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Abstract

Over the last decade, the eagerness of the robotic and computer vision research communities
unfolded extensive advancements in long-term robotic vision. Visual localization is the
constituent of this active research domain; an ability of an object to correctly localize
itself while mapping the environment simultaneously, technically termed as Simultaneous
Localization and Mapping (SLAM).

Visual Place Recognition (VPR), a core component of SLAM is a well-known paradigm.
In layman terms, at a certain place/location within an environment, a robot needs to decide
whether it’s the same place experienced before? Visual Place Recognition utilizing Con-
volutional Neural Networks (CNNs) has made a major contribution in the last few years.
However, the image retrieval-based VPR becomes more challenging when the same places
experience strong viewpoint and seasonal transitions. This thesis concentrates on improving
the retrieval performance of VPR system, generally targeting the place correspondence.

Despite the remarkable performances of state-of-the-art deep CNNs for VPR, the sig-
nificant computation- and memory-overhead limit their practical deployment for resource
constrained mobile robots. This thesis investigates the utility of shallow CNNs for power-
efficient VPR applications. The proposed VPR frameworks focus on novel image regions that
can contribute in recognizing places under dubious environment and viewpoint variations.

Employing challenging place recognition benchmark datasets, this thesis further illus-
trates and evaluates the robustness of shallow CNN-based regional features against viewpoint
and appearance changes coupled with dynamic instances, such as pedestrians, vehicles
etc. Finally, the presented computation-efficient and light-weight VPR methodologies have
shown boostup in matching performance in terms of Area under Precision-Recall curves
(AUC-PR curves) over state-of-the-art deep neural network based place recognition and
SLAM algorithms.
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Chapter 1

Introduction

Over the last few years, significant improvements have been made in autonomous driving
and robotic vision [11]. For a safe and continuous operation, a vigorous navigation system is
indispensable. To correctly localize within an environment, the object needs to build a map
of its surroundings, technically termed as Simultaneous Localization and Mapping. Visual
Place Recognition is a prime component of SLAM; a system which can decide whether
the place has previously been visited or not, also termed as a loop-closure detection. The
aim of this thesis is to improve visual place recognition for battery-operated mobile robots
under changing conditions, including appearance and viewpoints variations coupled with
dynamic instances. This thesis presents methodologies that increase the robustness of SLAM
by improving the performance of visual place recognition at low memory and computation
cost. Our proposed frameworks allow mobile robots to globally localize by identifying places
which have been previously visited given changed conditions and viewpoints.

This chapter discusses the main topic of this thesis; visual place recognition under severe
viewpoint and appearance changes. It starts with the background in Section 1.1, followed
up with the introduction of SLAM in Section 1.2. Section 1.3 establishes the link between
VPR and visual-SLAM. Section 1.4 highlights the challenges in VPR along with the thesis
objectives and contributions are presented in Section 1.5. Section 1.6 outlines the dissertation
organization and research contributions made during this research are listed in Section 1.7.

1.1 Background

Over the past few decades, autonomous vehicles and intelligent mobile robots have attracted
increased level of attention from the research communities and industrial organizations
[12][13]. In 2005, American Department of Defense, DARPA (Defense Advanced Research
Projects Agency) organized a vehicle Grand challenge to promote the development of
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autonomous vehicles. The challenge winner STANDEY, an autonomous car created by
Standford University, USA had employed SLAM as part of its autonomous driving system. It
attracted many top level research organizations such as, Google which started its self-driving
car project in 2009 and with real-time autonomously driven 1.5 million miles, it is presently
steering through the street of Mountain View, California. The first Google self driving car
was released in 2014, followed up by many other companies and institutions including Baidu,
MIT, BMW and Uber as shown in Fig. 1.1. A number of autonomous mobile systems have
been demonstrated including Mars rover car (2014) and Google self driving vehicle (2015).

Fig. 1.1 Examples of human cars with inbuilt self-driven capabilities.

Encouraged by the recent success of autonomous vehicles, some indoor autonomous
robotic experiments claim that with minor occasional human interventions, the robot can run
autonomously for months using a visual sensor such as, a camera [14][15]. However, real
world outdoor scenes are quite challenging and a long-term autonomous navigation system
under such extreme environmental changes is still a big question that needs to be answered.
Visual information is susceptible to appearance changes because the same place can undergo
drastic environmental variations and perceptual changes due to the seasonal, weather and
illumination variations. Most localization and navigation systems match places based on
the captured RGB information, therefore, such appearance changes cast a severe challenge.
Intelligent vehicles or mobile robots comprise the fundamental systems including navigation,
localization and perception. Localization is the core component that leads to successful
accomplishment of other tasks because by determining the current position/location, path
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planning can be performed. Therefore, accuracy of the localization system is directly
associated with autonomous vehicles or mobile robots.

Localization can be accomplished through visual place recognition, which tries to retrieve
a place from the previously visited places. This dissertation focuses on lightweight visual
place recognition with an ultimate goal to localize at low memory and time cost. We expect
resource-constraint mobile robots to benefit from this work.

1.2 Simultaneous Localization and Mapping (SLAM)

To recognize a previously visited place, the system needs a map to perform robotic local-
ization. Building such maps of the surrounding environment for localization is termed as
Simultaneous Localization and Mapping (SLAM). In the past few decades, SLAM is a very
active area of research among the robotic and computer vision communities. It consists of
following components:

1.2.1 Mapping

It’s the process of internally creating and storing the outside world representation. The
generation of world maps can vary from the type of environment and sensory information
[16]. For instance, occupancy grid maps [17] subdivides the world into evenly spaced discrete
regions or cells, as shown in Fig. 1.2. Each cell is assumed to be occupied or free, named
as occupancy grid maps. Few assumptions are made for occupancy grid maps; each cell is
either free or occupied and independent upon each other. Given all the past information and
states, each region has an obstacle probability. Those regions which are nether occupied nor
explored, they have assigned with 0.5 obstacle probability. In dense indoor environments,
such occupancy-based grid maps fit perfectly as they can easily be constructed from laser-
or sonar-based information but require significant memory resources. These maps have
been widely employed in obstacle avoidance algorithms including potential field [18]. In
comparison, feature maps are quite compact, sparse and consist of distinctive landmarks
with their coordinates. They are suitable in outdoor environments with information about
the landmarks obtained from the visual sensors. Pose graphs [19] are another form of maps
that graphically defines the robot trajectory. The nodes orientation describe the robot’s pose
and position. Edges describe the spatial connection between the poses, can be used for loop
closure.



4 Introduction

Fig. 1.2 An occupancy grid map; the world is subdivided into discrete regions. Black and
white regions indicate the presence of obstacles and explored areas. Grey regions are not yet
observed. (Image taken from [1])

1.2.2 Localization

Employing visual sensors, Localization is the process of tracking the position of robot
within the map. This module processes the incoming visual data and outputs a belief about
the current place within the map. Using the belief, system decides whether the presently
encountered place is previously seen or a new place. Two similar places usually implies the
same location. However, this supposition does not work when there are significant weather
and illumination changes which might cause the robot to incorrectly localization within the
map.

Localization can either be local or global. In global localization, the robot assumes that
there is no prior knowledge and can move anywhere within the map. Such re-localization
of the robot using visual information and map give rise to kidnapped robot problem. Envi-
ronments within which the places are quite similar, global localization is difficult to achieve.
However, the robot generally has some prior information of its current pose and map; known
as local localization [20]. The prior knowledge comes from the previous states of the robot.

1.3 Visual Place Recognition (VPR)

In an outdoor environment, Global Positioning System (GPS) offers a cheap solution for
localization. However, it requires satellite coverage which in some cases is intermittently
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available in areas with trees or taller buildings because signals are seldomly out of reach. As
an alternative, visual sensors are employed and have shown state-of-the-art performance in
place recognition and SLAM based applications [21][22][23][24].

Contemporary robotic localization systems use vision sensors [25][26]. For visual
localization, place recognition employing visual cameras are cost-effective and lightweight.
Taking precedence from their sizes and power consumptions, their applicability can be
expanded to mass-production. Secondly, the incoming visual data contains rich semantic
information coupled with the texture and appearance of places. Moreover, a visual source
of information can provide better understanding of the environment especially for far away
landmarks including buildings structures etc. Visual place recognition matches a place from
previously encountered places and allocate the current position (place) within an environment
either performing single image or sequence of image matching, known as image retrieval task
[27][28]. Here, a place is interpreted as a part of an environment or abstraction of a region,
where a region corresponds to a two-dimensional subset of the environment [29]. Therefore,
each place can be denoted as an image and localization through visual place recognition can
be achieved either by employing a single image or sequence of images [30].

Fig. 1.3 A visual place recognition system takes query images as an input and returns the
visually similar database images for localization.

In visual place recognition, captured images of the places within an environment are
stored in a database. Therefore, runtime comparison of the query with the stored database
is performed with closest database image which is considered as a currently visible place
(location) as shown in Fig. 1.3. Recent advancements in computer vision improve the
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performance of localization systems utilizing different robust feature detectors that interpret
visual information efficiently.

1.4 Problem Statement and Challenges

Visual place recognition is a well-known paradigm where contemporary algorithms perform
relatively well in environments with minimal dynamic instances but often challenging in
complex outdoor and extreme environments. In particular, due to large-scale environmental
variations experienced in the form of drastic appearance changes coupled with viewpoint
variations, visual place recognition becomes difficult to achieve. This dissertation addresses
the visual place recognition challenges by making sure that even under such perceptual and
environmental changes, the object still correctly localize itself within the environment using
the visual information. In Fig. 1.4, two cases of place recognition are presented. In (a), under
day-night transition, the system still retrieves the correct match for a query image taken at
the same place at night time whereas in (b), the retrieved image looks very similar to the
query but geographically different, a problem known as perceptual aliasing. An efficient
visual place recognition system should be able to correctly localize (match) a place (location)
while minimizing the incorrect match.

Fig. 1.4 A generic visual place recognition system must be able to successfully recognize
(a) the correct place irrespective of the visual changes and (b) reject the visually similar but
geographically different places (Image taken from [2]).

To differentiate two places or locations in the form of captured images, the first step
is to produce a compact image representation in the form of feature descriptors. Two
geographically different places may look similar due to the surrounding atmosphere and
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environment, such as, a bar, an office etc. Therefore, to recognize the place correctly, it
is important to identify and employ distinguishing and meaningful feature representations.
In layman terms, we can say that the visual place recognition (localization) performance
depends upon the feature descriptors being used for manipulating the visual information.
Widely used feature descriptors include hand-crafted techniques (such as, Scale-Invariant
Feature Transform [31] and Speeded-Up Robust Features [32]), deep learning techniques
and 3D-based information (will discuss in more detail in Section 2.2). Similarly, techniques
involved in feature matching vary and a better matching approach can improve the overall
retrieval accuracy. Two widely employed recognition techniques include single image
matching and sequence-based image matching. The most vital components involved for
both feature description and feature matching are computation time and resource utilization.
The mobile robots are usually battery operated and should be able to localize in real-time
environment with minimum resource utilization.

1.5 Thesis Contributions

This thesis works around lightweight deep learning techniques coupled with single image
matching for visual place recognition under changing appearance and viewpoint. The
proposed approaches are tested and evaluated on several publicly available benchmark place
recognition datasets, where the final outcome of this dissertation is to have a real-time
lightweight visual place recognition system. The main contributions of this thesis are as
follow:

1. The first contribution is associated with the exploration of regions-based Convolutional
Neural Networks (CNNs) techniques that can be effective for place recognition under
uncertain perceptual and environmental variations. Two places captured from the
same location can appear differently due to the changing viewpoints and conditions.
Therefore, identifying the common regions across places can improve the VPR per-
formance. I have proposed a novel place-centric, region-finding approach employing
convolutional layers of the CNN models.

2. The second contribution addresses the scalability and runtime matching performance.
Once the robot experiences a new environment, it captures, stores and updates the
reference map. It is important to have compact representation of the stored infor-
mation so that runtime feature matching can be fast. The identified regional feature
representations are encoded into Vector of Locally Aggregated Descriptors (VLAD).
Precisely, regional features are quantized to the pre-trained dictionary clusters and their
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accumulated residuals are concatenated to retrieve a VLAD representation, followed
by their cosine matching such that the database image with highest score is treated as
the final match.

3. Deep learning techniques are computationally expensive, and it becomes important to
determine the runtime resource and memory utilization. Thus, it is critical to make
sure that the computation and memory requirements are economical which makes the
proposed place recognition frameworks suitable for resource-constraint mobile robots.
Instead of deep neural networks, we have employed shallow CNN models to meet
the real-time demand while improving the recognition performance at low memory
and time cost. We have experimentally shown that our proposed region-based features
extracted from less-layered CNNs can still deliver better results against state-of-the-art
deep CNN-based place recognition contemporary techniques.

1.6 Thesis Structure

The rest of the thesis is divided into four chapters:
In Chapter 2, existing approaches for visual place recognition are reviewed. Depending

upon the feature describing methodologies, the visual place recognition techniques are
classified into: techniques which employ global descriptors, local descriptors, and techniques
that are a combination of both the global and local descriptors. Other approaches employ
deep CNNs and 3D information for visual localization. Similarly, feature matching can either
be single image or sequence of images based matching, as discussed further in this chapter.

As presented in Section 2.2.5, region-based CNN techniques are capable of improving
the VPR performance under changing environmental conditions. Taking inspiration from
the regional techniques, a novel regions finding approach is proposed in Chapter 3. To
reduce the memory footprint and time consumption, shallow CNN (AlexNet) pre-trained on
scene-centric Place365 dataset [33] is employed. CNN-based regional features are coupled
with VLAD encoding for single image matching. The proposed framework is evaluated
on several challenging benchmark datasets and achieves boostup in matching speed and
accuracy over state-of-the-art contemporary VPR algorithms in terms of area computed on
precision-recall curves.

Rich semantic CNN-based regional features have shown robustness against severe visual
changes along with moderate viewpoint variations, as illustrated in section 2.2.5. Chapter
4 presents a multi-scale attention-based CNN approach for environment invariant visual
place recognition. The presented technique is tested on publicly available datasets with
environment experienced by real-world robots. The multi-layer context-aware framework
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is employed on shallow HybridNet (pre-trained on place recognition-centric SPED [4])
and achieves better performance than deep neural network based VPR approaches at lower
memory footprint and computational resource utilization.

In Chapter 5, a summary of the achieved outcomes and discussion of their relevance to
the current research and future work in visual place recognition is presented.

1.7 List of Publications

Following contributions were made during this course of study:

1. Khaliq, A., Ehsan, S., Chen, Z., Milford, M., and McDonald Maier, K. (2019)., "A
Holistic Visual Place Recognition Approach using Lightweight CNNs for Significant
ViewPoint and Appearance Changes". Accepted and published as a short paper in
IEEE Transactions on Robotics (T-RO).

2. Zaffar, M., Khaliq, A., Ehsan, S., Milford, M., and McDonald-Maier, K. (2019b).,
"Levelling the Playing Field: A Comprehensive Comparison of Visual Place Recog-
nition Approaches under Changing Conditions". Accepted in IEEE International
Conference on Robotics and Automation (ICRA 2019) workshop.

3. Zaffar, M., Khaliq, A., Ehsan, S., Milford, M., Alexis, K., and McDonald-Maier,
K. (2019a)., "Are State-of-the-art Visual Place Recognition Techniques any Good
for Aerial Robotics?". Accepted in aerial robotics workshop at IEEE International
Conference on Robotics and Automation (ICRA 2019).





Chapter 2

Literature Review

This chapter presents an overview of the relevant research work in the area of visual place
recognition. It starts with the core components, namely: describe a place, store a place repre-
sentation and recognize a revisited place, followed up by their pertinent works respectively.

2.1 Overview

With the availability and accessibility of economical cameras which provide rich visual
information, vision-driven localization and place recognition are getting more and more
attention [34][35][36][37]. In the context of place recognition, visual information of a
place/location is stored in the form of the captured image. A vehicle or robot localizes itself
within an environment by identifying and recognizing the location previously encountered
through an image retrieval mechanism [2]. However, the recognition techniques should be
robust such that even when the estimated metric position of the robot is inaccurate, it can
still localize the robot.

The contemporary research challenge in visual place recognition is to deal with the
uncertainty of the changing environment [38][39] because the appearance of the same place
changes abruptly at multiple times of the day and months, coupled with viewpoint changes
induced by the different viewing positions of the robot [40]. Fig. 2.1 illustrates the basic
mechanism of vision-aware place recognition with components described as follows.

1. Image processing module: The module takes the visual data as an input, coming
from the visual sensors (such as, camera) and processes the rich semantic visual data,
followed by the identification and extraction of useful information in the form of
feature descriptors [2].
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Fig. 2.1 Incoming visual data is processed by the image processing module and its description
is stored in the place mapping framework. The belief generation module takes the decision
by matching the current location with the stored places.

2. Place mapping framework: A map of the surrounding environment is stored in the form
of the feature descriptors. It updates the map once encountered with the new places.
Depending upon the purpose, a places map can be divided into following categories:

(a) Database-centric: It is a simplest way to remember a particular environment
by storing the visual information in the form of captured frames. Therefore,
recognition is entirely based on how similar the visual places are, often treated as
image retrieval problem [41]. However, valuable information including relative
pose is not stored which makes place recognition less precise but computationally
efficient. This thesis is focused on database-centric place remembering approach.

(b) Topological maps: This category of remembering places captures the relative
information of the location in an environment [37][27]. It can be a collection of
images captured in sequence.

3. Belief generation module: Within this module, the query/current visual information
is compared with the stored information and the system retrieves the best matched
database image (place recognition decision). Generally, if two places are captured at
the same or different location then their descriptors similarity is determined by the
matching score. Matching with single image and sequence of images are the two
conventional place recognition approaches [42]. However, sequenced-based matching
is more robust as it reduces the false-positive scenarios but this thesis focuses on single
image matching for place recognition as it is computation efficient.

To perform the task of visual localization via appearance-aware place recognition, it is
necessary to extract the useful visual information in the form of feature descriptors. Under
uncertain environmental variations, the performance of the place recognition system depends
upon the approaches employed for processing the visual information. Existing visual feature
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description approaches differ on the basis of visual data processing. Therefore, these can
be: local features, global features, a combination of both the local and global features,
3-Dimensional features and deep learnt CNN features. Similarly, recognizing approaches
either use single image of a place or collection of images captured in a sequence for matching
purpose.

In this chapter, we will discuss the contemporary techniques proposed for place recogni-
tion based visual localization. The rest of the chapter is organized as follows: Section 2.2
discusses the multiple place describing approaches. Section 2.2.6 presents the matching tech-
niques used for place recognition. Section 2.3 highlights the contemporary state-of-the-art
VPR techniques. Section 2.4 and 2.5 discuss the benchmark place recognition datasets and
evaluation criteria. Section 2.6 summarizes this chapter.

2.2 Visual Place Recognition Methodologies

A place in an environment is a distinctive location and should be describe in such a way
that it should be scalable and efficiently recognized whenever revisited. In the literature,
many techniques for place recognition have been proposed which differ in the process
of extracting visual information. Some approaches select regions that are in some way
meaningful and notable; and others that process all the visual data with no region selection
block. Similarly, there are techniques that use the 3-dimensional information and state-of-
the-art neural network based techniques in which an image is passed into the input layer, and
responses at some certain layer(s) are pooled and employed as feature descriptors.

2.2.1 Approaches based on Local features

Techniques employing local features first analyze the visual data (image) and then the
detection of the meaningful keypoints at various spatial locations is carried out, named as
local features [43][44]. The detection is based on the distinctive pixel patterns coupled with
the description at that spatial location. Within each location, concatenation of the neighbour
pixels is performed for retrieving final multi-dimensional floating-point feature vector or bit
strings [45].

Local features are typically invariant to affine transformations including image scaling
and camera rotation. Therefore, in places with similar environment and scenes, conventional
local feature descriptors can be utilised. Research work in the context of place recognition is
still a growing research domain, as evidenced by citation analysis and several workshops and
IEEE conferences including IEEE International conferences on Robotics and Automation
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Fig. 2.2 Example of local and global descriptors for place recognition (Image taken from
[2]).

and Computer Vision and Pattern Recognition. It all started from the development of Scale-
Invariant Feature Transform (SIFT) detector [31] and Speeded-Up Robust Features (SURF)
[32], used for visual localization shown in Fig. 2.2. In Fig. 2.2 (a), an image is processed by
local SURF feature detector, with circles denote the keypoints. For global descriptor as in
Fig. 2.2 (b), the image is subdivided into grids and each block is separately processed. Place
recognition with local descriptors is usually robust under viewpoint changes whereas global
approaches are efficient under conditional changes.

Recent development of local binary feature detectors enables the research community to
improve the description and recognition of places [46]. Such detectors are quite efficient and
invariant to monotonic gray-scale changes. A typical Local Binary Pattern (LBP) feature
detector is employed in [47], and coupled with support vector machine (SVM) based model
for place recognition. Other local detectors include Binary Robust Independent Elementary
Features (BRIEF) [48], oriented BRIEF (ORB) [49], Binary Robust Invariant Scalable
Keypoints (BRISK) [50], Local Difference Binary (LDB) [51], KAZE [52] and Fast Retina
Keypoints (FREAK) [53], which were usually employed in earlier place recognition systems.

Local feature descriptors possess high discriminative power which results into better
recognition performance. However, they are computationally inefficient and suffer from
higher dimensionality of the features. Bag-of-Words (BoW) [54], is an efficient feature
quantizing technique where local features are assigned to particular centroid (words) of a
trained vocabulary, as shown in Fig. 2.3. Thus, BoW results in a compact representation of
the place with low dimensional vector or binary string. It ignores the geometric information
of the place and performs recognition regardless of the topology of the deatures, technically
termed as pose invariance. However, it is very sensitive to extreme conditional variance [55]
and underperforms under lightening and seasonal changes. It is because the identified local
feature descriptors are less distinctive in such kind of visual changes which leads to incorrect
place matching.
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Fig. 2.3 K-means clustering of the feature descriptors with each cluster center treated as a
visual word.

2.2.2 Approaches based on Global features

The previous section reviewed methods that put more focus on sub-regions/parts of the image.
Such feature extraction techniques are quite efficient under partial occlusions and viewpoint
variance, but they do not generally consider the whole scene or the structure of the place. In
comparison, this section discusses the global feature detectors which process and describe
the whole image for place recognition.

Global features are quite fast and robust under uncertain environmental variations. For
place recognition, widely used global descriptors include color histograms [37] and His-
togram of Oriented Gradient (HOG) [56]. Ulrich et al. in [37] used six one-dimensional color
histogram from HLS and RGB color spaces coupled with nearest neighbor scheme in their
topological map for retrieval. Their whole image-based place recognition system successfully
matched 87% of the images. In [56], a vision-aware navigation system was proposed within
which HOG employed as feature representations, followed-up by the descriptors comparison
for determining the similarity.

Later, Winters et al. in [57] have utilized an omni-dimensional camera for creating the
topological map. Principal Component Analysis (PCA) was employed for image compression
and dimensionality reduction with appearance-aware localization determines the global
topological position of the robot. A popular global descriptor GIST [58], introduced for
scene recognition has been employed in [59] for place recognition. It used Gabor filters at
different orientations and frequencies for features extraction, resulting into a compact vector
representing the overall scene.

Concatenation of local features is also studied and represented as global image represen-
tation. Using omni-directional cameras, Lamon et al. in [60] used edges, corners and color
patches, combined them as features for rotation-invariant place recognition. A whole image
based technique WI-SURF used SURF detector on the whole image with investigations
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claiming better matching performance for long-term localization. Similarly, combination of
the BRIEF-GIST [61] detector for place recognition found to be resource efficient without
the need of trained vocabulary.

Other approaches include grid-based image partitioning (illustrated in Fig. 2.2(b)),
followed by the concatenation of each grid feature to retrieve the final descriptor. Lategahn et
al. in [62] proposed an illumination robust feature over small image regions and normalized
filter responses were used with results confirming better loop closure performance. Generally,
global features are convenient to determine and scalable for large-scale place recognition.
These approaches are invariant to conditional changes but less effective under viewpoint
variations.

2.2.3 Approaches based on a Combination of Local and Global fea-
tures

Both local and global feature descriptors have shown increasing level of integration for early
visual place recognition techniques. Taking precedence of their individual advantages, the
research community has proposed several frameworks based on a combination of feature
descriptors for place recognition [38].

Murillo et al. in [63] used omni-directional camera and proposed a three-step hierarchical
architecture for localization. Color based global detector was applied, followed by the line
features description to retrieve the visually similar image employing pyramidal matching
of their line supported regions. Using omni-directional camera, Goedemé et al. in [64]
extracted the vertical segments of each image coupled with the description of ten different
descriptors. The local descriptors were clustered and then inserted into a kd-tree structure for
efficient retrieval. For each query image, same descriptors were employed on the vertical
image segments and later used for possible loop candidates retrieval. For accurate matching,
column segments’ matching distance was applied between the candidates and query image.

A real-time appearance-aware place recognition system was proposed in [65] which
combined Features from Accelerated Segment Test (FAST) and Complete Center-symmetric
Local Binary Patterns (CSLBP). BoW and SVM were integrated with results showing robust
and high real-time place classification. A combination of local and global descriptor based
techniques, Hull Census Transform (HCT) proposed in [66]. It first filters the SURF features
which are composed of convex hull then computed their relative magnitude, resulting into
a set of binary vectors efficient for scene detection. A similar approach in [67] combined
local features, edges and colour histograms such that Harris detector was used for regions of
interest and edges, followed up with SIFT description.
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2.2.4 Approaches based on 3D information

In addition to rich semantic 2D visual data, metric information transforms it into three-
dimensional information. Stereo cameras are employed as a source of metric information
whereas monocular cameras with structure-from-motion techniques such as MonoSLAM [68],
LSD-SLAM [69] and ORB-SLAM [70] can also provide the required metric information.

In the literature, several works have been proposed employing three-dimensional infor-
mation for visual place recognition. Cummins et al. in [27] extended the Fast Appearance
Based Mapping (FAP-MAP) by adding spatial distribution of 3d-based visual words. A
similar strategy was proposed in [71] that coupled the 3D metric information with stereo
image sequences for place localization. In [72], Morioka et al. have proposed a SLAM based
navigation system which extracted 3D Position Invariant Robust Feature (PIRF) from the
sequential images with results demonstrating effective outdoor localization. A 3D point
cloud and depth image based descriptor which is a variant of Surface Entropy for Distinctive
3D Features (SURE) is showed in [73] discussing the applicability of SURE features coupled
with BoW approach for indoor place localization.

Maddern et al. in [74] proposed Continuous Appearance-based Trajectory SLAM (CAT-
SLAM), an appearance-based place recognition system that filtered the local metric pose for
improving the frequency and reliability of loop closure. Its extension integrated appearance
with local odometry information, named as CAT-Graph later introduced in [75]. With a
large-scale loop closure detection, it demonstrated the recall boostup in performance from
FAB-MAP by a factor of 3 at 100% precision. Cadena et al. in [76] introduced a stereo
vision-based recognition architecture which employed BoW feature encoding for retrieving
loop closure candidates, coupled with Conditional Random Fields-Matching (CRF-Matching)
for verification. However, the matching approach was found to be more robust than using
epipolar geometry only because it used 3D information from stereo images.

Cadena et al. in [71] proposed a SLAM-based place recognition system by considering
both the visual and geometric information coming from the camera. Loop closure hypothesis
was evaluated by coupling the appearance based approach with BoW model. Results in
both indoor and outdoor environments claimed zero false-positives (full precision) for a
few false-negatives (high recall). Sensors including RGB-D cameras [77] were used and
coupled the depth information with visual data and further improved place recognition
system/performance [78].



18 Literature Review

2.2.5 Approaches based on Deep CNN features

Visual Place recognition techniques based on handcrafted features are generally sensitive
towards simultaneous conditional and viewpoint variations. Therefore, their performance in
uncertain extreme environments relies on the type of feature detector employed. FAB-MAP,
a combination of SURF-BoW was found to be robust in dealing with viewpoint changes
whereas SEQSLAM performed better in changing conditions due to its whole image-based
approach. However, such techniques have shown inferior performances under simultaneous
changes observed in illumination, conditional or different camera position. Thanks to deep
convolutional neural networks which have shown stronger generalization power to describe
the places [79] with robustness to conditional and viewpoint variations.

In 1989, LeCun et al. in [80] for the first time introduced the idea of a Convolutional Neu-
ral Network (CNN). The proposed architecture consisted of multi-layered network, trained
on human annotated datasets and automatically learned features at multiple scales through
classification-based training. In comparison with conventional handcraft-based feature de-
tectors, CNNs have shown state-of-the-art performance for image/object classification and
recognition [81][82]. However, collection of the labelled large-scale datasets for training the
neural network and resources for computation are the early limitations faced by the research
community. The recent advent of GPUs encouraged and allowed the research community to
perform resource intense calculation, such as, back-propagation [83].

Encouraged from the initial boom of deep learning, Chen et al. in [84] presented a
visual place recognition system employing powerful CNN features coupled with spatial
and sequential filter. Evaluating the proposed framework with a 70km Eynsham dataset
claimed 85.7% recall at 100% precision. Later, [40][85] coupled external landmark detectors
with pretrained object-centric CNNs employing locality-sensitive hashing and optimization
approach for region-based real-time place recognition. The regional CNN features were
found to be robust under strong viewpoint and conditional changes. Further investigation
in [86][4] demonstrated that middle convolution layers emphasize upon edges and colours,
thus, efficient under conditional variations.

Arandjelovic et al. in [3] added a Vector of Locally Aggregated Descriptor (VLAD) layer
inside the CNN architecture (shown in Fig. 2.4). Using back-propagation, it trained the
model on a newly collected large scale urban dataset containing dynamic objects, coupled
with appearance and viewpoint changes. The framework was evaluated on Tokyo, Oxford
and Paris datasets with results claiming superior performance of deep CNN features. Gomez-
Ojeda et al. in [87] trained a CNN model for recognizing revisited places under strong
conditional variations. Images were mapped onto the lower dimension with euclidean
distance calculation for place similarity. To deal with the appearance variance, the authors
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used triplet of images for training the neural network such that one image presents the same
place with different conditions and other with different place exhibiting similar environment.

Fig. 2.4 Convolutional Neural Network (CNN) with the NetVLAD layer (image taken from
[3]).

Pooling responses from convolutional layers have been an area of research interest
for computer vision and robotic communities. With the advent of several feature pooling
techniques including Sum-Pooling [88], Max-Pooling [10], Spatial Max-Pooling [89] and
Cross-Pooling [90] employed in deep CNNs have demonstrated performance boost in tasks
requiring image classification/recognition and object detection/retrieval [10][90]. Applying a
specific sized window over convolutional layer’s feature maps and picking responses either
based on the max value, termed as Max-Pool [10], adding all the values - Sum/Average-Pool
[88] or mapping the window’s responses into the previous layer, known as Cross-Pool [90].

All such response pooling techniques have shown performance boost in vision-based
image retrieval tasks where the image is majorly covered with a single object. Responses
within feature maps are non-uniformly distributed and finding single or fewer regions of
interest becomes relatively easier. However, such image retrieval tasks are different in
nature from the VPR systems where recognizing a place which undergoes diverse changes
due to illumination, winter to summer transitions or viewpoint variance added by different
capturing angles is quite challenging. It is because the same place appears differently thus
making it harder to identify the common regions. Even when the above mentioned pooling
techniques are integrated on external tasks based pre-trained CNNs for the VPR problem, the
convolutional layers feature maps focus on the trained objects such as vehicles, pedestrians
and other non-salient objects which are not suitable for place recognition [5]. Therefore, a
generic Visual Place Recognition system capable of efficiently dealing with simultaneous
viewpoint and condition variations remains an open challenge.

Using an Archive of Many Outdoor Scenes (AMOS), a 2 Million diverse Specific Places
Dataset (SPED) was collected in [4]. SPED contains thousands of images captured at each
place throughout the year. Each place is treated as a label and with millions of places
allowing classification-based fine-tuning (HybridNet) of the object-centric CaffeNet [91]
and training from scratch (AMOSNet). Spatial Pyramid Pooling (SPP) for feature extraction
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Fig. 2.5 Images from the spring season are matched against the winter season. Feature
heat maps in the first and second columns are taken from HybridNet [4]. The third column
exhibits the heat maps of CaffeNet.

was employed for picking responses from the convolutional layers. SPP picks activations
from convolutional layers at multiple scales e.g. [1 2 3 4] by dividing each feature map into
scale based cells and apply max-pooling on each cell to pool the responses. By evaluation
on publicly available benchmark datasets, fine-tuned HybridNet claimed performance boost
over AMOSNet, CaffeNet and AlexNet. Furthermore, deep investigation on HybridNet
showed that middle convolutional layers focused on corners, edges and colours where higher
layers captured semantically meaningful regions under strong conditional changes, such as,
building structures which means the network has learned appearance invariant features as
shown in Fig. 2.5. It is evident that HybridNet fires at semantically meaningful regions
whereas CaffeNet’s responses are less meaningful due to object-centric CNN training.

Fig. 2.6 A place recognition system utilising deep VGG-16 pre-trained on ImageNet under
strong viewpoint and moderate conditional changes (Image taken from [5]).

Motivated from [92][90] which employed a cross-convolutional technique for image
recognition and classification, Chen et al. in [5] proposed a region-based VPR system,
illustrated in Fig. 2.6. Particularly, salient CNN-based regional representations were identi-
fied (shown with different colours) for recognizing places under simultaneous viewpoints
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and conditional changes. Employing deep object-centric VGG-16 and a cross-convolution
based regional approach was used such that group of connected activations from the late
convolutional layer are filtered on the basis of their energies followed up by their mapping
onto the previous convolutional layer for CNN-based regional extraction. Based on the
regional features, places are recognized using BoW encoding approach.

Fig. 2.7 A deep neural network based place recognition framework focusing on context-
flexible attentions. Two exemplars with their heat maps are shown here (image taken from
[6]).

Recently, the authors in [93][94][6] have demonstrated that fused features from multiple
convolutional layers can improve place recognition under visual changes. Jin Kim et al.
in [94] proposed a fixed context-aware attention model that captures the manually defined
rectangular shaped most contributing distinctive patterns efficient for visual localization.
Work in [4][93] demonstrated that different convolutional layers capture different semantic
information. Chen et al. in [6] fine-tuned the deep object-centric VGG-16 on SPED dataset
and employed fused multi-scale features for place recognition. A context flexible block is
integrated within the late convolutional layers which automatically learns context flexible at-
tentions upon fine-tuning on SPED dataset. Evaluations based on fused multi-layer attentions
were found to be efficient under severe conditional changes coupled with moderate viewpoint
changes. However, the efficiency of the proposed approach may be compromised if there
is a simultaneous severe viewpoint and conditional variation. Moreover, performance and
efficient resource usage have become two important aspects to be looked into for real-world
VPR applications.

Image retrieval tasks which either rely on handcrafted features, such as, local SIFT and
SURF features [32][31] or combining these with convolutional and fully connected layers of
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deep/shallow CNNs [95][96][84], Bag-of-Words (BoW) or Support Vector Machine (SVM)
[97] are employed for classification, detection and recognition [10][90] purposes. As an
alternative for BoW feature encoding scheme, several other approaches including Fisher
vector [98] and Vector of Locally aggregated descriptor (VLAD) have shown promising
results with smaller visual words vocabularies [99]. To perform instance level image retrieval
where objects from the same category are to be separated, [96] suggested to combine the rich
spatial middle convolutional layers’ features with VLAD encoding. Jin Kim et al. in [100]
employed MSER [101] for regions identification, followed by the detection of SIFT features
within the identified regions and described each region/bundle as a fixed size VLAD, named
as PBVLAD. 2D-based localization methods generally offer efficient database management
at lower accuracy cost whereas 3D-based techniques are computationally complex but
more reliable in localization. Sattler et al. in [102] refuted this notation by combining
2D-based approaches with SfM-based post-processing and have shown better performance
than structure-based methods. Merrill et al. [103] trained a convolutional auto-encoder in an
unsupervised manner. The objective of auto-encoder based VPR was to re-create the HOG
descriptor of original image using a distorted version of the original image as input.

Recently, Teichmann et al. in [104] trained the landmark detectors [105][10] with a newly
introduced 1.2M Google Landmark Dataset (GLD). It contains 15k landmark categories
including buildings, monuments and bridges annotated by human. They have proposed a
technique which retrieves the normalized regional residuals, termed as R-VLAD. Thus, it
down-weights all the regional residuals and stores a single aggregated regional descriptor per
image. Custom landmark detectors including ASMK [106], RMACB [105], RMAC [10] and
selective search [107] are incorporated for the regional search and coupled with the proposed
R-VLAD on deep CNNs.

2.2.6 Image Matching

Matching approaches for visual place recognition can be classified into two categories;
1) using one single frame and 2) using two or more captured frames in the sequence for
recognition purpose.

Single Image Matching

In this category, visual place recognition is performed with a single image of a query place.
An image database is pre-collected and stored for runtime matching with the query location.
By employing a VPR, the most similar database image is claimed as the place currently
encountered by the robot or vehicle. However, it is important for two places to be visually
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Fig. 2.8 VPR using single image matching.

similar to the extent that they can be claimed as representing the same physical location.
Therefore, in single image matching approach (shown in Fig. 2.8), the query place is captured
once in a single frame, compared with all the stored places and a visually similar image is
retrieved as the localized place.

Various VPR algorithms have employed a single image of the current scene and matched
with the stored image collection [2]. FABMAP was the first to employ single frame matching
approach; detected SURF keypoints on the visually captured appearance of the place and
combined it with BoW model for single query matching with the reference frames. During
training, the employment of the BoW encoding with SURF descriptors allowed to determine
the distinctiveness of each feature/word. Chow Liu tree was employed for measuring the
probabilities of the visual words carried out by determining the maximum-weight spanning
tree of a directed graph of co-occurrence between the visual words of training dataset.
Multiple places exhibiting similar environment were efficiently tackled by FAB-MAP using
common visual words approach such that the less common words highlight difference in
places and vice-versa.



24 Literature Review

Knopp et al. in [108] performed single image-based place recognition using BoW
encoding mechanism. They demonstrated that single image matching approach is easier
and simpler to deploy. However, under large scale extreme environments, place recognition
with single image matching is sensitive towards lightning changes and dynamic objects
including vehicles and pedestrians. Similarly, neural network based VPR approaches also
employed single matching technique for retrieval purposes [4][5][6]. These techniques
pass down a single frame of a location and extract middle and late convolutional layers as
features representation. This is then followed-up by post feature matching with reference
image descriptors such that the maximum matching score is claimed as the currently visible
location.

Sequence-based Image Matching

Earlier VPR techniques used an assumption that the appearance of places would not expe-
rience any changes in indoor environments. However, robot localization in extreme and
uncertain outdoor environments refute to this assumption and under such visual changes,
appearance aware place recognition techniques sometimes underperform with single image
approach [2]. Therefore, in the presence of lightning and weather changes, instead of em-
ploying single place similarity, a sequence of images is preferred to be matched for VPR.
A sequence can be a combination of two or more frames, therefore, by utilising sequences
even from different times of the month or year can still lead to recognize successful VPR, as
illustrated in Fig. 2.9. Each test sequence needs to match with the specific reference sequence
captured in a different time interval.

Sequence-based Simultaneous Localization and Mapping (SeqSLAM) was the first
sequence based place recognizing technique introduced in [42]. Particularly, the matrix of
image similarities between the current image sequence and reference image sequence was
computed, followed up by the sum of absolute difference of their enhanced contrast for image
similarity. The maximum sum of normalized similarity was treated as the recognizing score
measured through a matrix over predefined constant velocity sequence paths.

2.3 State-of-the-Art Visual Place Recognition techniques

Wide range of VPR techniques are proposed by the research community with some focused-
on conditional- or appearance-variance while others emphasis upon the viewpoint changes.
Under common-ground, Zaffar et al. in [109] assess and tested multiple VPR approaches on
three challenging place-recognition datasets exhibiting seasonal, conditional and viewpoint
vairations. The work provides a comprehensive evaluation of 10 state-of-the-art contemporary
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Fig. 2.9 VPR using sequence-based image matching.

VPR techniques in a chronological order, shown in Fig. 2.10. It includes HOG, SeqSLAM,
AlexNet, NetVLAD, AMOSNet, HybridNet, Cross-Region-BoW, RMAC, Region-VLAD
and CALC. Tthe expected increase in VPR performances have not been observed in a
chronological order but investigations based on matching performance, retrieval time and
memory requirement claim that deep neural network based VPR techniques are better under
severe seasonal, illumination and viewpoint variations but at the cost of memory whereas
handcraft-based VPR frameworks have shown inferior results at low resource utilization.

Another work by Zaffar et al. in [7] evaluates the applicability of ground-based VPR
techniques for aerial robotics. They employed two recently open-sourced aerial robotics
datasets [110] exhibiting 6-DOF viewpoint variation and evaluated 8 state-of-the-art ground-
based VPR approaches. It gives a bird-eye view of applicability of the VPR systems
that work quite well under lateral viewpoint variation shown in Fig. 2.11. Therefore,
performance analysis of these techniques under 6-DOF is carried out while considering
run-time processing power and memory consumption in real-time aerial robotic application.
The results showed that NetVLAD again outperformed other regions-based techniques under
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Fig. 2.10 Hand-crafted and neural network-based contemporary VPR techniques.

6-DOF viewpoint variation. However, most neural network based VPR techniques are not
scalable for resource-constrained platforms like aerial robots. Cross-Region-BoW leads to
highest power consumption due to its intense matching scheme, as illustrated in Table 2.1.

Fig. 2.11 Examples of 6-DOF (degree of freedom) and lateral viewpoint variations. (image
taken from [7])

2.4 Benchmark Visual Place Recognition Datasets

In the context of place recognition, datasets proposed by the research community vary in
terms of seasonal, viewpoint and illumination variations. Some datasets exhibit stronger
viewpoint changes coupled with moderate conditional variations, others are captured under
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Table 2.1 Computational power requirements (taken from [7])

Techniques
CPU Utilization Time (sec) Power Consumption

(Ah)Encoding Matching Encoding Matching
Intel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz with 32 cores, 64GB RAM

AlexNet 0.734 0.0312 0.666 3.222 0.3128
NetVLAD 0.656 0.036 0.77 0.0374 0.2688
AMOSNet 0.437 0.03 0.359 0.614 0.0931
HybridNet 0.437 0.03 0.357 0.584 0.0921

Cross-Region
-BoW 0.32 0.1 0.834 1199.04 63.836

RMAC 0.5 0.371 0.478 0.254 0.1768
Region-VLAD 0.25 0.031 0.463 0.899 0.0764

CALC 0.781 0.0312 0.027 0.974 0.0272

stronger conditional and adequate viewpoint variations. For all the datasets, two traverses
along the same route are taken at multiple times of the day/year. More specifically, the
datasets employed in this thesis include Berlin Halenseestrasse [40], Berlin A100 [40], Berlin
Kudamm [40], Gardens Point [84], Synthesized Nordland [23], Query247 [8], St. Lucia [4]
and SPEDTest [6]. All the Berlin datasets are captured in urban environment and have been
introduced and employed for evaluating VPR approaches [40][4]. Crowd-sourced geotagged
photo-mapping platform Mapillary [111] is used for gathering the Berlin datasets. Traverses
of the same route are uploaded by different users exhibiting viewpoint and conditional
variations among the same places. Berlin Halenseestrasse and Berlin Kudamm datasets
exhibit strong viewpoint variations. Other datasets including Berlin A100, Gardens Point,
Synthesized Nordland, Query247 and SPEDTest exhibit strong illumination and seasonal
changes. Gardens Point dataset was captured at QUT, Brisbane campus with one traverse
taken during daytime on left side walk and the other traverse was recorded in right side walk
at night time [4]. The Synthesized Nordland dataset was recorded on a train with one traverse
taken in winter and reference traverse was recorded in spring. Viewpoint variance was added
to Synthesized Nordland by cropping frames of summer traverse to keep 75% resemblance
[6]. Under urban environment, Query247 [8] captured images of 365 places in day, evening
and night times. The St.Lucia dataset was captured in the sub-urban route at multiple day
times with sufficient viewpoint- and condition-variation. The SPEDTest [6] is the newly
introduced dataset which contains very diverse scenarios captured with surveillance cameras
during different times of the year. Sample images of both the traverses of the datasets are
shown in Fig. 2.12. Severe conditional and viewpoint variations can be seen across the same
places.
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Fig. 2.12 Strong viewpoint and conditional variations can be observed across the same places.
Left and right column frames of each dataset are taken from the test and reference traverses.

In Chapter 3, challenging benchmark VPR datasets Berlin A100, Berlin Halenseestrasse
and Berlin Kudamm, Gardens Point and Synthesized Nordland are employed to evaluate
the proposed VPR framework. One traverse is used as R reference database and the other
traverse is employed as T test database (see TABLE 2.2) where R′ represents the reduced
reference traverse which contains T ′ matched test images (will discuss in section 3.4.3). For
Berlin A100, Berlin Halenseestrasse and Berlin Kudamm datasets, geotagged information
is used for ground truth with 0 to ±2 frame tolerance. For Gardens Point and Synthesized
Nordland datasets, the ground truth data is obtained by parsing the frames and maintaining
place level resemblance with 0 to ±3 and 0 to ±2 frame tolerance.

For evaluating the proposed VPR system in Chapter 4, three severe condition variant
place recognition datasets are targeted (please see Table 2.3). The first traverse is used for
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Table 2.2 Benchmark visual place recognition datasets employed in Chapter 3

Dataset Environment Variation T R T’ R’Viewpoint Condition
Berlin A100 urban moderate moderate 81 85 70 64

Berlin
Haleenseetrasse

urban,
suburban very strong moderate 67 157 50 138

Berlin Kudamm urban very strong moderate 222 201 166 151
Gardens Point campus strong strong 200 200 152 150
Synthesized

Nordland train moderate very strong 1622 1622 1221 1217

testing and the second traverse is served as reference frames. The original GPS annotation
with the St.Lucia dataset employed to build place and frame level correspondence, used
as Ground truth. Each test image in SPEDTEST resembles with three known reference
images provided with the dataset. For Synthesized Nordland dataset, frame and place level
resemblance is used as ground truth.

Table 2.3 Benchmark visual place recognition datasets employed in Chapter 4

Dataset Traverse Environment Variation
Test Reference Viewpoint Condition

St. Lucia 1249 1249 Suburban Adequate Moderate
SPEDTEST 607 1821 Diverse Moderate Strong
Synthesized

Nordland
1622 1622 Train journey Moderate Very Strong

2.5 Evaluation Criteria

In the majority of VPR techniques available in literature [84][86][40][5][6], the authors
have employed AUC under Precision Recall curves (AUC-PR curves) [112] as an evaluation
metric. They assumed that all the queries have matched reference frames and the system
must return a matched database image.

Precision = T P/(T P+FP) (2.1)

Recall = Sensitivity = T P/(T P+FN) (2.2)

TP (true-positive) and FP (false-positive) refer to correctly and incorrectly retrieved
images where FN (false negative) represents the images which should have been retrieved
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but the system missed those images. There can be such scenarios where few queries might be
new places that have not been previously observed. By nature, PR curves do not cater such
scenarios i.e., True Negative cases (TN, correctly missed the non existing events/classes)
and are only concerned with the correct prediction using the scores/probabilities. On the
other hand, Receiver Operating Characteristic (ROC) curves [113] are employed when each
prediction class has equal number of observations with True Positive and False Positive rates,
such that:

Speci f icity = T N/(T N +FP) (2.3)

False positive rate = FP/(FP+T N) = 1−Speci f icity (2.4)

True positive rate = Recall = T P/(T P+FN) (2.5)

ROC curve considers True Negative scenarios in the false positive rate which do care
of the predicted positive class when the actual outcome is negative. Work in [114][115]
suggested that while performing image retrieval tasks with imbalanced datasets, employing
ROC might be deceptive in interpreting specificity which is the inverted false positive rate. If
the proportion of positive to negative instances changes in the test cases, ROC will not change
since true and false positive rates do not depend upon the class distribution. Increasing 2x the
number of positive sample in the test set would increase TP and FN by 2x, hence, no change
in true positive rate at any threshold and same goes for false positive rate. The employed
datasets in this thesis are imbalanced i.e. against every query image, there exists at-least
one matched reference image along with more mismatched scenarios. Therefore, we have
employed AUC-PR curves for evaluating the proposed VPR systems and always match each
query with any of the reference frames irrespective of its TP or FP nature.

2.6 Summary

This chapter presented a detailed review of visual place recognition research work. Various
approaches to address the issue of poor visibility coupled with the conditional, viewpoint
and seasonal variations are studied. However, there is still significant room of improvement
for visual place recognition under simultaneous viewpoint and conditional changes. The
contributions of this dissertation are encouraged by short-comings of the reviewed literature.
Particularly, the novel work presented in this thesis put more emphasis upon regional CNNs-
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based place recognition system yielding performance boost in uncertain visual and viewpoint
changes.





Chapter 3

Shallow CNN-based Regional-approach
for Visual Place Recognition

In this chapter, a regions-based CNN approach for visual place recognition is proposed. The
proposed regional approach is employed on shallow CNN models combined with VLAD
feature encoding scheme for single image matching. The CNN-based regional features
are found to be robust against strong viewpoint and conditional changes including dynamic
objects. In comparison to other deep neural network based visual place recognition techniques
(such as, Cross-Region-BoW, RMAC), the presented approach is computationally efficient
and scalable for visual place recognition. Extensive experiments on several benchmark place
recognition datasets demonstrate better results in terms of precision-recall curves against 10
state-of-the-art contemporary visual place recognition and image retrieval tasks.

3.1 Introduction

Using a pre-trained CNN for VPR, there are three standard approaches to produce a compact
image representation: (a) the entire image is directly fed into the CNN and responses from
convolutional layers are extracted [84]; (b) CNN is applied on user-defined regions of the
image and prominent activations are pooled from the layers representing those regions [40];
(c) the entire image is fed into the CNN and salient regions are identified by directly extracting
distinguishing patterns based on convolutional layers responses [5][6]. Generally, global
image representations retrieved from category (a) are not robust against strong viewpoint
variations and partial occlusion. Image representations emerging from category (b) usually
handle viewpoint changes better but are computationally intensive. Image representations
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resulting from category (c) address both the appearance and viewpoint variations. In this
paper, we focus on category (c).

As presented in Chapter 2, the work by [5] and [6] are considered state-of-the-art in
identifying prominent regions by directly extracting unique patterns based on convolutional
layers’ responses. Despite its good AUC-PR performance, the method proposed in [5]
has some shortcomings. A common strategy for improving CNN accuracy is to make it
deeper by adding more layers (provided sufficient data and strong regularization). However,
increasing network’s size results in increased computation and using more memory both
at time of training and testing (such as, for storing outputs of intermediate layers and for
storing parameters) is not ideal for resource-constrained robots that are usually battery-
operated. Using 10k BoW dictionary for regions-based feature encoding (extracted from late
convolutional layers of deep VGG-16) followed up with their cross-matching degrades the
matching performance. Secondly, employment of object-centric deep VGG-16 model results
in a system attempting to put more emphasis on objects rather than the place itself. This
reflects on the regions-based pooled feature and leads to failure cases. Also, the regional
approach proposed in [5] hinders the identification of individual static place-centric regions
that can be more effective under condition and viewpoint variations.

To bridge these research gaps, a holistic approach is proposed that targets a CNN ar-
chitecture comprising a small number of layers pre-trained on a scene- [33] and place
recognition-centric [4] image databases to reduce the memory consumption and computa-
tional cost. The proposed method detects novel CNN-based regional features and combines
them with VLAD [99] adapted specifically for VPR based localization problem. The moti-
vation behind employing VLAD comes from its better performance in various CNN-based
image retrieval tasks utilizing a smaller visual word dictionary [99][116] compared to BoW
[54]. To the best of our knowledge, this is the first work that combines novel lightweight
CNN-based regional features with VLAD encoding adapted for computation-efficient VPR.

As opposed to [5] which uses object-centric VGG-16 architecture and employs a cross-
convolution based regional extraction approach (resembles [90]), the proposed VPR technique
here, is different both in identification and extraction of regional features (discussed in detail,
in section 3.2.2). The approach presented in this paper showcases enhanced accuracy by
employing middle convolutional layer of the 8-layered CNN architecture. Evaluation on
several viewpoint- and condition-variant benchmark place recognition datasets shows an
average performance boost of 13% over state-of-the-art VPR algorithms in-terms of AUC
computed under Precision-Recall curves. In Fig. 3.1, for a query image (a), the proposed
system retrieved image (c) from the stored database. (b) and (d) highlight the salient regions
which the proposed framework identified under severe viewpoint- and condition-variation.
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Fig. 3.1 For a query image (a), the proposed Region-VLAD approach successfully retrieves
the correct image (c) from a stored image database under significant viewpoint- and condition-
variation. (b) and (d) represent their CNN based meaningful regions identified by our
proposed methodology.

The remainder of the chapter is organized as follows. In Section 3.2, the proposed
methodology is presented in detail. Section 3.3 and 3.4 illustrate the implementation details
and results achieved on several benchmark datasets. Section 3.5 presents the conclusion.

3.2 Proposed Region-VLAD VPR framework

In this section, the key steps of the proposed methodology are described in detail. It starts
by stacking activations of feature maps for retrieving local descriptors, followed up with
the identification of distinguishing regional patterns. It then illustrates the aggregation of
local feature descriptors lying under those identified salient regions. Finally, it shows how to
retrieve the compact VLAD representation using the extracted CNN-based regional features,
later used for determining a match between two images. The workflow of the proposed
methodology is shown in Fig. 3.2. The query VLAD run-time matching with the pre-stored
reference VLADs reduces the retrieval time.

3.2.1 Stacking of Convolutional Activations for making Descriptors

Given an image I as an input to the CNN model, at a certain convolutional layer, the output
is a 3D tensor M of X ×Y ×K dimensions. K denotes the number of feature maps, X and
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Fig. 3.2 Workflow of the proposed VPR framework is shown here. Test/reference images
are fed into the CNN model, Region-of-Interests (ROIs) are identified across all the feature
maps of the convolution layer and their compact VLAD representation is stored for image
matching.

Y represent the width and height of feature map / channel. We can also interpret it as Mk

being a set of X ×Y activations / responses for kth feature map where k = {1,2, ....,K}. For
K feature maps in the convolution layer, we stack each activation at some certain spatial
location into K dimensional local feature as shown with different colors in Fig. 3.2 (c). DL in
(3.1) represents the K dimensional dl feature descriptor(s) at Lth convolutional layer of mc

model.

DL = {dl ∈ MK ∀ l ∈ {(i, j) | i = 1, ...,X ; j = 1, ...,Y}} (3.1)

3.2.2 Identification of Regions of Interest

To extract region-based CNN features, the most prominent regions need to be identified.
Two or more activations are considered to be connected and represented as a region if they
are neighbours and have approximately the same value. For K feature maps, each region
is denoted by Gh, ∀ h ∈ {1, ...,H} where H is the total identified regions at Lth convolution
layer, visualized in Fig. 3.2(d)/Fig. 3.4.

The mean energy of each Gh region is calculated by averaging all ah activations lying
under the region. In (3.2), a f

h represents the f th activation lying under the Gh region and EL
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denotes the calculated mean energies of H regions. Based on the sorted EL energies, top N
energetic ROIs (with their bounding boxes) are picked in (4.3), denoted as RL novel regions
at Lth convolution layer.

EL = { 1
|Gh| ∑

f
a f

h , ∀ a f
h ∈ Gh} (3.2)

RL = {Gt ∀ t ∈ {1, ...,N}} (3.3)

Fig. 3.3 illustrates the top N = {50,200,400} novel RL regions identified by our proposed
regions-based VPR system. Our novel CNN based identified regions strongly concentrate on
the static objects including buildings, trees and road signals. DL local descriptors in (3.1)
which fall under the bounding boxes of RL regions in (3.3), aggregated in (3.4) to retrieve
CNN-based regional features. Intuitively, each regional feature is 1×K dimensional ft
vector where q be the RL

t region under which DL
q descriptors fall. For N novel regions, (3.5)

represents N ×K dimensional FL region-based CNN features representing an image at Lth

convolutional layer (intuitively shown in Fig. 3.2 (e) and Fig. 3.2 (f)).

Fig. 3.3 Sample images of top 50, 200 and 400 Regions-Of-Interest (ROIs) identified by the
proposed approach.

ft = ∑
q∈RL

t

DL
q (3.4)

FL = { ft ∀ t ∈ {1, ...,N}} (3.5)
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In comparison, authors in [5] first identified regions, calculated their mean energies and
selected N = 200 energetic regions. Precisely, N regional activations at Lth convolution
layer were mapped onto the L−1th convolutional feature maps and aggregation of modified
cross-mapped regions-based local descriptors at L−1th convolution layer was carried out
for feature extraction. Note that depending upon the quantity of activations per ROI(s) at
Lth convolution layer and receptive field of the filter (e.g. 3×3, 5×5) for cross-mapping
of Lth convolution layer regions at L−1th layer, the bounding box (area) per cross-mapped
regional feature varies for [5].

Furthermore, Fig. 3.4 illustrates that the identified ROIs from two feature maps (M1 and
M2) at Lth convolutional layer with Region-VLAD and Cross-Region-BoW [5] are different
in quantity and size/activations per region(s). Thus, the computed regional mean energies of
[5] are different from the mean energies of regions identified by our approach. Our approach
identifies 36 and 40 ROIs from feature map M1 and M2, shown with different colors. Later,
based on their computed mean energies, top N energetic regions are selected from H identified
regions at Lth convolutional layer, shown in Fig. 3.3. The 8-connected component-based
regional approach in Cross-Region-BoW [5] identifies 6 and 4 yellow colored ROIs for
feature map M1 and M2. As explained above, N energetic regional feature extraction for
[5] is carried out by first selecting N energetic regions at Lth layer (Fig. 3.4) followed up
with their mapping at L−1th convolution layer and aggregation of cross-mapped regions-
based local descriptors at L−1th convolution layer (not shown in the figure). Exemplars
exhibiting the identified regions by Cross-Region-BoW [5] and with our proposed Region-
VLAD framework are shown in Fig. 3.5. We observe that regional patterns covering more
areas similar to [5] hinder the identification of individual place-centric instances vital in
recognizing places under changing conditions and viewpoints.

3.2.3 Regional Vocabulary and Extraction of VLAD for Image Match-
ing

VLAD adopts K-means [54] based vector quantization, accumulates the residues of features
quantized to each dictionary cluster and concatenates those accumulated vectors into a single
feature representation. A separate dataset of 2.6k images is collected and afore-described
regions-based feature extraction is employed for generating a regional vocabulary. To learn a
diverse vocabulary, we employed 1125 place-recognition centric images of 365 places from
Query247 [8] (taken at day, evening and night times). Other images include a benchmark
place recognition dataset St.lucia [4] with 1k frames of two traverses captured in suburban
environment at multiple times of the day. The left over images consist of multiple viewpoint-
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Fig. 3.4 Employing two features maps M1 and M2, sample images of ROIs identified by
Region-VLAD and Cross-Region-BoW [5] are shown here. Note that feature maps (1st

column) illustrate the intensities of a activations. However, regardless of the intensity, each
identified Gh region per feature map for Region-VLAD (2nd column) is indicated with a
different color i.e. 36 and 40 colored regions for feature map M1 and M2. For Cross-Region-
BoW (3rd column), all the regions are denoted as yellow patterns i.e. 6 and 4 ROIs for M1

and M2 feature maps.

and condition-variant traverses of urban and suburban routes collected from Mapillary
(previously employed by [40] and [5] for capturing place recognition datasets). K-means is
employed for clustering the 2600×N ×K dimensional regional features into V regions such
that ou in (3.6) represents the uth region of CL codebook.

CL = {ou ∀ u ∈ {1, ...,V}}, V ∈ {64,128,256} (3.6)

Using the learned codebook, FL regions of benchmark test / reference traverses are
quantized in (3.7) to predict the clusters or labels ZL, where α is the quantization function.
Employing regions-based FL feature, predicted labels ZL and regional codebook CL, summed
residue v corresponding to each uth region can be retrieved using (3.8).

ZL = α(FL) (3.7)

In (3.8), for all the FL regional features that fall in uth region of the CL codebook, the
residues of FL

u regions and CL
u codebook’s region center are summed. Sometimes, few

regions/words appear more frequently in an image than the statistical expectation known
as visual word burstiness [117]. Standard techniques include power normalization [118] is
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Fig. 3.5 Sample images of ROIs identified with Cross-Region-BoW [5] and Region-VLAD
are shown here. Our regional approach subdivides each image into large number of most
contributing regional blocks.

performed in (3.9) to avoid it where each 1×K dimensional residue vu undergoes non-linear
transformation γ . In (3.10), power normalization is followed by l2 normalization. For each
image, l2 normalized residues corresponding to V regions are stored in (3.11) to get final
V ×K dimensional VLAD representation SL.

vu = ∑
FL

u :ZL
u=CL

u

FL
u −CL

u (3.8)

vu := sign(vu)∥vu∥γ (3.9)

vu :=
vu√
vT

u vu
(3.10)

SL = {vu ∀ u ∈ {1, ...,V}} (3.11)

To match a test image “A" against the reference image “B" in (3.12), the dot/scalar
product of their uth regional VLAD components SLA

u and SLB

u , each with dimension 1×K
reaches to an individual regional matching score jA,B

u , visualized in Fig. 3.7 (h).

jA,B
u =

(SLA

u ).(SLB

u )

∥(SLA
u )∥∥(SLB

u )∥
(3.12)

All the scalar jA,B
u scores for all V regions are summed up in (3.13) to get final single JA,B

matching score. For each test image “A", the cosine matching in (3.12) is performed against
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Fig. 3.6 First and second column present Query247 images [8]. Images in the third column
are taken from the suburban datasets collected from Mapillary where forth column showcases
St.lucia traverses [4].

all the reference images and at the end, reference image “X" with the highest similarity score
is picked as a matched image using (3.14).

JA,B =
V

∑
u=1

jA,B
u (3.13)

PA = argmax
X

JA,X (3.14)

3.3 Setup and Implementation Details

The proposed VPR framework is implemented in Python 3.6.4 and the system average
runtime over 5 iterations is recorded with 1125 images. AlexNet pre-trained on Places365
dataset is employed as a CNN model for region-based features extraction with 256×256
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Fig. 3.7 Pictorial view of the regional vocabulary illustrating mapping of the ROIs-Descriptors
of test and reference images for VLAD retrieval.

input image size. AlexNet is a light-weight CNN model that contains five convolutional
and three fully connected layers. Convolutional layers contain rich spatial information as
compared to the fully connected layers. Middle convolutional layers have more generic
features (edges and colors) which are found to be efficient under conditional variations and
late convolutional layers focus on higher semantic information including shapes, objects and
buildings [4] robust against viewpoint changes. For all the baseline experiments, middle conv3
convolutional layer is used only due to its better performance in various VPR approaches
[40][85] but other convolutional layers including conv2, conv4 and conv5 can also be used
for regional features extraction.

For a single image, a forward pass using Caffe takes around an average 0.305ms on
NVIDIA P100 and 15.57ms on Intel Xeon Gold 6134 @3.2GHz. N ROIs-Descriptors are
extracted and aggregated with total time comparable with the state of the art methods [5] and
other techniques (see Table 3.1). The VLAD representations are retrieved and matched using
N ROIs-Descriptors mapped on V clustered dictionary CL (trained on N ROIs-Descriptors
of the 2.6k dataset). For direct comparison with [5], N = 200 with V = 128 are kept. The
results are also reported for N = 400 with V = 256. Table 3.1 shows that for both the
regional settings, the average VLAD matching times are 100x and 58x faster than [5]. The
feature encoding times (including forward pass) for RMAC and SPP are comparable with
our proposed framework but for NetVLAD, it is approximately twice. It is because passing
an image into the VGG-16 model, and then retrieving the VLAD representation from the last
layer increase the computation time.

In VPR-based robotic applications which include robotic agricultural devices, autonomous
infrastructure, environmental monitoring equipment or other agriculture based use-cases,
with exploration of new places, the size of the database can grow unbounded and scalabil-
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ity becomes an important factor to be considered [119]. Under both the regional settings,
employing NVIDIA P100 for forward pass and Intel Xeon Gold 6134 @3.2GHz for both
feature extraction and VLAD encoding, the overall times for retrieving a single query VLAD
are 396ms and 447ms. Whereas, Titan X Pascal in [5] takes 408ms for feature encoding per
query. In Fig. 3.8 further confirms that the proposed system consumes an average 0.07ms
(N = 200) and 0.12ms (N = 400) for matching VLAD representations of a single query and
reference image. Therefore, the total retrieval times per query against R = 750 reference
images are approximately around 446.405ms and 533.245ms. In comparison, Cross-Region-
BoW [5] takes 7ms for matching features of one test and one reference image. The overall
retrieval time against R = 750 reference images is 5.658s which is 12x and 11x more than
our proposed approaches and practically inappropriate for large scale VPR applications.
Our Region-VLAD VPR technique can store the encoded VLAD representations of all the
reference frames whereas Cross-Region-BoW needs to perform run-time cross matching of
given query regions against all the reference frames’ regions, and mutually matched regional
features are picked.

Furthermore, Fig. 3.9 evaluates our proposed system’s run-time performance when more
places are added in test and reference traverses. For each PR-curve, we employed T test and
R reference images. Their VLAD representations are retrieved followed up by their cosine
matching and in parallel, we record down the system’s performance. We can see that as
the size of test and reference traverses increases, the AUC-PR curves remain higher where
“Time" represents the overall matching period for a single test image against R reference
traverse. This shows that the system is capable to handle large number of reference/database
images while maintaining performance both in accuracy and retrieval time. It should be
noted that [5] used MATLAB which is practically slower than Python but we have employed
Intel Xeon Gold 6134 @3.2GHz in comparison to [5] which used Titan X Pascal.

3.4 Results and Analysis

In this section, a comparison of the proposed method with 10 state-of-the-art VPR and
image retrieval algorithms has been conducted. The section ends with analysis and results
on correctly matched and mismatched scenarios of the proposed Region-VLAD framework
along with a discussion on the same.
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Fig. 3.8 Matching times for 1 test VLAD against 750 reference VLADs are presented.

3.4.1 Comparison Techniques

To show the dominance of our novel place-centric regions finding approach, we replaced
VGG-16 with AlexNet365 in [5] (open-source MATLAB code [120]) is integrated, and
combined the regional features with the VLAD and BoW encodings, named as Cross-
Region-VLAD and Cross-Region-BoW [120]. For a fair comparison, using 2.6k dataset,
a separate regional vocabulary is trained employing conv4 for regions identification and
conv3 for features extraction. Keeping N = 200, we used V = 128 for Cross-Region-VLAD
and V = 2.6k for Cross-Region-BoW. Furthermore, results are also reported for HybridNet
with Spatial Pyramidal Pooling (SPP) [4] employed on convolutional layers as features
representation. We also integrated AlexNet365 and HybridNet with RMAC [10]. Similar
to [5], mutual regions are filtered using cross matching, their scores are summed up and
maximum matching score is considered for retrieval. Although feature encoding time of
NetVLAD [3] (reported in Table 3.1) is approximately twice than our proposed approach
but to make a fair comparison, we have evaluated the technique using employed benchmark
datasets.

PR-curves across all other image retrieval approaches including Cross-Pool, Max-Pool,
Sum-Pool, Whole and state-of-the-art VPR approaches FABMAP and SEQSLAM are taken
from [5]. Authors in [5] employed conv5_2 of deep object centric VGG-16 as features
representation. However, Cross-Region-BoW [5] with deep VGG-16 model used conv5_3
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Fig. 3.9 AUC-PR performance and retrieval time of Region-VLAD are reported while adding
more images in T test and R reference traverses.

for landmarks identification and conv5_2 for feature extraction. Standard FABMAP imple-
mentation and three sequential frames configuration for SEQSLAM were used by [5].

We have also employed convolutional layers of the shallow HybridNet with separately
trained regional vocabularies using 2.6k images. Fig. 3.18 illustrates the ROIs identified with
our proposed approach utilizing AlexNet365 and HybridNet as CNN models. It is observed
that HybridNet combined with our region extraction delivers similar but sometime more place-
centric regions as compared to AlexNet365 (which does includes dynamic objects such as
clouds due to scene centric training). We employed late convolutional layers of HybridNet for
severe viewpoint variant datasets exhibiting mild condition changes and middle convolutional
layers for the datasets which are more condition- and moderate viewpoint-variant.

In addition, to closely differentiate our Region-VLAD VPR approach from [5], we
have also integrated HybridNet with the cross-convolutional regional approach of [5], and
combined the regional features with the VLAD and BoW encoding, named as Cross-Region-
VLAD and Cross-Region-BoW. For HybridNet integrated with [5], we encoded the cross-
convolutional regional features of 2.6k dataset and trained separate layers’ regional vocabu-
laries. We employed conv4 or conv6 for landmark detection and conv3 or conv5 for features
extraction. Therefore, for HybridNet, we have a choice to either integrate middle or late
convolutional layers with our proposed Region-VLAD or Cross-Region-VLAD [5].
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Table 3.1 Runtime performance comparison of our proposed Region-VLAD with Cross-
Region-BoW [5], NetVLAD [3], RMAC [10] and SPP [4].

Methdology Region-VLAD Cross-Region-BoW NetVLAD RMAC SPP
Model AlexNet365 VGG-16 AlexNet365/

HybridNet
Images 1125 1000 -

GPU/CPU Intel Xeon Gold
6134 @3.2GHz

Titan X Pascal
GPU

Intel Xeon Gold
6134 @3.2GHz

Forward Pass
(ms) 15.57 59 -

ROIs-Descriptors
(N) 200 400 200 -

Extraction time /
Feature encoding

(sec)
0.394 0.443 0.349 0.77 0.47 0.36

Regions
(V) 128 256 10k

Visual words -

Matching
time

(msec)

VLAD
encoding 2.4 4.54 7 0.005 0.04 0.078
VLAD

matching 0.07 0.12

3.4.2 Precision Recall Characteristics

In image retrieval tasks where there is a moderate to large class imbalance which means the
positive class samples are quite rare as compare to negative classes, Precision Recall curves
are usually employed as evaluation metric [112]. Since, the aim is to localize a robot using
its previous experience so, for any query place experienced by the robot, with maximum
matching score approach (section 3.2.3), it has to either match with the correct place from
the previous experience or matches incorrectly with no third option. For all the benchmark
datasets, we first calculate the difference in AUC-PR performance of [5] and Region-VLAD,
determine their average which comes around an overall 13% performance improvement.

Berlin Halenseestrasse

Area under PR-curves in shown in Fig. 3.10 suggest that the proposed Region-VLAD
methodology in the upper/top graph significantly perform better than all other state-of-the-art
methods in both the settings. i.e., N = 200 and N = 400. Both the test and reference traverses
of Berlin Halenseestrasse experience strong viewpoint and moderate condition changes
among the places. The middle conv4 and late conv5 of HybridNet almost showed similar
results but we consider middle conv4 of HybridNet for evaluating other approaches.

To further investigate the reasons of improvement as shown in the middle PR-curves
graphs of Fig. 3.10, we replaced the VGG-16 CNN model with AlexNet365 and HybridNet
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Fig. 3.10 Top: PR-curves of our proposed Region-VLAD approach. Middle: Cross-Region-
BoW [5] employed on AlexNet365 and HybridNet with VLAD and BoW encodings. Bottom:
Comparison with state-of-the-art VPR approaches

in [5] and reported the PR-curves.Surprisingly for both AlexNet365 and HybridNet, Cross-
Region-VLAD PR-curves underperformed with a big margin. Firstly, this mimics the boost
up in our Region-VLAD approach is encouraged with the use of our novel regional features.
In other words, cross-convolution based regional approach in [5] combined with VLAD
encoding has not worked well. We can correspond this behavior towards the difference in
regions finding and extracting approach. While employing [5] regional approach, we also
observed the total identified regions sometimes even lesser than N = 250 so we kept N = 200
regions only with V regional vocabulary. Cross-Region-BoW only considers the mutually
matched regions where Cross-Region-VLAD needs to calculate residues (per region) of the
employed dictionary, which sometimes observed to be containing more zero than non-zero
residues in the VLAD representations. The performance degrades especially for HybridNet.
With higher regional codebook, Cross-Region-BoW integrated with deep VGG-16 in [5] has
shown similar performance as AlexNet365 and HybridNet.
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It is worth noting that even with smaller regional dictionaries, our proposed Region-
VLAD framework still manages to achieve better results than VGG-16 Cross-Region-BoW
[5] and other methodologies. This indicates the potential of our shallow CNN based regional
features robustness against strong environment variations. In the bottom PR-curves graph,
PR-curves of other approaches on the dataset are presented. FABMAP despite its better
viewpoint variations tackling and SEQSLAM with its sequence based whole image approach
have not perform well. Cross-Pool employs a similar idea of pooling as [5], so both have
achieved a similar PR-curves whereas other pooling techniques under-performed. NetVLAD
[3] exhibits similar AUC-PR curve pattern as our Region-VLAD framework. RMAC [10]
which is state-of-the-art in other image retrieval techniques underperformed when employed
on conv3 and conv4 of AlexNet365 and HybridNet. PR-curve for Spatial Pyramidal Pooling
(SPP) employed on conv4 of HybridNet further confirms our proposed VPR framework
superiority over state-of-the-art approaches.

Berlin Kudamm

Due to urban environment, too many dynamic and confusing objects such as vehicles, trees
and pedestrians with homogeneous scenes lead to perceptual aliasing coupled with severe
viewpoint changes making this a challenging dataset. Fig. 3.11 displays three places (a), (c)
and (d) of Berlin Kudamm exhibiting a similar scene but captured at different locations in
the reference traverse. Fig. 3.11 (b) represents our identified ROIs of (a); our novel regional
approach on such places majorly concentrates on road, trees, road pathways. PR-curves with
their AUC in Fig. 3.12 are shown and our proposed Region-VLAD approach on AlexNet365
and HybridNet again achieves similar and better results than other approaches. As expected
from the environment variations, we observed the late conv5 of HybridNet employed for our
and [5] regional approaches performed better then middle conv4.

Replacing the VGG-16 model of [5] with AlexNet365 and HybridNet while employing
BoW encodinge exhibit better results with 2.6k regional vocabulary. Pooling techniques other
than Cross-Pool (which shows similar results as Cross-Region-BoW) have not perform well.
RMAC [10] again underperformed both in HybridNet and AlexNet365. This is because, VPR
is different from other image retrieval and recognition systems where mostly a single object
majorly covers the whole image and Sum-, Max-pool and RMAC which perform relatively
well in those vision based tasks actually not performed in VPR under environment changes.
Due to the resembles among the places captured in sequence, Whole and SeqSLAM with
their whole-image based approaches have shown better performances. At relatively higher
feature encoding time, NetVLAD [3] achieved state-of-the-art performance on this dataset.
One of the reasons for its supreme performance could be its pre-training on large urban
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place-centric dataset (Pittsburgh) which exhibits strong lightning and viewpoint variations
in the presence of dynamic and confusing objects. We also employed SPP on conv5 of
HybridNet. With higher precision at start and as recall increases, Region-VLAD PR-curves
are quite similar but covering more AUC than Whole, SeqSLAM, Cross-Pool and VGG-16
Cross-Region-BoW which mimics the usefulness of our novel CNN based regional approach
merged with the VLAD encoding.

Fig. 3.11 Three different places (a), (c) and (d) of Berlin Kudamm exhibiting a similar
scene. (b) represents the novel regions identified from (a) using our region finding approach
employed on AlexNet365.

Berlin A100

The Berlin A100 dataset exhibits moderate viewpoint and moderate illumination changes.
The PR-curves of the analysis are displayed in Fig. 3.13. The middle conv4 and late conv5 of
HybridNet integrated with our region-based approach marginally show the similar PR-curves,
thus, we employed conv4 for further experiments. It is quite evident that Region-VLAD
framework coupled with AlexNet365 and HybridNet achieves similar results as VGG-16
based Cross-Region-BoW [5]. Replacing VGG-16 with AlexNet365 and HybridNet in [5]
achieves better results for BoW than VLAD but Cross-Region-BoW with VGG-16 still the
best when comparing it with AlexNet365 and HybridNet. Against our approach, SPP on
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Fig. 3.12 Top: PR-curves of our proposed Region-VLAD approach. Middle: Cross-Region-
BoW [5] employed on AlexNet365 and HybridNet with VLAD and BoW encodings. Bottom:
Comparison with state-of-the-art VPR approaches.

HybridNet and RMAC on AlexNet365 and HybridNet also achieve comparable performances
as Whole but better than FABMAP and other pooling techniques including Sum-, Max- and
Cross-Pool. NetVLAD again outperformed all other VPR techniques and its PR-curve is
similar to our proposed approach. Condition and viewpoint changes are not much stronger,
therefore, RMAC and other approaches have also shown better performance on this dataset.
A deep analysis on the datasets reveals varied time interval between consecutive captured
frames which causes SEQSLAM to underperform. Overall, our proposed Region-VLAD
achieved second best performance after VGG-16 Cross-Region-BoW [5].

Synthesized Nordland

The Synthesized Nordland dataset exhibits severe conditional changes and moderate view-
point variations. Fig. 3.14 shows that our proposed approach works relatively well in
comparison with all other approaches excluding RMAC which achieves state-of-the-art
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Fig. 3.13 Top: PR-curves of our proposed Region-VLAD approach. Middle: Cross-Region-
BoW [5] employed on AlexNet365 and HybridNet with VLAD and BoW encodings. Bottom:
Comparison with state-of-the-art VPR approaches.

performance. Approaches including Max- and Sum-Pool have not perform well on this
dataset. Similar feature extracting approaches Cross-Pool and VGG-16 Cross-Region-BoW
[5] and whole-image processing techniques i.e. SEQSLAM and Whole have shown sim-
ilar PR-curves. Due to presence of much stronger conditional variance, middle conv4 of
HybridNet relatively shown state-of-the-art performance. NetVLAD has shown inferior
results on that dataset. It might be due to the difference in training dataset and is highly
sensitive under seasonal changes combined with perceptual aliasing. By nature, HybridNet
is fine-tuned version of object-centric CaffeNet on SPED dataset, so condition invariance
is induced into the convolutional layers feature maps which can be observed in Fig. 3.18.
HybridNet integrating with RMAC and Region-VLAD has shown better performance than
scene-centric AlexNet365.

Employing both AlexNet365 and HybridNet with Cross-Region-BoW [5] outperformed
VGG-16 Cross-Region-BoW. Performance of HybridNet for Cross-Region-VLAD again
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found not very convincing although the same model exhibits second best performance. It
mimics that performance cannot be improved simply by employing different models, its the
features pooling technique that makes the difference. Further investigations for Cross-Region-
VLAD also suggest that it is due to different regions finding approach which cause multiple
regions to cover the same areas or subset of areas of other regions, cross-convolutional
regional aggregation and their mapping over the vocabulary results into non-uniform features
distribution. Although, normalization is carried out but many zero regional residues get
stored in the VLAD which reflects on the PR-curves. It is also observed that due to difference
in regional approach, such behavior has not been observed for our Region-VLAD VPR
framework.

Fig. 3.14 Top: PR-curves of our proposed Region-VLAD approach. Middle: Cross-Region-
BoW [5] employed on AlexNet365 and HybridNet with VLAD and BoW encodings. Bottom:
Comparison with state-of-the-art VPR approaches.



3.4 Results and Analysis 53

Table 3.2 AUC PR-curves of Region-VLAD and Cross-Region-BoW [5] on the benchmark
datasets.

Dataset Test Reference

AUC-PR curves
Region-VLAD Cross-Region-BoW [5]

AlexNet365 HybridNet AlexNet365 HybridNet
N=400
V=256

N=400
V=256

N=200
V=2.6k

N=200
V=2.6k

Berlin A100 81 85 0.71 0.74 0.571 0.572
Berlin

Haleenseetrasse 67 157 0.80 0.77 0.418 0.358

Berlin Kudamm 222 201 0.395 0.367 0.435 0.376
Gardens Point 200 200 0.726 0.668 0.683 0.558
Synthesized

Nordland 1622 1622 0.54 0.727 0.440 0.333

Gardens Point

Both the Gardens Point traverses exhibit stronger viewpoint- and illumination-variance with
adequate temporal coherence between the frames. AlexNet365 and HybridNet integrated
with our Region-VLAD approach manages to achieve similar and better performance as
Whole, RMAC, SPP and SEQSLAM which takes advantage from the sequential informa-
tion. NetVLAD achieved the best performance on this dataset. Due to similar pooling
approach, Cross-Pool and VGG-16 Cross-Region-BoW again exhibit similar performances
but approaches including Sum-, Max-Pool and FABMAP relatively underperformed. Ob-
serving the presence of strong viewpoint changes with strong lightning change, we used late
convolutional layers of HybridNet both for our approach and [5]. Combining Cross-Region-
BoW [5] with AlexNet365 and HybridNet has shown comparative PR-curves as VGG-16
Cross-Region-BoW.

Overall, AUC PR-curves for Region-VLAD and Cross-Region-BoW [5] integrated with
AlexNet365 and HybridNet are shown in Table 3.2. The regional configuration for Cross-
Region-BoW is selected based on the AUC under PR-curves which highlight that BoW
encoding worked well with 2.6k regional vocabulary. For our Region-VLAD approach,
we have chosen N = 400 regional configuration due to its better overall performance. It is
evident that Region-VLAD outperforms Cross-Region-BoW.
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Fig. 3.15 Top: PR-curves of our proposed Region-VLAD approach. Middle: Cross-Region-
BoW [5] employed on AlexNet and HybridNet with VLAD and BoW encodings. Bottom:
Comparison with state-of-the-art VPR approaches.

3.4.3 Receiver Operating Characteristic (ROC) curves and Matching
Score Thresholding

In majority of the VPR techniques [84][86][40][5][6], AUC under PR-curve is used as a evalu-
ation parameter. For an input query, the proposed frameworks retrieve the reference/database
image with maximum matching score criteria but what will happen if no match exists for
some queries? So, to tackle such tricky situations, firstly, we set a limit on the matching
score such that the maximum matching score value of the retrieved database place should
be greater than the threshold value set and if that not is the case, then the system should not
retrieve any match and increment the True-Negatives (TNs) counter by one. However, when
the system returns the correct match but the matching score is lower than the threshold then
False-Negatives (FNs) counter will increase which means that the system has discarded the
correctly retrieved match due to the match score thresholding criteria. By nature, PR curves
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Table 3.3 AUC ROC-curves of Region-VLAD and Cross-Region-BoW [5] on the benchmark
datasets with reduced reference traverses

Dataset T R’ T’

AUC-ROC curves
Region-VLAD Cross-Region-BoW

AlexNet365 HybridNet AlexNet365 HybridNet
N=400
V=256

N=400
V=256

N=200
V=2.6k

N=200
V=2.6k

Berlin A100’ 81 64 70 0.687 0.719 0.587 0.64
Berlin

Haleenseetrasse’ 67 138 50 0.837 0.771 0.632 0.564

Berlin Kudamm’ 222 151 166 0.657 0.65 0.617 0.591
Garden Point’ 200 150 152 0.766 0.797 0.766 0.718
Synthesized
Nordland’ 1622 1217 1221 0.674 0.7555 0.670 0.657

do not consider the True Negative cases (correctly missed the non existing events/classes)
[112]. Therefore, we employed the ROC curves [113] using T test traverse and R′ reference
traverse for all the datasets knowing that T −T ′ queries can be treated as new places (see
Table 2.2).

For all the modified datasets, Fig. 3.16 illustrates the ROC curves for AlexNet365
and HybridNet integrated with our Region-VLAD (top row) and Cross-Region-BoW[5]
(bottom row). For a fair comparison, the same layer configurations are kept with results
confirm that the overall performance improvements are better and comparable. The AUC
under ROC curves for the approaches in Fig. 3.16 are presented in Table 3.3. Since, ROC
curves dominate if and only if PR-curves work well [113]. So, we pass down the T queries
into both the systems, knowing that only T ′ have matched reference images. Both the
Region-VLAD and Cross-Region-BoW [5] still keep the AUC under ROC curves higher
that means AUC under PR curves will also be higher too but here again, Region-VLAD
outperforms Cross-Region-BoW in terms of AUC ROC curves. The shape and AUC of the
ROC curves in Fig. 3.16 suggest that integrating HybridNet with Region-VLAD is more
effective when the places experience severe conditional and moderate viewpoint variations
(Synthesized Nordland) whereas AlexNet365 is efficient in dealing strong viewpoint and
moderate condition variations (Berlin Haleenseetrasse). With moderate conditional and
viewpoint variations such as Berlin A100, both the models exhibit similar performances
when integrated with Region-VLAD framework. It is interesting to note that both the models
when integrated with Cross-Region-BoW have different ROC curves for Berlin A100 and
Synthesized Nordland which also highlights towards the difference in regions employed by
our Region-VLAD and Cross-Region-BoW.
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Furthermore, Fig. 3.17 visualized the deep analysis of Fig. 3.16 when Region-VLAD is
integrated with AlexNet365 and employed on multiple datasets having true-negative events.
Matching scores in y-axis differentiate the TP, FN, FP and TN events shown with different
colored curves and length of the curves in x-axis denotes the number of images which
the events contain. In the figure, left column graphs exhibit the scores distribution with
no thresholding. Upon thresholding on the matching scores, the right column showcases
the changes in TP, FP, TN and FN. For Berlin Halenseestrasse dataset in left graph of the
top row, when reference frames are reduced and only T ′ = 50 out of T = 67 queries have
matched reference images then Region-VLAD assigns low scores to those 17 queries. Note
that the threshold is calculated by averaging the true negative scores calculated over all
the modified datasets with reduced reference traverse. The right column graphs illustrate
the changes when minimum matching score criteria is applied. We can see that for Berlin
Halenseestrasse, Region-VLAD missed 2 correctly retrieved matched images, TP changes
from 30 to 28, FP increased to 27 where T N reduce down to 10 from 17. The same behaviour
is observed for Berlin A100 and Garden Point which have 70 and 150 queries with matched
reference frames out of 81 and 200. It is evident that Region-VLAD performs relatively
well in retrieving correct images by maximizing the TN and minimizing the FP and FN.
Knowing that under scenarios when a query is a new place, and for every query, it’s quite
challenging to successfully retrieve the correct match while reducing incorrect retrieval.
Therefore, 100% performance is impractical to achieve. However, Fig. 3.16 and Fig. 3.17 do
emphasis upon the fact that our proposed Region-VLAD framework not only boost up the
AUC under PR-curves but also skilful in assigning low scores to the queries against which
no match should be retrieved.

3.4.4 Performance Analysis

The variations in the AUC-PR curves for the proposed Region-VLAD VPR framework across
all the benchmark datasets are due to many factors. The first reason is the environment
of the dataset on which the CNN model is trained. Since Place365 database [33] consists
of scenes/labels, where each label contains different places exhibiting the same scene like
shopping mall, restaurant, rain-forest and other indoor/outdoor scenes. It strongly influence
the CNN layers responses. Region-VLAD taking advantage from the training, it strains
activations which are more focused on objects of the trained label/scene. So, even under
different conditions and viewpoints of the same places, the Region-VLAD focuses on
the scenes by putting emphasis on place-centric regions, hence, the scenes get correctly
recognized. However, we have also seen employing such trained models directly with other
features pooling techniques like Sum-, Cross- and Max-Pooling have not worked well which
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Fig. 3.16 ROC curves for datasets with true-negative scenarios for Region-VLAD and
Cross-Region-BoW [5].

highlights the superiority of our novel regions extraction approach. The superior performance
of NetVLAD also point towards the CNN pre-training; Pittsburgh dataset contains places
captured under very strong viewpoint and lighting variations in multiple day/night/evening
times of the year. However, we have also observed its worst recognition performance when
there is a strong seasonal change with resemblance among the geographically different
scenes.

The results suggest that HybridNet with our Region-VLAD framework found to be
better than AlexNet365. It is because SPED added condition invariance in the original
object-centric convloutional layers, and for datasets with severe conditional changes such as
Synthesized Nordland, we can see the performance difference over AlexNet365. It would also
be interesting to fine-tune scene-centric AlexNet365 with SPED dataset then to investigate
the Region-VLAD performance. Nearly for all the benchmark datasets, the performance of
Cross-Region-BoW [5] integrated with AlexNet365 or HybridNet is comparable but at a large
regional dictionary and matching time cost. A deep analysis suggests that the Cross-Region-
BoW after retrieving the cross-convolutional regional features performs cross matching
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Fig. 3.17 Matching scores thresholding using Region-VLAD with true-negative cases. Each
row is associated with a dataset; left graph presents TP, FP, TN and FN before thresholding
and right side graph showcases the change upon thresholding.

and then only employs the mutually matched regions which reduce down from N = 200 to
N = 9. Therefore, scores remain positive by neglecting the non-mutual regions. However, our
Region-VLAD still outperformed Cross-Region-BoW [5] with smaller dictionary and low
time cost. It is observed that the boost in performance is encouraged with our environment
invariant robust novel regions because the regional approach of [5] when combined with the
VLAD, denoted as Cross-Region-VLAD underperformed both with small and large regional
dictionaries. Furthermore, we also evaluated the system’s skill in rejecting the match for a
new query place, carried out by reducing down the datasets’ reference traverses followed by
the AUC under ROC curves calculation. AUC under ROC curves on the reduced reference
datasets demonstrated that Region-VLAD assigns low scores to the true negative scenarios
which get filtered out by matched score thresholding.

Secondly, the diversity and size of the dataset employed to make the regional vocabulary
also play an important role with contribution of VLAD encoding and cosine matching for
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determining the regions similarities. We have also observed that picking more regions boost
up the accuracy. This is apparent because in the pre-trained regional vocabulary, this might be
possible that few or more clustered regions suit one dataset more as compared to others. But
sometimes, inclusion of more regions also degrade the performance; each region contributes
to the final matching score which might results into a wrong match if multiple reference
images exhibit the similar scenes and inclusion of more but less energetic regions decay
the overall final score for the correct match. For VLAD retrieval, the collected dataset
for regional vocabulary contains only 2.6k images, whereas in Cross-Region-BoW [5], 5k
images were employed. Bigger the dataset, more diverse the dictionary will be. However,
due to our system run-time memory limitation and to load images for regions and features
aggregation, we have confined ourself to 2.6k images. But, we have kept variety in our 2.6k
dataset to learn diverse regional features which reflects on our results with small vocabulary
size. Clustering the regions using K-means to make the regional vocabulary is also valuable;
we generated the dictionary twice using the same 2.6k dataset. AUC-PR curves across all the
benchmark datasets using both the dictionaries vary with an average marginal difference of
0.03 AUC-PR.

Lastly, employing a less layered CNN architecture found to be computation- and memory-
efficient as it has lesser trainable parameters. It showed the potential to boost up the
recognition performance with our proposed Region-VLAD approach for VPR under changing
environment. Fig. 3.19 and Fig. 3.20 illustrate some of the matched and mismatched
scenarios for AlexNet365-based Region-VLAD framework. For the correct matches, taking
advantage from CNN’s scene-centric training, Region-VLAD identifies the common regions
shown with different colored boxes under simultaneous viewpoint and appearance changes.
For the mismatched scenarios, the identified top novel regions with colored boxes (trees,
lamp posts) show the areas where the system confuses in and matches the scenes but wrongly
recognizes the places. The failure cases again point towards the scene- or place- centric
training of the CNN; our proposed approach identifies the common regional features of
geographically different places (query and retrieved frames) exhibiting the similar scene or
condition and leads to places mismatch. We have seen that Cross-Region-BoW [5] when
integrated with AlexNet365 showed comparable performance but at high time computation
cost. However, the presented Region-VLAD still outperformed Cross-Region-BoW [5]
with smaller dictionary and low retrieval time. Also, cross-regional approach of [5] when
combined with the VLAD has shown inferior results which confirms the performance boost
in the Region-VLAD encouraged with the novel regional approach. Datasets and results are
placed at [121].
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3.5 Summary

For Visual Place Recognition on resource-constrained mobile robots, achieving state-of-
the-art performance/accuracy with lightweight CNN architectures is highly desirable but a
challenging problem. This chapter has taken a step in this direction and presented a holistic
approach targeted for a CNN architecture comprising a small number of layers. With the
shallow nature of CNN model, there is reduction in memory and computational cost, thus,
suitable for power constrained VPR applications.

The proposed framework detects novel CNN-based regional features and combines them
with the VLAD encoding methodology adapted specifically for computation-efficient VPR.
In terms of performance, it has shown state-of-the-art AUC-PR curves on severe viewpoint
and moderate condition-variant place recognition datasets against the deep neural network-
based VPR techniques. In the next chapter, we will present and discuss another lightweight
and computation-efficient VPR technique efficient under severe seasonal and conditional
changes coupled with moderate viewpoint variation.
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Fig. 3.18 Sample images of identified ROIs using our Region-VLAD approach employed on
AlexNet365 and HybridNet.
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Fig. 3.19 Correctly retrieved places with the proposed Region-VLAD framework.
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Fig. 3.20 Incorrectly retrieved places with the proposed Region-VLAD framework.





Chapter 4

Context-Aware Attention framework for
Visual Place Recognition

In this chapter, another visual place recognition system is presented that combines context-
aware attentions from multiple convolutional layers. Shallow place recognition-centric
HybridNet is integrated with the proposed multi-scale attention framework. At low compu-
tation cost, the proposed VPR technique has shown comparable recognition performance
than state-of-the-art deep neural network based place recognition and image retrieval tasks.
It is found that the system focuses on most persistent place-centric regions while filtering
down the dynamic instances, and significantly improves the single image matching. Publicly
available challenging place recognition datasets are tested with area under precision-recall
curves used as an evaluating criteria. The results confirms better and comparable AUC-PR
curves against 11 state-of-the-art deep CNNs based VPR techniques.

4.1 Introduction

In VPR, focusing on dynamic entities other than static objects (such as, road signs, buildings
structures) can instigate deceptive information in recognizing places. Despite a better
AUC-PR performance of the framework proposed in Chapter 3 [9], sometimes, with higher
regional features it suffers with the inclusion of time-changing objects in the final VLAD
representations. This is due to fact that the employed CNN is pre-trained on Places365
dataset [33], which consists of millions of scenes, and within each scene/label, it contains
geographically different places exhibiting the similar environment. Regional approach of
[9] on scene-centric AlexNet365 considers the time-varying objects (such as pedestrians,
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Fig. 4.1 Three exemplars are shown against which (a), (b) and (c) represent their identified
novel multi-layer fused regions.

vehicles, clouds) vital in distinguishing the types of places that leads to places mismatch
while matching the scenes successfully, often referred as perceptual aliasing.

To address this problem, the idea of Region-VLAD [9] is extended to multi-layered
region-based approach and integrated it with the shallow SPED-centric HybridNet [4]. The
proposed framework captures more powerful and rich semantic region-based attentions where
the attentions’ areas vary with the context. Similar to the proposed approach, the authors
in [4][93][6] also attempted to learn fused multi-level regional features based on context of
the places. The authors in [94] proposed a fixed context-aware attention model that captures
the manually defined rectangular shaped most contributing regions efficient for localization.
[4] and [93] suggested that middle and late convolutional layers capture different structural
information. [6] fine-tuned the deep object-centric VGG-16 on SPED dataset to learn context-
aware features in the newly added late context-flexible layer. However, improving VPR
performance with deep CNNs does add computational and memory constraints in robotic
applications where the response time is vital [119]. Passing down each input query into the
deep neural network while utilizing late convolutional layers’ features degrade the overall
retrieval performance. Several experiments show that at higher performance with reduced
time-computation and memory footprints, the multi-layer region-based attentions captured by
the approach are robust under severe condition and appearance changes. Fig. 4.1 illustrates
the novel multi-layered CNN-based regional attentions identified by the proposed lightweight
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M-Region-VLAD framework on three exemplars. The proposed M-Region-VLAD VPR
contemporary technique focuses on those image regions which remain static under changing
environment. It is worth noticing that the time-changing place-centric objects such as, cars
and clouds are strained by the system, thus, improving the overall matching performance
in terms of AUC-PR curves over the state-of-the-art VPR approaches including Attentive
Attention [122], Region-VLAD [9], NetVLAD [3], RMAC [10], Cross-Region-BoW [5],
Cross-Pool, FABMAP [123], Fix-Context [94], Context Flexible Attention [6], Places365
[33] and SEQSLAM [42].

The remainder of the chapter is organized as follows. Section 4.2 describes the proposed
framework in detail. Section 4.3 and 4.4 present the experimental setup, detailed analysis and
results obtained by evaluating the proposed framework on challenging benchmark datasets.
Section 4.5 ends with the conclusion.

Fig. 4.2 Images are fed into the CNN model. The identified attentions from multiple
convolutional layers are fused and mapped on a dictionary for VLAD retrieval.
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4.2 Proposed Multi-Layer Region-VLAD VPR framework

This section will describe the proposed framework in more detail. To subdivide an image into
spatial regional representations, retrieval of the local descriptors from the convolutional layer
feature maps is discussed. It then demonstrate the approach of finding regional attentions
from multiple convolutional layers, followed by the discussion on how to aggregate and
map the regional local descriptors on a separate regional vocabulary to retrieve a compact
VLAD image representation. The overall framework is shown in Fig. 4.2. N Regions of
Interest (ROIs) per convolutional layer is identified, followed by regional local descriptors
aggregation. T aggregated region-based attentions across the multiple layers are used as
features representation. The proposed M-Region-VLAD VPR approach can be incorporated
with any CNN model.

4.2.1 Stacking of Convolutional Activations for making Descriptors

In a neural network, X ×Y ×K is the dimension of 3D convolutional layer tensor M, where
X and Y represent the width and height of each channel and K is the number of channels, also
termed as feature maps. In layman terms, each feature map k = {1,2, ....,K} corresponds to
some filter being convolved with the input image I. At certain spatial location(s), stacking
the activations of K feature maps is performed, and each spatially stacked activations vector
is termed as a local descriptor, visually shown in Fig. 4.2(a). In (4.1), DL denotes the K
dimensional dl local descriptors at Lth convolutional layer of the mc model.

DL = {dl ∈ MK ∀ l ∈ {(i, j) | i = 1, ...,X ; j = 1, ...,Y}} (4.1)

4.2.2 Identification of Context Aware Regional Attentions

Within the convolutional layer of a CNN, certain spatial regions of the feature maps do have
more intensity mimicking the presence of certain visual patterns in the image. For example,
giving an image of an urban/rural road scene as an input to a CNN, one certain convolutional
layer feature map might be focusing on the vehicles while others can find buildings as an
important visual clue. In the context of Visual Place Recognition, focusing on time-varying
objects such as pedestrians and vehicles can degrade the overall matching performance.
Therefore, salient regions corresponding to static objects including road signal, buildings can
help to recognize a visual place even under severe condition and viewpoint variations.

For finding context-based most contributing regions in an image of the place, a shallow
pre-trained SPED-centric HybridNet [4] is integrated. Particularly, we process the feature
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maps of the convolutional layer and grouped the non-zero spatially connected activations
such that two or more activations couple to represent a Gh salient region if roughly have
similar responses, ∀ h ∈ {1, ...,H} where H is the total number of identified salient attentions
from K feature maps at Lth convolution layer (visualized in Fig. 4.2(b)). Similar to [9],
energies of all the identified regional attentions are calculated by averaging over all the ah

activations lying under each Gh attention. In (4.2), a f
h represents the f th activation lying

under Gh region where EL denotes the regional energies. In (4.3), with sorted EL energies,
RL represents the top N energetic novel context-based ROIs.

EL = { 1
|Gh| ∑

f
a f

h , ∀ a f
h ∈ Gh} (4.2)

RL = {Gt ∀ t ∈ {1, ...,N}} (4.3)

Considering the recognition performance and also to forbade the inclusion of time-varying
objects in the final region-based features, N = 300 attentions per layer are captured because
with the inclusion of more but less energetic regions, activations concentrated on dynamic
objects do get included. Experimentation at N = 300 confirms negligible dynamic instances
involvement in the captured regional representations. Under the identified q attention of RL

N

total attentions, DL
q denotes the underlying regional local descriptors, aggregated in (4.4)

to retrieve 1×K dimensional f L
t context-based regional feature. FI in (4.5) represents the

concatenated T ×K attention-based CNN features for an image I in L3 and L4 convolutional
layers of the model, illustrated in Fig. 4.2(d). Fig. 4.3 illustrates the fused multi-semantic
attentions captured from middle conv3 and late conv4 convolutional layers of HybridNet. It
is be seen that the system focuses on static objects that remain persistent even in the presence
of confusing and dynamic instances (such as, sky, cars).

f L
t = ∑

q∈RL
t

DL
q ∀ t ∈ {1, ...,N} (4.4)

FI = f l
t ∀ l ∈ {L3,L4} (4.5)

4.2.3 Attentions-based Vocabulary and Extraction of VLAD for Image
Matching

With smaller visual word vocabulary in tasks including image retrieval, recognition and
object detection [10][90], VLAD [99] has shown state-of-the-art performances. For the
VLAD retrieval, K-means [54] is acquired where features are quantized to the dictionary
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Fig. 4.3 Fused multi-scale attentions captured under strong conditional changes coupled with
dynamic instance experienced by the place (a) and (b) under different times of the year

clusters and their residues are accumulated and concatenated to retrieve a single compact
vector. Therefore, for the attention-based dictionary, a separate dataset of 3K images is
collected which contains 1125 Query247 [8] images taken in day, evening and night times
of 365 places. The other images consist of Garden Point [4], Eynsham [84] and multiple
environment variant rural and urban road traverses captured from Mapillary.

The novel multi-layer attentions capturing approach is employed on the 3K dataset to
learn a dictionary of attentions. In (4.6), K-means is used to cluster 3000×T ×K dimensional
context-aware attentions into V regions such that ou represents the uth attention centre of the
C codebook. For all the benchmark test and reference frames, in (4.7), their FI attentions are
quantized to predict their Z clusters/labels where the quantization function α maps all the
attentions on the V clustered learned dictionary.

C = ou ∀ u ∈ {1, ...,V}, V ∈ {128} (4.6)

Z = α(FI) (4.7)

For each uth attention of C codebook, using the multi-layer context-based attentions FIu,
predicted labels Zu and the Cu attention center, the VLAD component vu with dimension
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1×K can be obtained using (4.8). Precisely, the residues of the FIu attention-based features
and Cu attention center are summed.

vu = ∑
FIu:Zu=Cu

FIu −Cu (4.8)

The V ×K dimensional S representation in (4.11) is the final VLAD representation of
the image. However, visual word burstiness is the common issue being faced in many other
visual words based task [117] where some or fewer visual words appears more frequently
than the statistical expectation. Power normalization [118] followed by L2 normalization is
the standard techniques applied on the summed residual in (4.9) and (4.10) with γ served as
a non-linear transformation function.

vu := sign(vu)∥vu∥γ (4.9)

vu :=
vu√
vT

u vu
(4.10)

S = {vu ∀ u ∈ {1, ...,V}} (4.11)

In (4.12), for a test image “A" against the reference “B", the scalar product of their uth

VLAD components, GA
u and GB

u reaches to individual attention matching score jA,B
u . All the

V attentions score are summed up in (4.13) to get final JA,B matching score. Against all the
“X" reference images, highest JA,X matching score is picked with “X" being claimed as the
matched image.

jA,B
u =

(SA
u ).(S

B
u )

∥(SA
u )∥∥(SB

u )∥
(4.12)

JA,B =
V

∑
u=1

jA,B
u (4.13)

PA = argmax
X

JA,X (4.14)

4.3 Setup and Implementation details

Deep learning techniques are computationally expensive which makes it indispensable to
evaluate the run-time performance in order to realize the system’s deployment in robotic
VPR applications. The presented VPR framework is implemented in Python 3.6.4 and the
system average run-time over 3 iterations with 3244 images is recorded. For all the baseline
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experiments, we employed HybridNet and used middle conv3 and late conv4 convolution
layers to capture rich semantic context-aware regional features. For an image, the forward
pass takes an average M f = 13.85 ms using Caffe on Intel Xeon Gold 6134 @3.2GHz.
Other parameters including N = 300 attentions per layer with V = 128 clustered vocabulary
for VLAD encoding. Extraction of T context-aware attentions per image takes around
Me = 140.5 ms with VLAD encoding and (two VLADs) matching takes Mv = 2.68 ms and
Mm = 0.07 ms [9]. Therefore, let say with R = 1622 reference VLAD representations, the
total retrieval time Mq for a single query against R stored database VLADs can be calculated
using (4.15), comes around 270.57 ms. 128× 384 dimensional VLAD representation per
image consumes around 393KBytes memory.

Mq = M f +Me +Mv +Mm ∗R (4.15)

In comparison, memory and time computation for NetVLAD, RMAC, Region-VLAD,
Cross-Region-VLAD and SeqSLAM are higher than the proposed M-Region-VLAD frame-
work, as reported in [109]. Employing Intel Xeon Gold 6134 @3.2GHz for feature en-
coding, NetVLAD takes an average 0.77s, RMAC takes 0.47s as reported in Table 4.1.
Employing Titan X 1080, state-of-the-art Context Flexible Attention [6] is evaluated on
1101 images and takes around M f +Me = 14.1 ms (Mv = 0) per image for features extrac-
tion. The 512×14×14 dimensional feature vector consists of multi-scale fused attentions,
consumes 401KBytes memory. Using Python 3.6.4, feature matching is performed by flat-
tening the 3D vector, followed up with cosine distance matching further takes an average
Mv = 0.63 ms employing Intel Xeon Gold 6134 @3.2GHz. Therefore, an overall retrieval
time for matching a single query against R = 1622 reference images takes around 1035.96 ms.
It should be noted that Context Flexible Attention [6] employed Titan X 1080 for feature
encoding and NetVLAD [3] takes significantly higher feature encoding time using Intel
Xeon Gold 6134 @3.2GHz whereas our M-Region-VLAD framework achieves comparable
performance at low computation and resource utilization, as reported in Table 4.1.

In our experimentations, we have not considered the runtime memory consumed when
loading the CNN model but we observed that a small layered CNN model (AlexNet365,
HybridNet) has less number of trainable parameters (weights) as compared to the deep
neural networks such as, VGG-16 [4]. Moreover, rather than preloading all the weights
of CNN model, we load the parameters til the feature extraction layer which is in our
case is middle convolutional layer(s). In comparison, state-of-the-art techniques including
NetVLAD, RMAC, Context Flexible Attention and Cross-Region-BoW, deep VGG-based
features are extracted from the late convolutional layer(s) (conv5_2 and conv5_3), thus needs
to preload all the layers’ weights. Therefore, we can expect that the overall memory required
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by our proposed technique should be lesser than the state-of-the-art deep CNN-based VPR
techniques.

Table 4.1 Feature encoding and matching times of the VPR aproaches.

Techniques
Feature

Encoding
(ms)

Feature
Matching

(ms)
Techniques

Feature
Encoding

(ms)

Feature
Matching

(ms)
Intel Xeon(R) Gold 6134 @ 3.20GHz with 32 cores, 64GB RAM

SeqSLAM 0 1.5
Cross-Region

-BoW 830 160

NetVLAD 770 0.005 RMAC 470 0.04
Region-
VLAD 460 0.12

M-Region-
VLAD 157.03 0.07

Techniques Feature Encoding (ms) Feature Matching (ms)

Titan X 1080
Intel Xeon(R) Gold 6134 @

3.20GHz with 32 cores, 64GB RAM
Context
Flexible
Attention

14.1 0.63

4.4 Results and Analysis

This section compares the context-based attentions identified by the presented approach with
state-of-the-art VPR and image retrieval techniques [6].

4.4.1 Comparison Techniques

To make a fair comparison, we also reported the performance of other VPR approaches
evaluated in [6] that includes Attentive Attention [122], Cross-Pool, FABMAP, Fix-Context
[94], Context Flexible Attention, Places365 [33] and SEQSLAM. Particularly, for state-of-
the-art Attentive Attention approach and VPR-based Fix-Context framework, authors have
fine-tuned these models on SPED dataset while removing the geometric verification layer. For
Cross-Pool [90], the late convolutional layer is employed to generate a fixed attention mask,
used as features representations. For handcraft-based VPR approaches such as, FABMAP
and SEQSLAM, the authors employed their official implementations [123][42]. Places365 is
a CNN model pre-trained on 2 Million diverse scenes. The authors used responses of the late
fully-connected convolution layer as features representation.
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Furthermore, other CNN-based VPR algorithms such as NetVLAD, RMAC, Cross-
Region-BoW and Region-VLAD are also evaluated. For Region-VLAD, N = 200 regions are
employed from conv3 of AlexNet365 with V = 128 clustered vocabulary for VLAD retrieval
[9]. All other approaches used VGG-16 pre-trained on object-centric ImageNet. Their
layers configuration are kept same as in [109]; conv5_2 is used for RMAC, with power- and
l2-normalization on the regional features. For Cross-Region-BoW, conv5_2 and conv5_3 are
employed with 10k BoW dictionary. For both the techniques, cosine matching is performed
for filtering the mutual regions and their scores are summed and database image with highest
score considered as matched place. Given an image, NetVLAD outputs a feature descriptor
and cosine matching of the feature descriptors is performed with scores summation and
reference image with highest score represents the currently encountered place.

4.4.2 Precision Recall Characteristics

For all the benchmark place recognition datasets, Area under Precision-Recall curves [112]
(AUC-PR curves) is used for evaluating the proposed place recognition framework, state-of-
the art image retrieval and VPR-based contemporary approaches (mentioned in 4.4.1).

More area the PR-curve covers, better the performance of the technique. Fig. 4.4 displays
the AUC-PR curves for the St.Lucia datasets on the employed approaches. It is quite evident
from Fig. 4.4 and Fig. 4.5 that for St.Lucia and Synthesized Nordland datasets, our proposed
VPR approach has shown the best performance. Comparing from other datasets, St.Lucia
exhibits moderate appearance change coupled with an appropriate viewpoint variation. A
closer look at the results confirm that the system identified and captured context-based salient
regions and boostup the overall retrieval performance, as illustrated in Fig. 4.7.

For St.Lucia dataset, Region-VLAD, Cross-Region-BoW and RMAC have shown similar
performance as M-Region-VLAD. However, their performance degrades for SPEDTest
(please see Fig. 4.6) and Synthesized Nordland as both the datasets experience strong
seasonal and conditional changes. It suggests that under moderate conditions, all these
regions-based techniques focus on place-recognition centric regions which results into better
recognition performance. However, under severe conditional changes, employment of
multiple convolutional layers found to be very productive. NetVLAD showcases nearly the
similar PR-characteristic for St.lucia as Fixed Context and Context Flexible Attention. Better
and comparable performance of M-Region-VLAD on all the dataset highlights the usefulness
and generalization power of shallow attentions over deeply learned context flexible salient
representations [6].

In Fig. 4.6, it is worth noticing that NetVLAD which underperformed under Synthesized
Nordland, has shown state-of-the-art performance on SPEDTest. Although both the datasets
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Fig. 4.4 Area under Precision-Recall curves for St.Lucia dataset on contemporary VPR
techniques.

exhibit severe condition-variation among the traverses. One of the reason could be the
existence of perceptual aliasing in Synthesized Nordland i.e. much resemblance among the
sequentially captured frames. For SPEDTest, the environment of the test images is very
diverse and each has only three matched images in the reference traverse. Majority of the
techniques perform well on this dataset. In comparison, our proposed M-Region-VLAD
achieves comparable AUC under PR curve against deep Context Flexible Attention, RMAC
and Fixed Context frameworks. Cross-Region-BoW has shown an average performance both
on Synthesized Nordland and SPEDTest. It is observed that due to ImageNet-centric training
of VGG-16, the cross-convolutional regions-based approach concentrates more on objects.
As expected, Region-VLAD which is integrated with AlexNet365 exhibits a comparable
performance for Synthesized Nordland and SPEDTest. It is probably because the model
is pre-trained on scene-centric Place365 dataset and with novel region finding approach, it
sometime considers dynamic instances e.g. sky as a valuable region for distinguishing the
scene which leads to place mismatch, also shown in Fig. 4.7.

SPEDTest dataset is a subset of SPED [4] but has not been used to train the models.
A deep analysis suggests that although HybridNet [4] and Context Flexible Attention [6]
models are fine-tuned on SPED dataset but training parameters such as, learning rates are
kept different; dual learning rates approach was employed in [6]. The weight decay and
iteration also differ from the values set for HyridNet and SPED-centric VGG-16. Moreover,
employing three convolutional layers, the deep multi-scale features of Context Flexible
Attention [6] can be more robust against condition-invariance and hence, exhibits better
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Fig. 4.5 Area under Precision-Recall curves for Synthesized Nordland dataset on contempo-
rary VPR techniques.

performance for this datasets. However, when the places experience seasonal changes and
perceptual aliasing (Synthesized Nordland), the performance degrades which indicates that
the system is sensitive under such variations. It should be noted that our proposed M-Region-
VLAD approach is employed only two convolutional layers of HybridNet and still delivers a
comparable performances across all the datasets and mimics the generalization power at low
computation and memory needs.

It is visible that the worst performance of FABMAP is consistent throughout the datasets.
It is because FAPMAP used viewpoint-invariant SURF feature detector which is sensitive
under condition and appearance changes. It is interesting that SEQSLAM with its better
appearance tackling and whole image-based matching approach shown inferior performance
under SPEDTest. It is probably due to the fact that the places exhibit diverse environment
and sequence-based matching requirement is violated.

Cross-Pool and Attention Attentive approach, despite their better performances in other
vision-based tasks under-performed in St.Lucia and Synthesized Nordland. This highlights
the difference in other image retrieval/classification systems from place recognition where
convolutional layers’ responses are non-uniformly distributed and the place is subdivided into
multiple contributing salient regions. However, their better performances under SPEDTest
point towards the importance of CNN training. Fixed context and Places365 exhibit better
results for St.Lucia and SPEDTest only. This implies that both the approaches are sensitive
under perceptual aliasing experienced in Synthesized Nordland.
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Fig. 4.6 Area under Precision-Recall curves for SPEDTest dataset on contemporary VPR
techniques.

Furthermore, to analyse and differentiate the multi-semantic attentions captured by our
proposed M-Region-VLAD framework against state-of-the-art Context Flexible Attention [6]
and Region-VLAD [9], Fig. 4.7 shows some of the sample places with their corresponding
salient regions. Both Context Flexible Attention and M-Region-VLAD emphasis upon most
distinguishing structures, such as, houses, street lights while filtering out the confusing areas
including clouds, vehicles etc. It is evident that Region-VLAD sometime includes sky and
other dynamic instances as vital regions. It is worth noticing that M-Region-VLAD captures
meaningful and place-centric spatial regions from a shallow CNN architecture against long-
term condition and seasonal variations. Thus, it reduced down the overall memory and
computational cost.

4.5 Summary

Despite the recent state-of-the-art performances of D-CNNs for VPR, the high computation
and memory cost limit their practical deployment for battery-operated mobile robots. Achiev-
ing superior performance with shallow CNN architectures is thus desirable, but a challenging
problem. In this chapter, a multi-scale context-aware attention approach is presented that
combines salient regions from multiple convolutional layers of a place-recognition centric
CNN architecture. The proposed approach captures persistent regional features under chang-
ing conditions and viewpoints while filtering down the confusing instances including sky,
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moving objects etc. Evaluation on several challenging benchmark datasets confirms the
dominance over state-of-the-art algorithms in terms of area under precision-recall curves.

In future, we will incorporate the proposed multi-scale attention block in a shallow feed
forward neural network and fine-tune the CNN model on a large-scale place recognition
dataset. It should reduce the feature encoding time and the system learns image regions
invariant to strong viewpoint and condition variations.
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Fig. 4.7 Sample context-based regional attentions identified by Context Flexible Attention
[6], Region-VLAD [9] and our proposed M-Region-VLAD.





Chapter 5

Conclusions and Future Directions

This thesis investigates the use of shallow neural networks for lightweight VPR under
simultaneous condition and viewpoint variations. Outcome of this reputable research is
directly affiliated with many real world applications including robot-centric agriculture
devices, autonomous infrastructure inspection, environmental monitoring equipment with
other transportation and security-based use cases.

This chapter summarizes the presented research work in this thesis with potential future
direction. Section 5.1 outlines the research and contributions presented in this thesis. Section
5.2 presents the potential future plans and direction in the field of VPR.

5.1 Contributions Summary

Considering real world scenarios where a single place can suffer extreme visual changes
triggered by the environmental transitions, such as, summer to winter and day to night
changeovers coupled with viewpoint and weather variations. These uncertain circumstances
altogether make the task of VPR extremely challenging. Chapter 1 starts with a background
and provides an introduction to SLAM and VPR, followed-up with the research challenges
and objectives of this dissertation. Chapter 2 discusses the methodologies employed for VPR
either using hand-crafted feature descriptors or deep neural networks.

The first contribution in Chapter 3 presented a lightweight regions-based VPR technique.
The scene-centric CNN-based regional features exhibit robustness against changes caused by
different camera viewpoints coupled with environmental day-evening or day-night transitions.
The proposed VPR framework has shown better place matching performance in terms of area
under precision recall curves (AUC-PR curve) against the state-of-the-art hand-crafted and
deep neural work based VPR approaches at low computation demand. Chapter 4 presented a
multi-layer attention framework for improving place recognition under severe conditional
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and moderate viewpoint changes. The proposed mult-scale approach is integrated with a
shallow place recognition centric CNN model. The multi-scale context-aware attentions
focus on persistent place-centric regions and filter out the dynamic and confusing objects,
such as, vehicles and pedestrians. Evaluation on benchmark place recognition datasets
exhibits superior AUC-PR curve against the contemporary deep neural network based VPR
and other vision-based image retrieval approaches at low memory and resource utilization.

5.2 Future Directions

This thesis has shown that how performance of a VPR system can be improved by employing
the proposed frameworks (presented in Chapter 3 and Chapter 4) at low computation demand.
Despite the fast ongoing and encouraging growth in the field of robotic vision, there is still
room for improvements as explored in this subsection. Overall, following are the proposed
futuristic ideas for improving the performance of VPR:

1. Fusion of multi-model CNN features for tackling visual changes resulting from view-
point, seasonal and illumination variations coupled with dynamic objects in appearance-
aware place recognition.

2. Fine-tuning of viewpoint invariant AlexNet365 (pretrained on Places365) on SPED
dataset with an addition of a convolutional block that learns and captures context-aware
attentions robust under uncertain visual variations.

3. Evaluate the performance of place recognition system explicitly as a function of visual
changes severity rather than the size of benchmark datasets.

4. Training CNN models for place recognition by exploiting high-level semantic informa-
tion either by employing object detection or image segmentation techniques to improve
the end-to-end attention-based place recognition system.

5. Visual Place Recognition using GANs and Capsule Networks

CNN models trained for place recognition are either condition-invariant (HybridNet) or
viewpoint-invariant (NetVLAD). The authors have evaluated their proposed systems employ-
ing suitable benchmark datasets exhibiting strong conditional or viewpoint variations. The
use of deep neural networks improves the matching performance but increases the retrieval
time which is impractical for many real world robotic applications. The proposed VPR
framework in Chapter 3 employed novel region finding approach on a shallow scene-centric
AlexNet365 for VPR. Evaluation was performed with results claiming better performance
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under strong viewpoint variation along with moderate conditional changes. However, the
system suffers with the inclusion of dynamic instances at higher regional configuration.
Place365 dataset contains collection of scenes, such as, bars, restaurants, offices, thus, the
system taking precedence of the scene-centric CNN training manages to find the common
regions of the same place from different viewpoints. The proposed multi-semantic attention
framework in Chapter 4 can be added as a block within scene-centric AlexNet365 and
fine-tuned on SPED dataset. The original scene-invariant convolutional layers will learn
seasonal/illumination invariance, thus, both the severe viewpoint and appearance variations
can be tackled simultaneously at minimum resource utilization. Secondly, multi-model
approach is another area of research which has not been touched for place recognition; fusion
of rich condition-invariant HybridNet features with rich viewpoint-invariant AlexNet365
features can improve the performance of place recognition under changing viewpoint and
environment.

Evaluation of 10 SOTA contemporary VPR approaches, discussed in Chapter 2 showed
that no universal VPR technique exists. The results confirm that neural network based
NetVLAD and region-based approaches (Cross-Region-BoW, RMAC, Region-VLAD and so
on) worked well for VPR under severe viewpoint, seasonal and illumination changes. How-
ever, the best matching performance comes at higher computational cost like for NetVLAD,
the feature extraction time is quite high in comparison to regions-based CNN methods which
consume more memory at run-time. Similar results have been observed in another research
work (presented in Chapter 2) within which ground-based VPR techniques are evaluated on
dataset with 6-DOF viewpoint variation. The results claim deployment trade-off between
matching performance and resource utilization. Since, NetVLAD is pre-trained on urban
place-centric dataset (Pittsburgh 30K) which exhibits strong conditional and viewpoint vari-
ations coupled with dynamic and confusing instances. This is in contrast to the training
datasets of Imagenet-centric VGG-16 and SPED-centric HybridNet. ImageNet is an object
detection dataset and is intrinsically not good for place recognition, while SPED does not
contain dynamic objects observed in urban road scenes. Region-based CNN approaches
integrated on diversely trained CNNs can be a worthwhile research direction for place
recognition.

The VPR research community either employed middle convolutional layers for severe
appearance changes and late convolutional layers for viewpoint changes. The standardized
widely used benchmark place-recognition datasets do not provide any information or metric
to determine the severity of changes experienced in day-night and summer-winter transitions
other than to observe the datasets visually to determine the amount of conditional or viewpoint
variation. Therefore, another worth while research idea is to introduce such datasets and
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then evaluate the system providing quantitative information on how strong the viewpoint and
conditional changes it can handle in average. Recent works suggested that the employment
of multiple convolutional layers as feature representation can help in focusing on persistent
instances and filtering of confusing objects. Features from lower convolutional layers of the
CNN models generally respond to low level image features, such as corners or edges, thus,
efficient against conditional variations. While features from higher layers focus on structures
that are more semantically meaningful (such as, human faces or buildings) and robust against
viewpoint changes. Training of the CNN model employing semantically meaningful late
convolutional layers coupled with object detection and segmentation based approaches can
improve the robustness of regions-based place recognition techniques.

The employment of Generative Adversarial Networks (GANs) for VPR suggested the
possibility of generating multiple appearance of the place under different environment.
Experimentations have shown that the encoded features of visually similar images are
very closer in the descriptor domain. However, storing images’ translation in various
conditions is impractical, thus, focusing on the semantic information using GANs can be
a potential research direction for VPR. Moreover, the GANs-based semantic maps can be
used for generating different pose of the same place catering viewpoint invariance efficiently.
Recently, for unmanned aerial vehicle (UAV), Capsule Networks (CapsNet) have shown
performance improvement over state-of-the-art CNNs in depth estimation-based SLAM
problems. Moreover, ground-to-aerial cross-view image geo-localization also encouraged
the use of Capsule Network, named GeoCapsNet. It’s a two-branch Siamese network-based
architecture and takes a pair of cross-view images as an input. With soft-margin triplet loss
in the capsule layer, the architecture captures high-level semantic information from ResNetX
and capsule layers. It would be interesting to investigate the applicability of CapsNets for
VPR-based SLAM tasks.
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