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Abstract 

Nowadays the systems of speech recognition are many communes between mobiles and 
computers. Increasingly they are more efficient, useful and more common between users, 
so we can say the ASR is a very comfortable way to communicate with hardware of every 
machine.  There exist several methods to the speech recognition, in this thesis is studied 
the DNN. 

DNN is a system of machine learning based in hidden states. For the implementation we 
use kaldi library. The first part of this thesis, is a theoretical study of machine learning and 
the DNN method. The second part is about the implementation and improvement of DNN 
system. 
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Resum 

Els sistemes de reconeixement de la parla, actualment son molt comuns als mòbils, pc,... 
Cada cop son mes eficients, útils y utilitzes pels usuaris. Podríem dir que els ASR es una 
forma molt còmoda de comunicar-nos amb el hadware, de qualsevol maquina. Hi han 
varis mètodes de ASR, en aquest treball s’estudia el DNN, una tècnica molt moderna que 
treballa amb estats ocults, i bases de dades. Per a implementar-lo., utilitzarem la llibreria 
Kaldi. La primera part del treball, es fa un estudi de machine learning y el mètode DNN, 
de una forma teòrica. En la segona part, es la implementació I millora de un sistema 
DNN. 
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Resumen 

Los sistemas de reconocimiento del habla, actualmente son muy comunes en los 
móviles, pc,... Cada vez son mas eficientes, útiles y mas utilizados por los usuarios. 
Podríamos decir que los ASR es una forma muy cómoda de comunicarnos con el 
hardware, de cualquier maquina. Hay varios métodos para el  reconocimiento del habla, 
en este trabajo se estudia el DNN, es un sistema de machine learning basado en 
estados ocultos. Para implementarlo se utiliza la libraría kaldi. La primera parte del 
trabajo, se hace un estudio de machine learning y el método DNN, de una forma teórica, 
En la segunda parte, es la implementación y mejora de un sistema DNN. 
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1. Introduction 

Automatic Speech Recognition (ASR) is a disciplinary of the machine learning, also 
called artificial intelligence, which has as main goal allow the oral communication 
between humans and computers. 

 

1.1. Formulation of the problem 
 

The main problem in the ASR is the complexity of the human language. This is due to are 
have a lot of languages and within each language are many forms of dialects, accents, 
types of pronunciations, so on. All this things influence the complexity, that it must have 
the ASR systems. 

Nowadays the ASR is one of the most often used for the users of mobiles, tablets, so on. 
This all open a opportunity and a possibility in the market, the major companies of 
technological like Google, Apple, Samsung, so on, expend a lot of resources in this topic. 

There are a lot of kind of ASR system and methods, in this thesis is used the Deep 
Neural Networks (DNN), one of the most actuality machine learning method, based in 
Neural Networks. 

In our ASR system, we use Kaldi, a toolkit for speech recognition written in C++ and 
licensed under the Apache License v2.0. 

 

1.2. Statement of purpose 
 

The purpose of this project is give a system of ASR based in Deep Neural Networks 
(DNN), learn and improve about both ASR and Kaldi toolkit, to be able to build an 
Automatic Speech Recognition system. 

The project main goals are: 

 1. Do a theoretical study these following topics: ASR DNN, and Kaldi toolkit 

2. Training a data base for 

3. Develop a system for DNNs 

4. Testing 

5. Improve 

6. Pretend to create a Graphical User Interface to test our system 
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1.3. Project background 
 

The project is carried out at the Signal processing group in AGH University of Science 
and Technology. The supervisor Bartosz Ziólko provides the main project initial ideas. 
Although the development of it is carried out by both the supervisor and I together. 

 

1.4. Project outline 

This project is divided into three main sections, the first serious explain the basics, which 
I have drawn to the project, that is the basics of ASR, the Kaldi library, and an 
introduction to machine learning. The second section, the project was explained in 
general, Deep Neural Networks (DNN) and its development. In the third section, we see 
the results, and better analysis of this project. Lastly, remember that after the results have 
sections of the conclusions, and budget. 

1.5. Requirements and specifications 
 

 

The requirements of this project are: 

- Advanced Knowledge in Audio processing 
- Advanced Knowledge in Mathematics 
-  Knowledge in machine learning 
- Experience with C++ 
- Individual Skills 
- Good level of English 
- Experience with ubuntu 
- Experience with python 
- Experience with shell/bash 
- C++ Libraries 
- Audio Database recorded 

 

 

The project includes these C++ libraries: OpenCV, Lapack, Eigen and Boost. The project 
is organized and structured in different sections; each part develops a different goal.  
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1.6 Project plan 
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2. Basics concepts of ASR State of the art of the technology 
used in this thesis: 

 

A brief review of the behaviour and state of the art of the ASR and Signal analysis is 
presented. This is followed by a presentation of Kaldi Toolkit and it ends with a summary 
the different kinds of machine learning. 

 

 

2.1. Automatic Speech Recognition 
 

The automatic speech recognition (ASR) is simply the translation of spoken words into 
text. In this section, the key components of an ASR system are broadly presented [1]. 

 

Acoustic Features: A raw audio signal, for example as received from a microphone, 
needs to be converted into a more manageable. First the incoming audio is treated as a 
sequence of frames at regular time intervals. These frames are then analysed such that 
some data can be extracted. For each frame, we obtain a representative feature vector 
[1]. 
 
Language Model (LM): A language model describes how words can be combined 

 

Acoustic Model (AM): An acoustic model contains the data describing the acoustic 
nature of all the phonemes understood by the system. Acoustic models are built through 
a training process using large quantities of transcribed audio. Each context dependent 
phoneme, also called triphone, is represented by a hidden Markov model (HMM). The 
HMM states permit to describe how the sound of the phonemes progresses in time [1].  

 

Decoder: The decoder is the reason of the ASR system; its job is to decode a sequence 
of speech signal to reveal what words were spoken. For each audio frame, there is a 
process of pattern matching [1]. 

 

 

The statistical approach to automatic speech recognition aims at modelling the stochastic 
relation between a speech signal and the spoken word sequence with the objective of  
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Minimizing the expected error rate of a classifier. The statistical paradigm is governed by 
Bayesian decision. 

 

Bayesian decision theory is a fundamental statistical approach to the problem of pattern 
classification [2]. This approach is based on quantifying the trade offs between various 
classification decisions using probability and the costs that accompany such decisions. It 
makes the assumption that the decision problem is posed in probabilistic terms, and that 
all of the relevant probability values are known. 

Bayes' theorem is stated mathematically as the following equation [2]: 

  

 

where A and B are events 

• P(A) and P(B) are the probabilities of A and B without regard to each other.  

• P(A|B), a conditional probability, is the probability of observing event A given that 
B is true.  

• P(B|A) is the probability of observing event B given that A is true.  

 

The statistical paradigm is governed by Bayes’ decision rule: Given a sequence of 
acoustic observations  as the constituent features of a spoken 
utterance, Bayes' decision rule decided for that word                     
sequence   which maximizes the class posterior probability  [3]: 
 

 

In automatic speech recognition, the generative model, which decomposes the class 
posterior probability into a product of two independent stochastic knowledge sources,  

became widely accepted[3]: 

Figure 1: Overview of the ASR system [1] 
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the decision rule is equivalent to[3]: 

 

 

The word sequence, which maximizes the posterior probability, is determined by 
searching for that word sequence which maximizes the product of the following two 
stochastic knowledge sources: 

 

 

• The acoustic model  which captures the probability of observing a 
sequence of acoustic observations given a word sequence [3]. 

• The language model  which provides a prior probability for the word sequence 

[3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Basic architecture of statical ASR system [3] 
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2.2. Signal Processing 
 

The first step in any automatic speech recognition system is to extract features. A speech 
signal processing does features extraction. Its aim is to provide a compact encoding of 
the speech waveform. This encoding should minimize the loss information and provide a 
good match with the distributional assumptions made by the acoustic models. The final 
result is a feature vector in Rn. Many features extraction techniques are available, these 
include [1]: 

 

 •Linear predictive cepstral coefficients (LPCC) 

 •Mel-frequency cepstral coefficients (MFCCs) 

 •Perceptual linear predictive coefficients (PLP) 

 
Our feature extraction and waveform-reading code aims to create standard MFCC and PLP 
features, setting reasonable defaults but leaving available the options that people are most 
likely to want to tweak [4]. 
 
The overall MFCC computation is as follows [4]: 

• Work out the number of frames in the file (typically 25 ms frames shifted by 10ms 
each time).  

• For each frame: 

• Extract the data, do optional dithering, preemphasis and dc offset removal, 
and multiply it by a windowing function (various options are supported 
here, e.g. Hamming)  

• Work out the energy at this point  

• Do FFT and compute the power spectrum  

• Compute the log of the energies and take the cosine transform, keeping as 
many coefficients as specified   

• Optionally do cepstral liftering; this is just a scaling of the coefficients, 
which ensures they have a reasonable range.  

The lower and upper cut-off of the frequency range covered by the triangular mel bins are 
controlled by the options –low-freq and –high-freq, which are usually set close to zero 
and the Nyquist frequency respectively, e.g. –low-freq=20 and –high-freq=7800 for 16kHz 
sampled speech [4]. 

 

Transforms, projections and other feature operations that are typically not speaker 
specific include: 

 • Frame splicing and Delta feature computation[5]. 

 • Linear Discriminant Analysis (LDA) transform[6]. 
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 • Heteroscedastic Linear Discriminant Analysis (HLDA). 

 • Maximum Likelihood Linear Transform (MLLT) estimation[7]. 

 

Delta feature computation 

MFCC feature only takes account of the relationship in phonetic frames without 
considering the relationship between them. Phonetic signals are essentially continuous, 
so the acquisition of the dynamic changing feature between phonetic frames will improve 
the performance of recognition.  

LDA+MLLT 

LDA: Is a linear transform that reduce dimensionality of our input features. The idea of 
LDA is to find a linear transformation of feature vectors from an n-dimensional space to 
vectors in an m-dimensional space (m<n) such that the class separability is maximum.  

MLLT: Estimates the parameters of a linear transform in order to maximize the likelihood 
of the training data given a diagonal-covariance Gaussian mixture models; the 
transformed features are better represented by the model than the original features. 

 

2.3. Acoustic Model (AM) 
 

The acoustic model provides a stochastic description for the realization 
of a sequence of acoustic observation vectors  given a word sequence   . Due 
to data sparsely, the model for individual words as well as the model for 

entire sentences is obtained by concatenating the acoustic models of basic sub-word 
units according to a pronunciation lexicon. Word units smaller than words enable a 
speech recognizer to allow for recognizing words that do not occur in the training data. 
Thus, the recognition system can ensure that enough instances of each sub-word unit 
have been observed in training to allow for a reliable estimation of the underlying model 
parameters [3] 

The temporal distortion of different pronunciations as well as the spectral variation in the 
acoustic signal can be described via a Hidden Markov Model (HMM). A HMM is a 
stochastic finite state automaton that models the variation in the acoustic signal via a two-
stage stochastic process. The automaton is defined through a set of states with 
transitions connecting the states. The probability  is extended by an 
unobservable variable s representing the states[3]: 
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Figure 3:Architecture of the acoustic model (AM) [1] 

 

Gaussian mixture models  

 

We support GMMs with diagonal and full covariance structures. Rather than representing 
individual Gaussian densities separately, we directly implement a GMM class that is 
parameterized by the natural parameters, i.e. means times inverse covariances and 
inverse covariances [8].  
 

 
 

GMM-based acoustic model  

 

The “acoustic model” class AmDiagGmm represents a collection of DiagGmm objects, 
indexed by “pdf-ids” that correspond to context-dependent HMM states. This class does 
not represent any HMM structure, but just a collection of densities (i.e. GMMs).[8]  
 

 

Speaker adaptation  

 

We support both model-space adaptation using maximum likelihood linear regression (MLLR) 
[8] and feature-space adaptation using feature-space MLLR (fMLLR), also known as 
constrained MLLR [9]. For both MLLR and fMLLR, multiple transforms can be estimated using 
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a regression tree [10]. When a single fMLLR transform is needed, it can be used as an 
additional processing step in the feature pipeline. The toolkit also supports speaker 
normalization using a linear approximation to VTLN, similar to [11], or conventional feature-
level VTLN, or a more generic approach for gender normalization, which we call the 
“exponential transform” [12]. Both fMLLR and VTLN can be used for speaker adaptive training 
(SAT) of the acoustic models.  

 

 

2.4. Language Model (LM) 

 
Language models are used to constrain search in a decoder by limiting the number of 
possible words that need to be considered at any one point in the search. The 
consequence is faster execution and higher accuracy. 

Language models constrain search either absolutely (by enumerating some small subset 
of possible expansions) or probabilistically (by computing a likelihood for each possible 
successor word). The former will usually have an associated grammar this is compiled 
down into a graph, the latter will be trained from a corpus.  

Statistical language models (SLMs) are good for free-form input, such as dictation or 
spontaneous speech, where it's not practical or possible to a priori specify all possible 
legal word sequences. 

Trigram SLMs are probably the most common ones used in ASR and represent a good 
balance between complexity and robust estimation. A trigram model encodes the 
probability of a word (w3) given its immediate two-word history, ie p(w3 | w1 w2). In 
practice trigam models can be "backed-off" to bigram and unigram models, allowing the 
decoder to emit any possible word sequence (provided that the acoustic and lexical 
evidence is there)[9]. 

 

 

2.5 Kaldi 
 

As is mentioned above, Kaldi is an open-source toolkit for speech recognition written in 
C++ and licensed under the Apache License v2.0. Kaldi is intended for use by speech 
recognition researchers. The principal goal of Kaldi is to have modern and flexible code 
that is easy to understand, modify and extend[4].  

In Kaldi open-source toolkit exist several potential choices for building a recognition 
system. Important feactures include: 

- Code-level integration with Finite State Transducers (FSTs) 

- Extensive linear algebra support 
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- Extensible design 

- Thorough testing 

- Open license: The code is licensed under Apache 2.0, which is one of the least 
restrictive licenses available 

- Complete recipes 

 

The toolkit depends on two external libraries: one is OpenFst for the finite-state 
framework, and the other is a numerical algebra library. The Kaldi use the Basic Linear 
Algebra Subroutines (BLAS) and Linear Algebra PACKage  (LAPACK). 
 

The feature extraction and waveform-reading code aims to create MFCC and PLP 
features. Kaldi used feature extraction approaches: e.g. VTLN, cepstral mean and 
variance normalization, LDA, STC/MLLT, HLDA, and so on [8]. 
 
Kaldi to support conventional models, diagonal GMMs and Subspace Gaussian Mixture 
Models (SGMMs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A simplified view of the different components of Kaldi. The library modules can be 
grouped into those that depend on linear algebra libraries and those that depend on 
OpenFst. The decodable class bridges these two halves. Modules that are lower down in 
the schematic depend on one or more modules that are higher up[8] 

 

 

Figure 4:  Kaldi [8] 
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2.6 INTRO MACHINE LEARNING (DNN) 

 

Machine learning is a subfield of computer science that evolved from the study of pattern 
recognition and computational learning theory in artificial intelligence. Machine learning explores 
the study and construction of algorithms that can learn from and make predictions on data. Such 
algorithms operate by bulding a model from example inputs in order to make data-driven 
predictions or decisions expressed as outputs[11]. 

 

 

 

 

 

 

 

Deep learning (deep structured learning, hierarchical learning or deep machine learning) is a 
branch of machine learning based on a set of algorithms that attempt to model high-level 
abstractions in data by using multiple processing layers, with complex structures or otherwise, 
composed of multiple non-linear transformations. 

 

 

 

 

 

 

 

 

 

Figure 5: Machine learning [11] 

Figure 6: DNN [11] 
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3. Deep Neural Networks: 

 

3.1 Introduction: 

 

New machine learning algorithms can lead to significant advances in automatic speech 
recognition (ASR). The biggest single advance occurred nearly four decades ago with the 
introduction of the expectation-maximization (EM) algorithm for training HMMs[11][12]. 
With the EM algorithm, it became possible to develop speech recognition systems for real 
world tasks using the richness of GMMs to represent the relationship between HMM 
states and the acoustic input. In these systems the acoustic input is typically represented 
by concatenating Mel-frequency cepstral coefficients (MFCCs) or perceptual linear 
predictive coefficients (PLPs)[14]. This nonadaptive but highly engineered preprocessing 
of the waveform is designed to discard the large amount of information in waveforms that 
is considered to be irrelevant for discrimination and to express the remaining information 
in a form that facilitates discrimination with GMM-HMMs[10].  
 

GMMs have a serious shortcoming they are statistically inefficient for modeling data that 
lie on or near a nonlinear manifold in the data space. For example, modeling the set of 
points that lie very close to the surface of a sphere only requires a few parameters using 
an appropriate model class, but it requires a very large number of diagonal Gaussians or 
a fairly large number of full-covariance Gaussians[10]. Speech is produced by modulating 
a relatively small number of parameters of a dynamical system, and this implies that its 
true underlying structure is much lower-dimensional than is immediately apparent in a 
window that contains hundreds of coefficients.  
 

Therefore, that other types of model may work better than GMMs. Artificial neural 
networks trained by backpropagating error derivatives have the potential to learn much 
better models of data that lie on or near a nonlinear manifold[10]. 
 

Over the last few years, advances in both machine learning algorithms and computer 
hardware have led to more efficient methods for training DNNs [10] that contain many 
layers of nonlinear hidden units and a very large output layer.  
 

Using the new learning methods, several different research groups have shown that 
DNNs can outperform GMMs at acoustic modeling for speech recognition on a variety of 
data sets including large data sets with large vocabularies[10].  
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This section starts by describing the two-stage training procedure that is used for fitting 
the DNNs. In the first stage, layers of feature detectors are initialized, one layer at a time, 
by fitting a stack of generative models, each of which has one layer of latent variables.  

These generative models are trained without using any information about the HMM states 
that the acoustic model will need to discriminate. In the second stage, each generative 
model in the stack is used to initialize one layer of hidden units in a DNN and the whole 
network is then discriminatively fine-tuned to predict the target HMM states[10].  
These targets are obtained by using a baseline GMM-HMM system to produce a forced 
alignment. In this article, we review exploratory experiments on the voxforge database, 
that were used to demonstrate the power of this two-stage training procedure for acoustic 
modeling. 

 

3.2 TRAINING DEEP NEURAL NETWORKS  

 

A deep neural network (DNN) is a feed-forward, artificial neural  network that has more 
than one layer of hidden units between its inputs and its outputs. Each hidden unit, j, 
typically uses the logistic function to map its total input from the layer below, xj, to the 
scalar state, yj that it sends to the layer above[10]. 

 

Where bj is the bias of unit j, i is an index over units in the layer below, and wij is a the 
weight on a connection to unit j from unit i in the layer below. For multiclass classification, 
output unit j converts its total input, xj , into a class probability, pj, by using the “softmax” 
non-linearity[10] : 

 

where k is an index over all classes. 

For large training sets, it is more efficient to compute the derivatives, random “mini-
batch”, rather than the whole training set, before updating the weights in proportion to the 
gradient. This stochastic gradient descent method can be further improved by using a 
“momentum” coefficient, 0< α <1, that smooths the gradient computed for mini-batch t 
[10]. 
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To reduce overfitting, large weights can be penalized in proportion to their squared 
magnitude, or the learning can simply be terminated at the point at which performance on 
a held-out validation set starts getting worse[14]. In DNN, the initial weights are given 
small random values to prevent all of the hidden units in a layer from getting  the same 
gradient 

DNN  with  many  hidden  layers  are  hard  to  optimize. 

This makes them capable of modeling  very  complex  and  highly  non-linear  
relationships between  inputs  and  outputs.  This  ability  is  important for  high-quality  
acoustic  modeling,  but  it  also  allows  them to  model  spurious  regularities  that  are  
an  accidental property  of  the  particular  examples  in  the  training  set,  which  can  
lead  to  severe  overfitting.  Weight  penalties  or early-stopping can reduce the 
overfitting but only by removing much of the modeling power. Very large training sets [15]  
can  reduce  overfitting  whilst  preserving  modeling  power,  but  only  by  making  
training  very  computationally expensive. What we need is a better method of using the 
information in the training set to build multiple layers of non-linear feature detectors. 

 

Generative pre-training 

 

Instead of designing feature detectors to be good for discriminating between classes, can 
start by designing them to be good at modeling the structure in the input data. The idea is 
to learn one layer of feature detectors at a time with the states of the feature detectors in 
one layer acting as the data for training the next layer. After this generative “pre-training”, 
the multiple layers of feature detectors can be used as a much better starting point for a 
discriminative “fine-tuning” phase during which backpropagation through the DNN slightly 
adjusts the weights found in pre-training [16]. Some of the high-level features created by 
the generative pre-training will be of little use for discrimination, but others will be far 
more useful than the raw inputs. The generative pre-training finds a region of the weight-
space that allows the discriminative fine-tuning to make rapid progress, and it also 
significantly reduces overfitting [17]. 

There are two  classes of generative model. A directed model generates data by first 
choosing the states of the latent variables from a prior distribution and then choosing the 
states of the observable variables from their conditional distributions given the latent 
states[10]. 
 

An undirected model has a very different way of generating data. Instead of using one set 
of parameters to define a prior distribution over the latent variables and a separate set of 
parameters to define the conditional distributions of the observable variables given the 
values of the latent variables, an undirected model uses a single set of parameters, W, to 
define the joint probability of a vector of values of the observable variables, v, and a 
vector of values of the latent variables, h, via an energy function,  
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E: 
 

 

 

where Z is called the “partition function”. 

If many different latent variables interact non-linearly to generate each data vector, it is 
difficult to infer the states of the latent variables from the observed data in a directed 
model because of a phenomenon known as “explaining away” [18]. In undirected models, 
however, inference is easy provided the latent variables do not have edges linking them. 
Such a restricted class of undirected models is ideal for layerwise pre-training because 
each layer will have an easy inference procedure. 
 
We  start  by  describing  an  approximate  learning  algorithm  for  a  restricted  
Boltzmann  machine  (RBM)  which consists  of  a  layer  of  stochastic  binary  “visible”  
units  that  represent  binary  input  data  connected  to  a  layer  of stochastic binary 
hidden units that learn to model significant non-independencies between the visible units 
[19]. 

 

An efficient learning procedure for RBMs 

 

A joint configuration, (v,h) of the visible and hidden units of an RBM has an energy given 
by[10]: 

 

where vi, hj are the binary states of visible unit i and hidden unit j, ai , bj are their biases 
and wij is the weight between them. 

 
 

The network assigns a probability to every possible pair of a visible and a hidden vector 
via this energy functio, is given by summing over all possible hidden vectors [10] : 
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The derivative of the log probability of a training set with respect to a weight is 
surprisingly simple[10]: 

 

The simple derivative in following equation leads to a very simple learning rule for 
performing stochastic steepest ascent in the log probability of the training data 

 

where is a learning rate 

 

Getting an unbiased sample of however, is much more difficult. It 
can be done by starting at any random state of the visible units and performing 
alternating Gibbs sampling for a very long time. 

A much faster learning procedure called “contrastive divergence” (CD) was proposed in 
[19]. Finally, the states of the hidden units are updated again. The change in a weight is 
then given by [10] 

 

A simplified version of the same learning rule that uses the states of individual units 
instead of pairwise products is used for the biases. 

Contrastive divergence works well even though it is only crudely approximating the 
gradient of the log probability of the training data [19]. 

RBM learn better generative models if more steps of alternating Gibbs sampling are used 
before collecting the statistics for the second term in the learning rule, but for the 
purposes of pre-training feature detectors. 

 

To suppress  noise  in  the  learning,  the  real-valued  probabilities  rather  than  binary  
samples  are  generally  used  for  the reconstructions and the subsequent states of the 
hidden units, but it is important to use sampled binary values for the first computation of 
the hidden states because the sampling noise acts as a very effective regularizer that 
prevents overfitting [20]. 
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Modeling real-valued data 

 

Real-valued data, such as MFCCs, are more naturally modeled by linear variables with 
Gaussian noise and the RBM energy function can be modified to accommodate such 
variables, giving a Gaussian-Bernoulli RBM (GRBM)[10]: 

 

where σi is the standard deviation of the Gaussian noise for visible unit i. The two 
conditional distributions required for CD learning are[10]: 

 

 

where  is a Gaussian. Learning the standard deviations of a GRBM is 
problematic for reasons described in [20], 

 

Stacking RBMs to make a deep belief network 

 

After  training  an  RBM  on  the  data,  the  inferred  states  of  the  hidden  units  can  be  
used  as  data  for  training another  RBM  that  learns  to  model  the  significant  
dependencies  between  the  hidden  units  of  the  first  RBM.  The RBM in a stack can 
be combined in a surprising way to produce a single, multi-layer generative model called 
a deep belief net (DBN) [21]. 

To understand how RBMs are composed into a DBN it is helpful to rewrite this eq. the 
and to make explicit the dependence on W 
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There is a series of variational bounds on the log probability of the training data, and 
furthermore, each time a new RBM RBM is added to the stack, the variational bound on 
the new and deeper DBN is better than the previous variational bound [21], provided the 
new RBM is initialized and learned in the right way. While the existence of a bound that 
keeps improving is mathematically reassuring, it does not answer the practical issue, 
addressed in this review paper, of whether the learned feature detectors are useful for 
discrimination on a task that is unknown while training the DBN.  

 

 

3.3 Acoustic Model training 

 

Estimation of HMM parameters is commonly performed according to the Maximum 
Likelihood Estimation (MLE) criterion, which maximizes the probability of the training 
samples with regard to the model. This is done by applying the Expectation-Maximization 
(EM) algorithm, which relies on maximizing the log-likelihood from incomplete data, by 
iteratively maximizing the expectation of log-likelihood from complete data[26].  

 

 

 

 

Figure 7: RBM [10] 
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3.4 Acoustic data 

 

All data used in our training experiments comes from VoxForge project [9]. It was setup to 
collect transcribed speech for use with Free and Open Source Speech Recognition 
Engines. They make available all submitted audio files that VoxForge user record under 
the GPL license. Our experiments will train and test our acoustic models just with English 
data [9]. 

In the following the dataset used: 

 

Data Base Speakers Files Time [minutes] second/speake
rs 

Train 358 15264 1272 213.18 

Test 20 399 33.25 99.75 
 

Table 1: Data base VoxForge 

 
Each file or sentence lasts 5 seconds, therefore the database are intended to train 1,272 
minutes recording  
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4. Experimental testing and Results 

In this section we are going to show all the results and analysis for a different acoustic 
methods of training, which we presented in the previous sections. First sable, we will see 
the results of database voxforge training, then we can see the experiments with training 
DNN, and after then will be see the app presented in previous sections. 

 

4.1 Evaluation 

Have different methods to evaluate the quality of an ASR system. Word Error Rate 
(WER) is the most common metric of the performance of speech recognition. Therefore, 
we used WER for all our experiments and results. 

The general difficulty of measuring performance lies in the fact that the recognized word 
sequence can have a different length from the reference word sequence (supposedly the 
correct one). The WER is a valuable tool for comparing different systems as well as for 
evaluating improvements within one system.  

 

 

  

where 

• S is the number of substitutions,  
• D is the number of deletions, 

• I is the number of insertions,  
• N is the number of words in the reference (N=S+D+C)  

 

Alignment example: 

REF: portable       ****     phone  upstairs    last    night   so  *** 

HYP: preferable   form       of      stores     next    light   so   far 

Eval  S          I           S           S          S          S         I 

WER = 100 (1+5+1)/6 = 117% 
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4.2 Acoustic modelling scripts 

 

The recordings and their transcriptions from training dataset are used for acoustic 
modelling. The estimated AMs are evaluated on the test set. The decoding of the test 
utterances is performed always with the same parameters, so that different AMs can be 
compared. The used methods are listed in Figure 8 together with their hierarchy. The 
hierarchy shows that a more advanced method typically reuses initial values from 
previously trained simpler AM. At first, a mono-phone model is trained from flat start using 
the MFCCs, ∆ and ∆∆ features. We force-align the feature vectors to HMM states using 
utterances transcriptions. Secondly, we retrain the triphone AM (tri1a)[25]. 

One branch of experiments finishes by training MFCC ∆+∆∆ triphone AM (tri2a). On the 
other hand, the second branch instead of ∆ + ∆∆ transformation uses LDA+MLLT to train 
AM (tri2b). Using the AM tri2b three AMs are discriminatively trained using the following 
objective functions[25]: 

1. Maximum Mutual Information[22]. The model tri2b_mmi is trained in four loops. 

2. Boosted Maximum Mutual Information[24]. The model tri2b_bmmi is trained in four 
loops with parameter 0.05. 

3. Minimum Phone Error[23]. The model tri2b_mpe is also retrained in four loops 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The acoustic models mono, tri1, tri2a and tri2b are trained generatively. The models 
tri2b_mmi, tri2b_bmmi and tri2b_mpe are trained discriminatively in four iterations. The 
discriminative models yield better results than generative models if enough data is 
available. The discriminative models from may significantly over-fit to the training data. 
Discriminative training uses a unigram LM estimated on training dataset in order to 
compute their objective function, each iteration adapts more to the training data. We used 

Figure 8: Training partial order among AM in our training scripts [25] 
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four iterations for discriminative models training, and we have not experienced such 
behaviour[25]. 

 

 

4.3 Experiments in Voxforge database 

Firs of all, we are going to analyse which is the amount of data needed to correctly train a 
mono-phone system (mono) and tri-phone system (tri1a). The following results presents 
the performance of mono-phone and tri-phone models depending on the number of 
utterances used to train the model. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Displays the WER% depending the number of sentences 
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Figure 9: Displays the WER%  depending the number of sentences 
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We can see that the best WER(%) is obtained when using triphones. Also we can see 
that as more training data is used, better results are achieved. 

 

 

4.4 Results 

In this section, will be shown the results while using different methods with the full 
database as training data.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 2:  WER% of different acoustic models evaluated 

 

The models mono, tri1 and tri2a use the ∆+∆∆.  We can see that mono only uses 
monophones and tri1 and tri2a use triphones. 

Note that the tri2b uses LDA+MLLT, tri2b_mmi uses LDA+MLLT+MMI, tri2b_mmi_b0.5 
uses LDA+MLLT+bMMI, and tri2b_mpe use  LDA+MLLT+MPE. 

From the previous results we can observe that using different linear non-dependent 
transforms leads to a considerably reduction of word error rate. It can be seen that 
LDA+MLLT works better than Δ+ΔΔ. 

 

 

 

Model WER(%) 

Mono 31,86 

Tri1 15,22 

Tri2a 16,08 

Tri2b 14,93 

tri2b_mmi 10,89 

tri2b_mmi_b0.05 10,91 

tri2b_mpe 11,61 

Tri3b 12,31 
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4.5 Experiments in DNN 

The following table presents the WER(%) trained in DNN. 

 

Model Num-hidden 
layers 

WER(%) 

 

Tri2a 

 

2 8,15 

4 8,10 

 

Tri2b 

 

2 7,71 

4 7,68 

Tri3b 5 10,63 

Table 3: DNN results with WER% 

 

We can also observe that despite increasing the number of hidden layers we do not get a 
significantly higher result, and the computational time is increased. 
Finally, I used the script of professor Follonosa to obtain different results with the model 
tri3b. This model uses nnet2, but with 5 hidden layers. 
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4.6 Decoder 

Use of multiple models in GMM-based online decoding 

In the online decoding decode for GMMs in online-gmm-decoding.h, up to three models can 
be supplied. These are held in class OnlineGmmDecodingModels, which takes care of the 
logic necessary to decide which model to use for different purposes if fewer models are 
supplied[4]. 

Neural net based online decoding with iVectors 

Our recommended online-decoding setup, which provides the best performance, is the neural 
net based setup. The adaptation philosphy is to give the neural net un-adapted and non-
mean-normalized features (MFCCs, in our example recipes), and also give it an iVector. An 
iVector is a vector of several hundred dimensions (one or two hundred, in this particular 
context) which represents the speaker properties. For more information on this, the reader 
can look at the speaker identification literature. Our main idea is that the iVector gives the 
neural net as much as it needs to know about the speaker properties. This has been proved 
being quite useful. The iVector is estimated in a left-to-right way, meaning that at a certain 
time t, it sees input from time zero to t. It also sees information from previous utterances of the 
current speaker, if available. The iVector estimation is Maximum Likelihood, involving 
Gaussian Mixture Models[3]. 

This is used to decode the application you will see below: 

# decoding 
~/kaldi-trunk/egs/voxforge/s5/online2-wav-nnet2-latgen-faster --do-endpointing=false \ 
    --online=false \ 
    --config=nnet_a_gpu_online/conf/online_nnet2_decoding.conf \ 
    --max-active=7000 --beam=15.0 --lattice-beam=6.0 \ 
    --acoustic-scale=0.1 --word-symbol-table=graph/words.txt \ 
   nnet_a_gpu_online/smbr_epoch2.mdl graph/HCLG.fst "ark:echo utterance-id1 utterance-id1|" 
"scp:echo utterance-id1 a0234.wav|" \ 
   ark:/dev/null 
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4.7 Graphical User Interface (GUI) 

 

In this section we can see the following images that refer to the GUI programmed in 
python use of the PyAudio, to decode a voice audio already recorded. The set 
parameters are the following: 

. Format = pyaudio.paInt16  

. Channels = 1  

. Chunk = 1024  

. Rate = 16000  

 

The program started two buttons where you can choose if you want to decode by DNN or 
fMLLR. By selecting one of the options, a window appears where you can select audio 
file desired. 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10:GUI(I) 
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Then, another window opens with the graphical representation of the audio voice. In 
order to make a better analysis of the audio file. 

 

Figure 12: GUI(II) 
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Finally we see in the terminal decoder 

 

 

 

 

 

 

 

Figure 11: GUI(III) 
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5 Conclusions:  

 

As a way of ending this project I will expose a brief and concise conclusions, deducted 
from the experiences and results of this thesis.  

Nowadays, one of the systems of human communication with machines it’s through 
speech recognition or ASR (automatic speech recognition). Among all the different 
methods that exist, this work is mainly focused in the use of new DNN. Moreover, ASR is 
becoming widely used, especially in the daily life of people.  

Deep Neural Networks (DNN) are based in neuronal network and the use of hidden 
states. This allows working with better and faster decisions inside a database already 
trained. We have seen different methods of DNN. As an example, using triphone helps us 
to obtain better results. In this project we used the library kaldi, which is very versatile and 
usually provides good results.  

From our results can be seen that DNN with lots of hidden layers are hard to optimize, 
therefore adding more hidden layers does not significantly improve the performance. This 
might be caused due to the fact that the database is no big enough to work with a high 
number of hidden layers 

Nevertheless, it’s important to remind that Deep Learning, and specifically DNN, is a very 
recent field. It is a really active field of research and new methods are constantly 
presented. 

One main aspect for obtaining a good performance on an ASR system is having a 
database big enough, whether using DNN or finite states. 

The pre-training is much more helpful in deep neural nets than in shallow ones, especially 
when limited amounts of labeled training data are available. Reductions in training time 
can be achieved with less effort by careful choice of the scales of the initial random 
weights in each layer. 

Currently, the biggest disadvantage of DNN compared with GMM is that it is much harder 
to make good use of large cluster machines to train them on big datasets. This is offset 
by the fact that DNN make more efficient use of data so they do not require as much data 
to achieve the same performance. 
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Glossary 

ASR: Automatic Speech Recognition  

HMM: Hidden Markov Models 

DNN: Deep Neural Networks 

AM: Acoustic Model 

LM:Language Model 

GUI: Graphical User Interface 

MFCC: Mel Frequency Cepstral Coefficients  

PLP: Perceptual Linear Prediction 

DBN: Deep Belief Net 

MLLT: Maximum Likelihood Linear Transform  

LDA: Linear Discriminant Analysis 

RBM: Restricted  Boltzmann  Machine  

HLDA: Heteroscedastic Linear Discriminant Analysis  

MLLR: Maximum Likelihood Linear Transform 

GMM: Gaussian Mixture Model 

SGMM: Subspace Gaussian Mixture Model 

WER: Word Error Rate 

MLE: Maximum Likelihood Estimation 

EM: Expectation-Maximization 

MMI: Maximum Mutual Information 

bMMI: Bosted Maximum Mutual Information 

 


