81 research outputs found

    Time–Frequency Cepstral Features and Heteroscedastic Linear Discriminant Analysis for Language Recognition

    Get PDF
    The shifted delta cepstrum (SDC) is a widely used feature extraction for language recognition (LRE). With a high context width due to incorporation of multiple frames, SDC outperforms traditional delta and acceleration feature vectors. However, it also introduces correlation into the concatenated feature vector, which increases redundancy and may degrade the performance of backend classifiers. In this paper, we first propose a time-frequency cepstral (TFC) feature vector, which is obtained by performing a temporal discrete cosine transform (DCT) on the cepstrum matrix and selecting the transformed elements in a zigzag scan order. Beyond this, we increase discriminability through a heteroscedastic linear discriminant analysis (HLDA) on the full cepstrum matrix. By utilizing block diagonal matrix constraints, the large HLDA problem is then reduced to several smaller HLDA problems, creating a block diagonal HLDA (BDHLDA) algorithm which has much lower computational complexity. The BDHLDA method is finally extended to the GMM domain, using the simpler TFC features during re-estimation to provide significantly improved computation speed. Experiments on NIST 2003 and 2007 LRE evaluation corpora show that TFC is more effective than SDC, and that the GMM-based BDHLDA results in lower equal error rate (EER) and minimum average cost (Cavg) than either TFC or SDC approaches

    Combining Spectral Representations for Large Vocabulary Continuous Speech Recognition

    Get PDF
    In this paper we investigate the combination of complementary acoustic feature streams in large vocabulary continuous speech recognition (LVCSR). We have explored the use of acoustic features obtained using a pitch-synchronous analysis, STRAIGHT, in combination with conventional features such as mel frequency cepstral coefficients. Pitch-synchronous acoustic features are of particular interest when used with vocal tract length normalisation (VTLN) which is known to be affected by the fundamental frequency. We have combined these spectral representations directly at the acoustic feature level using heteroscedastic linear discriminant analysis (HLDA) and at the system level using ROVER. We evaluated this approach on three LVCSR tasks: dictated newspaper text (WSJCAM0), conversational telephone speech (CTS), and multiparty meeting transcription. The CTS and meeting transcription experiments were both evaluated using standard NIST test sets and evaluation protocols. Our results indicate that combining conventional and pitch-synchronous acoustic feature sets using HLDA results in a consistent, significant decrease in word error rate across all three tasks. Combining at the system level using ROVER resulted in a further significant decrease in word error rate

    Continuous Density Hidden Markov Model for Hindi Speech Recognition

    Get PDF
    State of the art automatic speech recognitionsystem uses Mel frequency cepstral coefficients as featureextractor along with Gaussian mixture model for acousticmodeling but there is no standard value to assign number ofmixture component in speech recognition process.Currentchoice of mixture component is arbitrary with littlejustification. Also the standard set for European languagescan not be used in Hindi speech recognition due to mismatchin database size of the languages.Parameter estimation withtoo many or few component may inappropriately estimatethe mixture model. Therefore, number of mixture isimportant for initial estimation of expectation maximizationprocess. In this research work, the authors estimate numberof Gaussian mixture component for Hindi database basedupon the size of vocabulary.Mel frequency cepstral featureand perceptual linear predictive feature along with itsextended variations with delta-delta-delta feature have beenused to evaluate this number based on optimal recognitionscore of the system . Comparitive analysis of recognitionperformance for both the feature extraction methods onmedium size Hindi database is also presented in thispaper.HLDA has been used as feature reduction techniqueand also its impact on the recognition score has beenhighlighted

    Convolutional Neural Network and Feature Transformation for Distant Speech Recognition

    Get PDF
    In many applications, speech recognition must operate in conditions where there are some distances between speakers and the microphones. This is called distant speech recognition (DSR). In this condition, speech recognition must deal with reverberation. Nowadays, deep learning technologies are becoming the the main technologies for speech recognition. Deep Neural Network (DNN) in hybrid with Hidden Markov Model (HMM) is the commonly used architecture. However, this system is still not robust against reverberation. Previous studies use Convolutional Neural Networks (CNN), which is a variation of neural network, to improve the robustness of speech recognition against noise. CNN has the properties of pooling which is used to find local correlation between neighboring dimensions in the features. With this property, CNN could be used as feature learning emphasizing the information on neighboring frames. In this study we use CNN to deal with reverberation. We also propose to use feature transformation techniques: linear discriminat analysis (LDA) and maximum likelihood linear transformation (MLLT), on mel frequency cepstral coefficient (MFCC) before feeding them to CNN. We argue that transforming features could produce more discriminative features for CNN, and hence improve the robustness of speech recognition against reverberation. Our evaluations on Meeting Recorder Digits (MRD) subset of Aurora-5 database confirm that the use of LDA and MLLT transformations improve the robustness of speech recognition. It is better by 20% relative error reduction on compared to a standard DNN based speech recognition using the same number of hidden layers

    Speaker Recognition: Advancements and Challenges

    Get PDF

    Pitch adaptive features for LVCSR

    Get PDF
    We have investigated the use of a pitch adaptive spectral representation on large vocabulary speech recognition, in conjunction with speaker normalisation techniques. We have compared the effect of a smoothed spectrogram to the pitch adaptive spectral analysis by decoupling these two components of STRAIGHT. Experiments performed on a large vocabulary meeting speech recognition task highlight the importance of combining a pitch adaptive spectral representation with a conventional fixed window spectral analysis. We found evidence that STRAIGHT pitch adaptive features are more speaker independent than conventional MFCCs without pitch adaptation, thus they also provide better performances when combined using feature combination techniques such as Heteroscedastic Linear Discriminant Analysis

    Deep neural networks in acoustic model

    Get PDF
    L'estudiant m'ha contactat amb el requeriment d'una oferta per matricular-se i aquesta oferta respon a la seva petició. Després de confirmar amb Secretaria Acadèmica que està acceptat a destinació, deixem títol, descripció, objectius, i tutor extern per determinar quan arribi a destí.Do implementation of a training of a deep neural network acoustic model for speech recognitio

    Intersession Variability Compensation in Language and Speaker Identification

    Get PDF
    Variabilita kanálu a hovoru je velmi důležitým problémem v úloze rozpoznávání mluvčího. V současné době je ve velkém množství vědeckých článků uvedeno několik technik pro kompenzaci vlivu kanálu. Kompenzace vlivu kanálu může být implementována jak v doméně modelu, tak i v doménách příznaků i skóre. Relativně nová výkoná technika je takzvaná eigenchannel adaptace pro GMM (Gaussian Mixture Models). Mevýhodou této metody je nemožnost její aplikace na jiné klasifikátory, jako napřílad takzvané SVM (Support Vector Machines), GMM s různým počtem Gausových komponent nebo v rozpoznávání řeči s použitím skrytých markovových modelů (HMM). Řešením může být aproximace této metody, eigenchannel adaptace v doméně příznaků. Obě tyto techniky, eigenchannel adaptace v doméně modelu a doméně příznaků v systémech rozpoznávání mluvčího, jsou uvedeny v této práci. Po dosažení dobrých výsledků v rozpoznávání mluvčího, byl přínos těchto technik zkoumán pro akustický systém rozpoznávání jazyka zahrnující 14 jazyků. V této úloze má nežádoucí vliv nejen variabilita kanálu, ale i variabilita mluvčího. Výsledky jsou prezentovány na datech definovaných pro evaluaci rozpoznávání mluvčího z roku 2006 a evaluaci rozpoznávání jazyka v roce 2007, obě organizované Amerických Národním Institutem pro Standard a Technologie (NIST)Varibiality in the channel and session is an important issue in the text-independent speaker recognition task. To date, several techniques providing channel and session variability compensation were introduced in a number of scientic papers. Such implementation can be done in feature, model and score domain. Relatively new and powerful approach to remove channel distortion is so-called eigenchannel adaptation for Gaussian Mixture Models (GMM). The drawback of the technique is that it is not applicable in its original implementation to different types of classifiers, eg. Support Vector Machines (SVM), GMM with different number of Gaussians or in speech recognition task using Hidden Markov Models (HMM). The solution can be the approximation of the technique, eigenchannel adaptation in feature domain. Both, the original eigenchannel adaptation and eigenchannel adaptation on features in task of speaker recognition are presented. After achieving good results in speaker recognition, contribution of the same techniques was examined in acoustic language identification system with 1414 languages. In this task undesired factors are channel and speaker variability. Presented results are presented on the NIST Speaker Recognition Evaluation 2006 data and NIST Language Recognition Evaluation 2007 data.
    corecore