192 research outputs found

    Performance measurements of Bluetooth 5 technique under interference

    Get PDF
    Abstract. This thesis focuses on experimental performance of the Bluetooth 5 technology and compares results with the previous version. Bluetooth technology, institute of electrical and electronics engineers (IEEE) Std. 802.15.4, and other techniques share the same unlicensed 2.4 GHz industrial, scientific, and medical (ISM) spectrum. Various technologies are operating in the same frequency band, and if the channel utilized by these technologies overlap, end in cross-technology interference (CTI). Measurements have been performed in indoor scenario and ZigBee nodes were used as an interference. Performance output of the Bluetooth 5 is compared to a previous release Bluetooth low energy (BLE) 4 which is currently one of the popular technologies in commercial wireless devices and expected to be even more widespread in the future. This new Bluetooth technology has featured increased data rate, low power consumption, longer range, higher broadcasting capacity, and improved coexistence with other wireless technologies operating in the same frequency band. The main goal of this work was to evaluate the experimental communication range and throughput of the BLE 5 coded version under interference. Nordic Semiconductor nRF52840 chipset has been used for measurements and result shows the practical communication range and throughput of BLE 5 coded version under interference. In this work, with error correction coding, one-third BLE link gain was achieved when considering packet error rate (PER) less than 10%. In addition, ZigBee interference was found to be very harmful for the Bluetooth communication when operating in the same frequency band

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    A Spectrum Efficient Self-Admission Framework for Coexisting IEEE 802.15.4 Networks under Heterogeneous Traffics

    Get PDF
    Due to the limited bandwidth resource and the interference among networks, it is challengeable to coordinate the bandwidth resource of multiple IEEE 802.15.4-based wireless personal area networks (WPANs) with heterogeneous traffics, especially in a distributed mode. In this paper, to handle this problem, we first propose a renewal carrier sense multiple access (CSMA)-based self-admission access mechanism for coexisting WPANs in order to maximize the frequency resource utilization and satisfy the diverse rate requirements of heterogeneous traffics. Secondly, we propose the time-space-hard core point process (TS-HCPP) to abstract the renewal CSMA-based self-admission access process for the IEEE 802.15.4 network with multi-channels. TS-HCPP considers the correlation of time and space, and appropriately judges the strong interference between coexisting WPANs, which can solve the density underestimation problems of traditional HCPP. Finally, relying on the TS-HCPP, we obtain the optimum combination of access parameters, which meets the minimum service rate requirements for heterogeneous traffics and maximizes the frequency resource utilization. The simulation results show that the density of coexisting WPANs evaluated by the TS-HCPP matches the experimental results, and an improvement in spectral efficiency of coexisting WPANs can be achieved in our proposed self-admission framework

    Ratkaisuja kommunikaatiotekniikoiden yhteiseloon lisensoimattomilla kaistoilla

    Get PDF
    Tiivistelmä. Tämän kandidaatin työn tarkoituksena on tutkia samoilla lisensoimattomilla kaistoilla toimivien kommunikaatiotekniikoiden yhteiseloa ja yhteiselon aiheuttamia ongelmia kommunikaatiotekniikoiden välillä. Erityisesti 2.4 GHz sekä 5 GHz lisensoimattomilla kaistoilla toimivien järjestelmien (Wi-Fi, Bluetooth, ZigBee, Long term evolution) yhteiselo on tämän tutkimuksen kohteena. Työssä esitellään kommunikaatiotekniikoiden yhteiseloon kehitettyjä ratkaisuja ja käydään läpi niiden toimintaperiaatteita. Esimerkiksi listen before talk, almost blank subframe ja carrier sensing adaptive transmission -tekniikat ovat esittelyn kohteena. Lisäksi työssä käydään läpi lisensoitujen ja lisensoimattomien kaistojen yhteiseloa ja niiden välillä esiintyviä yhteiseloon vaikuttavia ongelmia. Työn lopputuloksena todetaan, että työssä esitellyt tekniikat yhteiselon parantamiseksi ovat aina kompromisseja eri kommunikaatiotekniikoiden välillä. Osa kokonaiskattavuudesta tai nopeudesta uhrataan sujuvan yhteiselon saavuttamiseksi.Solutions for coexistence of communication methods on unlicensed bands. Abstract. The goal of this bachelor’s thesis is to study different coexistence methods and problems for communication systems operating in 2.4 GHz and 5 GHz unlicensed bands (Wi-Fi, Bluetooth, ZigBee, Long term evolution). Solutions created for coexistence are introduced and their basic behavior is reviewed. For example, almost blank subframe, listen before talk and carrier sensing adaptive transmission methods are studied. Also, coexistence and problems between licensed and unlicensed bands are reviewed in this thesis. Conclusions of this thesis is that in every method created for coexistence problems, are compromises. Some of the capacity or speed are compromised to achieve a coexistence solution

    An Optimal Backoff Time-Based Internetwork Interference Mitigation Method in Wireless Body Area Network

    Get PDF
    When multiple Wireless Body Area Networks (WBANs) are aggregated, the overlapping region of their communications will result in internetwork interference, which could impose severe impacts on the reliability of WBAN performance. Therefore, how to mitigate the internetwork interference becomes the key problem to be solved urgently in practical applications of WBAN. However, most of the current researches on internetwork interference focus on traditional cellular networks and large-scale wireless sensor networks. In this paper, an Optimal Backoff Time Interference Mitigation Algorithm (OBTIM) is proposed. This method performs rescheduling or channel switching when the performance of the WBANs falls below tolerance, utilizing the cell neighbour list established by the beacon method. Simulation results show that the proposed method improves the channel utilization and the network throughput, and in the meantime, reduces the collision probability and energy consumption, when compared with the contention-based beacon schedule scheme

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Enhancing the coexistence of LTE and Wi-Fi in unlicensed spectrum through convolutional neural networks

    Get PDF
    Over the last years, the ever-growing wireless traffic has pushed the mobile community to investigate solutions that can assist in more efficient management of the wireless spectrum. Towards this direction, the long-term evolution (LIE) operation in the unlicensed spectrum has been proposed. Targeting a global solution that respects the regional requirements, 3GPP announced the standard of LIE licensed assisted access (LAA). However, LIE LAA may result in unfair coexistence with Wi-Fi, especially when Wi-Fi does not use frame aggregation. Targeting a technique that enables fair channel access, the mLTE-U scheme has been proposed. According to mLTE-U, LTE uses a variable transmission opportunity, followed by a variable muting period that can be exploited by other networks to transmit. For the selection of the appropriate mLTE-U configuration, information about the dynamically changing wireless environment is required. To this end, this paper proposes a convolutional neural network (CNN) that is trained to perform identification of LIE and Wi-Fi transmissions. In addition, it can identify the hidden terminal effect caused by multiple LTE transmissions, multiple Wi-Fi transmissions, or concurrent LIE and Wi-Fi transmissions. The designed CNN has been trained and validated using commercial off-the-shelf LIE and Wi-Fi hardware equipment and for two wireless signal representations, namely, in-phase and quadrature samples and frequency domain representation through fast Fourier transform. The classification accuracy of the two resulting CNNs is tested for different signal to noise ratio values. The experimentation results show that the data representation affects the accuracy of CNN. The obtained information from CNN can be exploited by the mLTE-U scheme in order to provide fair coexistence between the two wireless technologies

    Facilitating wireless coexistence research

    Get PDF
    corecore