362 research outputs found

    Discovering robust dependencies from data

    Get PDF
    Science revolves around forming hypotheses, designing experiments, collecting data, and tests. It was not until recently, with the advent of modern hardware and data analytics, that science shifted towards a big-data-driven paradigm that led to an unprecedented success across various fields. What is perhaps the most astounding feature of this new era, is that interesting hypotheses can now be automatically discovered from observational data. This dissertation investigates knowledge discovery procedures that do exactly this. In particular, we seek algorithms that discover the most informative models able to compactly “describe” aspects of the phenomena under investigation, in both supervised and unsupervised settings. We consider interpretable models in the form of subsets of the original variable set. We want the models to capture all possible interactions, e.g., linear, non-linear, between all types of variables, e.g., discrete, continuous, and lastly, we want their quality to be meaningfully assessed. For this, we employ information-theoretic measures, and particularly, the fraction of information for the supervised setting, and the normalized total correlation for the unsupervised. The former measures the uncertainty reduction of the target variable conditioned on a model, and the latter measures the information overlap of the variables included in a model. Without access to the true underlying data generating process, we estimate the aforementioned measures from observational data. This process is prone to statistical errors, and in our case, the errors manifest as biases towards larger models. This can lead to situations where the results are utterly random, hindering therefore further analysis. We correct this behavior with notions from statistical learning theory. In particular, we propose regularized estimators that are unbiased under the hypothesis of independence, leading to robust estimation from limited data samples and arbitrary dimensionalities. Moreover, we do this for models consisting of both discrete and continuous variables. Lastly, to discover the top scoring models, we derive effective optimization algorithms for exact, approximate, and heuristic search. These algorithms are powered by admissible, tight, and efficient-to-compute bounding functions for our proposed estimators that can be used to greatly prune the search space. Overall, the products of this dissertation can successfully assist data analysts with data exploration, discovering powerful description models, or concluding that no satisfactory models exist, implying therefore new experiments and data are required for the phenomena under investigation. This statement is supported by Materials Science researchers who corroborated our discoveries.In der Wissenschaft geht es um Hypothesenbildung, Entwerfen von Experimenten, Sammeln von Daten und Tests. Jüngst hat sich die Wissenschaft, durch das Aufkommen moderner Hardware und Datenanalyse, zu einem Big-Data-basierten Paradigma hin entwickelt, das zu einem beispiellosen Erfolg in verschiedenen Bereichen geführt hat. Ein erstaunliches Merkmal dieser neuen ra ist, dass interessante Hypothesen jetzt automatisch aus Beobachtungsdaten entdeckt werden k nnen. In dieser Dissertation werden Verfahren zur Wissensentdeckung untersucht, die genau dies tun. Insbesondere suchen wir nach Algorithmen, die Modelle identifizieren, die in der Lage sind, Aspekte der untersuchten Ph nomene sowohl in beaufsichtigten als auch in unbeaufsichtigten Szenarien kompakt zu “beschreiben”. Hierzu betrachten wir interpretierbare Modelle in Form von Untermengen der ursprünglichen Variablenmenge. Ziel ist es, dass diese Modelle alle m glichen Interaktionen erfassen (z.B. linear, nicht-lineare), zwischen allen Arten von Variablen unterscheiden (z.B. diskrete, kontinuierliche) und dass schlussendlich ihre Qualit t sinnvoll bewertet wird. Dazu setzen wir informationstheoretische Ma e ein, insbesondere den Informationsanteil für das überwachte und die normalisierte Gesamtkorrelation für das unüberwachte Szenario. Ersteres misst die Unsicherheitsreduktion der Zielvariablen, die durch ein Modell bedingt ist, und letztere misst die Informationsüberlappung der enthaltenen Variablen. Ohne Kontrolle des Datengenerierungsprozesses werden die oben genannten Ma e aus Beobachtungsdaten gesch tzt. Dies ist anf llig für statistische Fehler, die zu Verzerrungen in gr  eren Modellen führen. So entstehen Situationen, wobei die Ergebnisse v llig zuf llig sind und somit weitere Analysen st ren. Wir korrigieren dieses Verhalten mit Methoden aus der statistischen Lerntheorie. Insbesondere schlagen wir regularisierte Sch tzer vor, die unter der Hypothese der Unabh ngigkeit nicht verzerrt sind und somit zu einer robusten Sch tzung aus begrenzten Datenstichproben und willkürlichen-Dimensionalit ten führen. Darüber hinaus wenden wir dies für Modelle an, die sowohl aus diskreten als auch aus kontinuierlichen Variablen bestehen. Um die besten Modelle zu entdecken, leiten wir effektive Optimierungsalgorithmen mit verschiedenen Garantien ab. Diese Algorithmen basieren auf speziellen Begrenzungsfunktionen der vorgeschlagenen Sch tzer und erlauben es den Suchraum stark einzuschr nken. Insgesamt sind die Produkte dieser Arbeit sehr effektiv für die Wissensentdeckung. Letztere Aussage wurde von Materialwissenschaftlern best tigt

    Massively-Parallel Feature Selection for Big Data

    Full text link
    We present the Parallel, Forward-Backward with Pruning (PFBP) algorithm for feature selection (FS) in Big Data settings (high dimensionality and/or sample size). To tackle the challenges of Big Data FS PFBP partitions the data matrix both in terms of rows (samples, training examples) as well as columns (features). By employing the concepts of pp-values of conditional independence tests and meta-analysis techniques PFBP manages to rely only on computations local to a partition while minimizing communication costs. Then, it employs powerful and safe (asymptotically sound) heuristics to make early, approximate decisions, such as Early Dropping of features from consideration in subsequent iterations, Early Stopping of consideration of features within the same iteration, or Early Return of the winner in each iteration. PFBP provides asymptotic guarantees of optimality for data distributions faithfully representable by a causal network (Bayesian network or maximal ancestral graph). Our empirical analysis confirms a super-linear speedup of the algorithm with increasing sample size, linear scalability with respect to the number of features and processing cores, while dominating other competitive algorithms in its class

    Designing Reconfigurable Intelligent Systems with Markov Blankets

    Full text link
    Compute Continuum (CC) systems comprise a vast number of devices distributed over computational tiers. Evaluating business requirements, i.e., Service Level Objectives (SLOs), requires collecting data from all those devices; if SLOs are violated, devices must be reconfigured to ensure correct operation. If done centrally, this dramatically increases the number of devices and variables that must be considered, while creating an enormous communication overhead. To address this, we (1) introduce a causality filter based on Markov blankets (MB) that limits the number of variables that each device must track, (2) evaluate SLOs decentralized on a device basis, and (3) infer optimal device configuration for fulfilling SLOs. We evaluated our methodology by analyzing video stream transformations and providing device configurations that ensure the Quality of Service (QoS). The devices thus perceived their environment and acted accordingly -- a form of decentralized intelligence

    Syy-seuraustietoinen ennustajavalinta ympäristöön mukautumiseen

    Get PDF
    Despite development in many areas of machine learning in recent decades, still, changing data sources between the domain in a model is trained and the domain in the same model is used for predictions is a fundamental and common problem. In the area of domain adaptation, these circum- stances have been studied by incorporating causal knowledge about the information flow between features to be utilized in the feature selection for the model. That work has shown promising results to accomplish so-called invariant causal prediction, which means a prediction performance is immune to the change levels between domains. Within these approaches, recognizing the Markov blanket to the target variable has served as a principal workhorse to find the optimal starting point. In this thesis, we continue to investigate closely the property of invariant prediction performance within Markov blankets to target variable. Also, some scenarios with latent parents involved in the Markov blanket are included to understand the role of the related covariates around the latent parent effect to the invariant prediction properties. Before the experiments, we cover the concepts of Makov blankets, structural causal models, causal feature selection, covariate shift, and target shift. We also look into ways to measure bias between changing domains by introducing transfer bias and incomplete information bias, as these biases play an important role in the feature selection, often being a trade-off situation between these biases. In the experiments, simulated data sets are generated from structural causal models to conduct the testing scenarios with the changing conditions of interest. With different scenarios, we investigate changes in the features of Markov blankets between training and prediction domains. Some scenarios involve changes in latent covariates as well. As result, we show that parent features are generally steady predictors enabling invariant prediction. An exception is a changing target, which basically requires more information about the changes in other earlier domains to enable invariant prediction. Also, emerging with latent parents, it is important to have some real direct causes in the feature sets to achieve invariant prediction performance
    corecore