2,470 research outputs found

    Channel Estimation for Massive MIMO Systems

    Get PDF
    Massive multiple input multiple output (MIMO) systems can significantly improve the channel capacity by deploying multiple antennas at the transmitter and receiver. Massive MIMO is considered as one of key technologies of the next generation of wireless communication systems. However, with the increase of the number of antennas at the base station, a large number of unknown channel parameters need to be dealt with, which makes the channel estimation a challenging problem. Hence, the research on the channel estimation for massive MIMO is of great importance to the development of the next generation of communication systems. The wireless multipath channel exhibits sparse characteristics, but the traditional channel estimation techniques do not make use of the sparsity. The channel estimation based on compressive sensing (CS) can make full use of the channel sparsity, while use fewer pilot symbols. In this work, CS channel estimation methods are proposed for massive MIMO systems in complex environments operating in multipath channels with static and time-varying parameters. Firstly, a CS channel estimation algorithm for massive MIMO systems with Orthogonal Frequency Division Multiplexing (OFDM) is proposed. By exploiting the spatially common sparsity in the virtual angular domain of the massive MIMO channels, a dichotomous-coordinate-decent-joint-sparse-recovery (DCD-JSR) algorithm is proposed. More specifically, by considering the channel is static over several OFDM symbols and exhibits common sparsity in the virtual angular domain, the DCD-JSR algorithm can jointly estimate multiple sparse channels with low computational complexity. The simulation results have shown that, compared to existing channel estimation algorithms such as the distributed-sparsity-adaptive-matching-pursuit (DSAMP) algorithm, the proposed DCD-JSR algorithm has significantly lower computational complexity and better performance. Secondly, these results have been extended to the case of multipath channels with time-varying parameters. This has been achieved by employing the basis expansion model to approximate the time variation of the channel, thus the modified DCD-JSR algorithm can estimate the channel in a massive MIMO OFDM system operating over frequency selective and highly mobile wireless channels. Simulation results have shown that, compared to the DCD-JSR algorithm designed for time-invariant channels, the modified DCD-JSR algorithm provides significantly better estimation performance in fast time-varying channels

    Channel Acquisition for Massive MIMO-OFDM with Adjustable Phase Shift Pilots

    Get PDF
    We propose adjustable phase shift pilots (APSPs) for channel acquisition in wideband massive multiple-input multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) to reduce the pilot overhead. Based on a physically motivated channel model, we first establish a relationship between channel space-frequency correlations and the channel power angle-delay spectrum in the massive antenna array regime, which reveals the channel sparsity in massive MIMO-OFDM. With this channel model, we then investigate channel acquisition, including channel estimation and channel prediction, for massive MIMO-OFDM with APSPs. We show that channel acquisition performance in terms of sum mean square error can be minimized if the user terminals' channel power distributions in the angle-delay domain can be made non-overlapping with proper phase shift scheduling. A simplified pilot phase shift scheduling algorithm is developed based on this optimal channel acquisition condition. The performance of APSPs is investigated for both one symbol and multiple symbol data models. Simulations demonstrate that the proposed APSP approach can provide substantial performance gains in terms of achievable spectral efficiency over the conventional phase shift orthogonal pilot approach in typical mobility scenarios.Comment: 15 pages, 4 figures, accepted for publication in the IEEE Transactions on Signal Processin

    Estimation of Sparse MIMO Channels with Common Support

    Get PDF
    We consider the problem of estimating sparse communication channels in the MIMO context. In small to medium bandwidth communications, as in the current standards for OFDM and CDMA communication systems (with bandwidth up to 20 MHz), such channels are individually sparse and at the same time share a common support set. Since the underlying physical channels are inherently continuous-time, we propose a parametric sparse estimation technique based on finite rate of innovation (FRI) principles. Parametric estimation is especially relevant to MIMO communications as it allows for a robust estimation and concise description of the channels. The core of the algorithm is a generalization of conventional spectral estimation methods to multiple input signals with common support. We show the application of our technique for channel estimation in OFDM (uniformly/contiguous DFT pilots) and CDMA downlink (Walsh-Hadamard coded schemes). In the presence of additive white Gaussian noise, theoretical lower bounds on the estimation of SCS channel parameters in Rayleigh fading conditions are derived. Finally, an analytical spatial channel model is derived, and simulations on this model in the OFDM setting show the symbol error rate (SER) is reduced by a factor 2 (0 dB of SNR) to 5 (high SNR) compared to standard non-parametric methods - e.g. lowpass interpolation.Comment: 12 pages / 7 figures. Submitted to IEEE Transactions on Communicatio
    • …
    corecore