions of observed faults are usually meaningful. Therefore, a suitable recognition model should be synthesized by making use of the observed fault conditions only. In this paper, we deal with the problem of modeling and recognizing faults in a real-world smart grid system, which supplies the entire city of Rome, Italy. Recognition of faults is addressed by following a combined approach of multiple dissimilarity measures customization and one-class classification techniques. We provide here an in-depth study related to the available data and to the models synthesized by the proposed one-class classifier. We offer also a comprehensive analysis of the fault recognition results by exploiting a fuzzy set based reliability decision rule

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions
    • …
    corecore