103,680 research outputs found

    Evolino for recurrent support vector machines

    Full text link
    Traditional Support Vector Machines (SVMs) need pre-wired finite time windows to predict and classify time series. They do not have an internal state necessary to deal with sequences involving arbitrary long-term dependencies. Here we introduce a new class of recurrent, truly sequential SVM-like devices with internal adaptive states, trained by a novel method called EVOlution of systems with KErnel-based outputs (Evoke), an instance of the recent Evolino class of methods. Evoke evolves recurrent neural networks to detect and represent temporal dependencies while using quadratic programming/support vector regression to produce precise outputs. Evoke is the first SVM-based mechanism learning to classify a context-sensitive language. It also outperforms recent state-of-the-art gradient-based recurrent neural networks (RNNs) on various time series prediction tasks.Comment: 10 pages, 2 figure

    Multi-View Region Adaptive Multi-temporal DMM and RGB Action Recognition

    Get PDF
    Human action recognition remains an important yet challenging task. This work proposes a novel action recognition system. It uses a novel Multiple View Region Adaptive Multi-resolution in time Depth Motion Map (MV-RAMDMM) formulation combined with appearance information. Multiple stream 3D Convolutional Neural Networks (CNNs) are trained on the different views and time resolutions of the region adaptive Depth Motion Maps. Multiple views are synthesised to enhance the view invariance. The region adaptive weights, based on localised motion, accentuate and differentiate parts of actions possessing faster motion. Dedicated 3D CNN streams for multi-time resolution appearance information (RGB) are also included. These help to identify and differentiate between small object interactions. A pre-trained 3D-CNN is used here with fine-tuning for each stream along with multiple class Support Vector Machines (SVM)s. Average score fusion is used on the output. The developed approach is capable of recognising both human action and human-object interaction. Three public domain datasets including: MSR 3D Action,Northwestern UCLA multi-view actions and MSR 3D daily activity are used to evaluate the proposed solution. The experimental results demonstrate the robustness of this approach compared with state-of-the-art algorithms.Comment: 14 pages, 6 figures, 13 tables. Submitte

    Predicting Benzene Concentration Using Machine Learning and Time Series Algorithms

    Get PDF
    [EN] Benzene is a pollutant which is very harmful to our health, so models are necessary to predict its concentration and relationship with other air pollutants. The data collected by eight stations in Madrid (Spain) over nine years were analyzed using the following regression-based machine learning models: multivariate linear regression (MLR), multivariate adaptive regression splines (MARS), multilayer perceptron neural network (MLP), support vector machines (SVM), autoregressive integrated moving-average (ARIMA) and vector autoregressive moving-average (VARMA) models. Benzene concentration predictions were made from the concentration of four environmental pollutants: nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter (PM10) and toluene (C7H8), and the performance measures of the model were studied from the proposed models. In general, regression-based machine learning models are more effective at predicting than time series models.S

    Intelligent Data Mining using Kernel Functions and Information Criteria

    Get PDF
    Radial Basis Function (RBF) Neural Networks and Support Vector Machines (SVM) are two powerful kernel related intelligent data mining techniques. The current major problems with these methods are over-fitting and the existence of too many free parameters. The way to select the parameters can directly affect the generalization performance(test error) of theses models. Current practice in how to choose the model parameters is an art, rather than a science in this research area. Often, some parameters are predetermined, or randomly chosen. Other parameters are selected through repeated experiments that are time consuming, costly, and computationally very intensive. In this dissertation, we provide a two-stage analytical hybrid-training algorithm by building a bridge among regression tree, EM algorithm, and Radial Basis Function Neural Networks together. Information Complexity (ICOMP) criterion of Bozdogan along with other information based criteria are introduced and applied to control the model complexity, and to decide the optimal number of kernel functions. In the first stage of the hybrid, regression tree and EM algorithm are used to determine the kernel function parameters. In the second stage of the hybrid, the weights (coefficients) are calculated and information criteria are scored. Kernel Principal Component Analysis (KPCA) using EM algorithm for feature selection and data preprocessing is also introduced and studied. Adaptive Support Vector Machines (ASVM) and some efficient algorithms are given to deal with massive data sets in support vector classifications. Versatility and efficiency of the new proposed approaches are studied on real data sets and via Monte Carlo sim- ulation experiments
    • 

    corecore