4 research outputs found

    Global Adaptation Controlled by an Interactive Consistency Protocol

    Get PDF
    Static schedules for systems can lead to an inefficient usage of the resources, because the system’s behavior cannot be adapted at runtime. To improve the runtime system performance in current time-triggered Multi-Processor System on Chip (MPSoC), a dynamic reaction to events is performed locally on the cores. The effects of this optimization can be increased by coordinating the changes globally. To perform such global changes, a consistent view on the system state is needed, on which to base the adaptation decisions. This paper proposes such an interactive consistency protocol with low impact on the system w.r.t. latency and overhead. We show that an energy optimizing adaptation controlled by the protocol can enable a system to save up to 43% compared to a system without adaptation

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Network-on-Chip -based Multi-Processor System-on-Chip: Towards Mixed-Criticality System Certification

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore