733 research outputs found

    Spatial Queries for Indoor Location-based Services

    Get PDF
    Indoor Location-based Services (LBS) facilitate people in indoor scenarios such as airports, train stations, shopping malls, and office buildings. Indoor spatial queries are the foundation to support indoor LBSs. However, the existing techniques for indoor spatial queries are limited to support more advanced queries that consider semantic information, temporal variations, and crowd influence. This work studies indoor spatial queries for indoor LBSs. Some typical proposals for indoor spatial queries are compared theoretically and experimentally. Then, it studies three advanced indoor spatial queries, a) Indoor Keyword-aware Routing Query. b) Indoor Temporal-variation aware Routing Query. c) Indoor Crowd-aware Routing Query. A series of techniques are proposed to solve these problems.</p

    Towards Crowd-aware Indoor Path Planning (Extended Version)

    Full text link
    Indoor venues accommodate many people who collectively form crowds. Such crowds in turn influence people's routing choices, e.g., people may prefer to avoid crowded rooms when walking from A to B. This paper studies two types of crowd-aware indoor path planning queries. The Indoor Crowd-Aware Fastest Path Query (FPQ) finds a path with the shortest travel time in the presence of crowds, whereas the Indoor Least Crowded Path Query (LCPQ) finds a path encountering the least objects en route. To process the queries, we design a unified framework with three major components. First, an indoor crowd model organizes indoor topology and captures object flows between rooms. Second, a time-evolving population estimator derives room populations for a future timestamp to support crowd-aware routing cost computations in query processing. Third, two exact and two approximate query processing algorithms process each type of query. All algorithms are based on graph traversal over the indoor crowd model and use the same search framework with different strategies of updating the populations during the search process. All proposals are evaluated experimentally on synthetic and real data. The experimental results demonstrate the efficiency and scalability of our framework and query processing algorithms.Comment: The extension of a VLDB'21 paper "Towards Crowd-aware Indoor Path Planning

    Shortest Path Queries for Indoor Venues with Temporal Variations

    Get PDF

    WaveFlex: A Smart Surface for Private CBRS Wireless Cellular Networks

    Full text link
    We present the design and implementation of WaveFlex, the first smart surface that enhances Private LTE/5G networks operating under the shared-license framework in the Citizens Broadband Radio Service frequency band. WaveFlex works in the presence of frequency diversity: multiple nearby base stations operating on different frequencies, as dictated by a Spectrum Access System coordinator. It also handles time dynamism: due to the dynamic sharing rules of the band, base stations occasionally switch channels, especially when priority users enter the network. Finally, WaveFlex operates independently of the network itself, not requiring access to nor modification of the base station or mobile users, yet it remain compliant with and effective on prevailing cellular protocols. We have designed and fabricated WaveFlex on a custom multi-layer PCB, software defined radio-based network monitor, and supporting control software and hardware. Our experimental evaluation benchmarks an operational Private LTE network running at full line rate. Results demonstrate an 8.50 dB average SNR gain, and an average throughput gain of 4.36 Mbps for a single small cell, and 3.19 Mbps for four small cells, in a realistic indoor office scenario.Comment: 15 page

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Visual Place Recognition under Severe Viewpoint and Appearance Changes

    Get PDF
    Over the last decade, the eagerness of the robotic and computer vision research communities unfolded extensive advancements in long-term robotic vision. Visual localization is the constituent of this active research domain; an ability of an object to correctly localize itself while mapping the environment simultaneously, technically termed as Simultaneous Localization and Mapping (SLAM). Visual Place Recognition (VPR), a core component of SLAM is a well-known paradigm. In layman terms, at a certain place/location within an environment, a robot needs to decide whether it’s the same place experienced before? Visual Place Recognition utilizing Convolutional Neural Networks (CNNs) has made a major contribution in the last few years. However, the image retrieval-based VPR becomes more challenging when the same places experience strong viewpoint and seasonal transitions. This thesis concentrates on improving the retrieval performance of VPR system, generally targeting the place correspondence. Despite the remarkable performances of state-of-the-art deep CNNs for VPR, the significant computation- and memory-overhead limit their practical deployment for resource constrained mobile robots. This thesis investigates the utility of shallow CNNs for power-efficient VPR applications. The proposed VPR frameworks focus on novel image regions that can contribute in recognizing places under dubious environment and viewpoint variations. Employing challenging place recognition benchmark datasets, this thesis further illustrates and evaluates the robustness of shallow CNN-based regional features against viewpoint and appearance changes coupled with dynamic instances, such as pedestrians, vehicles etc. Finally, the presented computation-efficient and light-weight VPR methodologies have shown boostup in matching performance in terms of Area under Precision-Recall curves (AUC-PR curves) over state-of-the-art deep neural network based place recognition and SLAM algorithms

    Multimodal Content Delivery for Geo-services

    Get PDF
    This thesis describes a body of work carried out over several research projects in the area of multimodal interaction for location-based services. Research in this area has progressed from using simulated mobile environments to demonstrate the visual modality, to the ubiquitous delivery of rich media using multimodal interfaces (geo- services). To effectively deliver these services, research focused on innovative solutions to real-world problems in a number of disciplines including geo-location, mobile spatial interaction, location-based services, rich media interfaces and auditory user interfaces. My original contributions to knowledge are made in the areas of multimodal interaction underpinned by advances in geo-location technology and supported by the proliferation of mobile device technology into modern life. Accurate positioning is a known problem for location-based services, contributions in the area of mobile positioning demonstrate a hybrid positioning technology for mobile devices that uses terrestrial beacons to trilaterate position. Information overload is an active concern for location-based applications that struggle to manage large amounts of data, contributions in the area of egocentric visibility that filter data based on field-of-view demonstrate novel forms of multimodal input. One of the more pertinent characteristics of these applications is the delivery or output modality employed (auditory, visual or tactile). Further contributions in the area of multimodal content delivery are made, where multiple modalities are used to deliver information using graphical user interfaces, tactile interfaces and more notably auditory user interfaces. It is demonstrated how a combination of these interfaces can be used to synergistically deliver context sensitive rich media to users - in a responsive way - based on usage scenarios that consider the affordance of the device, the geographical position and bearing of the device and also the location of the device

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Lifelong topological visual navigation

    Full text link
    La possibilité pour un robot de naviguer en utilisant uniquement la vision est attrayante en raison de sa simplicité. Les approches de navigation traditionnelles basées sur la vision nécessitent une étape préalable de construction de carte qui est ardue et sujette à l'échec, ou ne peuvent que suivre exactement des trajectoires précédemment exécutées. Les nouvelles techniques de navigation visuelle basées sur l'apprentissage réduisent la dépendance à l'égard d'une carte et apprennent plutôt directement des politiques de navigation à partir des images. Il existe actuellement deux paradigmes dominants : les approches de bout en bout qui renoncent entièrement à la représentation explicite de la carte, et les approches topologiques qui préservent toujours une certaine connectivité de l'espace. Cependant, alors que les méthodes de bout en bout ont tendance à éprouver des difficultés dans les tâches de navigation sur de longues distances, les solutions basées sur les cartes topologiques sont sujettes à des défaillances dues à des arêtes erronées dans le graphe. Dans ce document, nous proposons une méthode de navigation visuelle topologique basée sur l'apprentissage, avec des stratégies de mise à jour du graphe, qui améliore les performances de navigation sur toute la durée de vie du robot. Nous nous inspirons des algorithmes de planification basés sur l'échantillonnage pour construire des graphes topologiques basés sur l'image, ce qui permet d'obtenir des graphes plus épars et d'améliorer les performances de navigation par rapport aux méthodes de base. En outre, contrairement aux contrôleurs qui apprennent à partir d'environnements d'entraînement fixes, nous montrons que notre modèle peut être affiné à l'aide d'un ensemble de données relativement petit provenant de l'environnement réel où le robot est déployé. Enfin, nous démontrons la forte performance du système dans des expériences de navigation de robots dans le monde réel.The ability for a robot to navigate using vision only is appealing due to its simplicity. Traditional vision-based navigation approaches require a prior map-building step that was arduous and prone to failure, or could only exactly follow previously executed trajectories. Newer learning-based visual navigation techniques reduce the reliance on a map and instead directly learn policies from image inputs for navigation. There are currently two prevalent paradigms: end-to-end approaches forego the explicit map representation entirely, and topological approaches which still preserve some loose connectivity of the space. However, while end-to-end methods tend to struggle in long-distance navigation tasks, topological map-based solutions are prone to failure due to spurious edges in the graph. In this work, we propose a learning-based topological visual navigation method with graph update strategies that improves lifelong navigation performance over time. We take inspiration from sampling-based planning algorithms to build image-based topological graphs, resulting in sparser graphs with higher navigation performance compared to baseline methods. Also, unlike controllers that learn from fixed training environments, we show that our model can be finetuned using a relatively small dataset from the real-world environment where the robot is deployed. Finally, we demonstrate strong system performance in real world robot navigation experiments
    • …
    corecore