838 research outputs found

    Classification of Epileptic and Non-Epileptic Electroencephalogram (EEG) Signals Using Fractal Analysis and Support Vector Regression

    Get PDF
    Seizures are a common symptom of this neurological condition, which is caused by the discharge of brain nerve cells at an excessively fast rate. Chaos, nonlinearity, and other nonlinearities are common features of scalp and intracranial Electroencephalogram (EEG) data recorded in clinics. EEG signals that aren't immediately evident are challenging to categories because of their complexity. The Gradient Boost Decision Tree (GBDT) classifier was used to classify the majority of the EEG signal segments automatically. According to this study, the Hurst exponent, in combination with AFA, is an efficient way to identify epileptic signals. As with any fractal analysis approach, there are problems and factors to keep in mind, such as identifying whether or not linear scaling areas are present. These signals were classified as either epileptic or non-epileptic by using a combination of GBDT and a Support Vector Regression (SVR). The combined method's identification accuracy was 98.23%. This study sheds light on the effectiveness of AFA feature extraction and GBDT classifiers in EEG classification. The findings can be utilized to develop theoretical guidance for the clinical identification and prediction of epileptic EEG signals. Doi: 10.28991/ESJ-2022-06-01-011 Full Text: PD

    Investigating the Predictability of a Chaotic Time-Series Data using Reservoir Computing, Deep-Learning and Machine- Learning on the Short-, Medium- and Long-Term Pricing of Bitcoin and Ethereum.

    Get PDF
    This study will investigate the predictability of a Chaotic time-series data using Reservoir computing (Echo State Network), Deep-Learning(LSTM) and Machine- Learning(Linear, Bayesian, ElasticNetCV , Random Forest, XGBoost Regression and a machine learning Neural Network) on the short (1-day out prediction), medium (5-day out prediction) and long-term (30-day out prediction) pricing of Bitcoin and Ethereum Using a range of machine learning tools, to perform feature selection by permutation importance to select technical indicators on the individual cryptocurrencies, to ensure the datasets are the best for predictions per cryptocurrency while reducing noise within the models. The predictability of these two chaotic time-series is then compared to evaluate the models to find the best fit model. The models are fine-tuned, with hyperparameters, design of the network within the LSTM and the reservoir size within the Echo State Network being adjusted to improve accuracy and speed. This research highlights the effect of the trends within the cryptocurrency and its effect on predictive models, these models will then be optimized with hyperparameter tuning, and be evaluated to compare the models across the two currencies. It is found that the datasets for each cryptocurrency are different, due to the different permutation importance, which does not affect the overall predictability of the models with the short and medium-term predictions having the same models being the top performers. This research confirms that the chaotic data although can have positive results for shortand medium-term prediction, for long-term prediction, technical analysis basedprediction is not sufficient

    Time-domain Classification of the Brain Reward System: Analysis of Natural- and Drug-Reward Driven Local Field Potential Signals in Hippocampus and Nucleus Accumbens

    Full text link
    Addiction is a major public health concern characterized by compulsive reward-seeking behavior. The excitatory glutamatergic signals from the hippocampus (HIP) to the Nucleus accumbens (NAc) mediate learned behavior in addiction. Limited comparative studies have investigated the neural pathways activated by natural and unnatural reward sources. This study has evaluated neural activities in HIP and NAc associated with food (natural) and morphine (drug) reward sources using local field potential (LFP). We developed novel approaches to classify LFP signals into the source of reward and recorded regions by considering the time-domain feature of these signals. Proposed methods included a validation step of the LFP signals using autocorrelation, Lyapunov exponent and Hurst exponent to assess the meaningful stability of these signals (lack of chaos). By utilizing the probability density function (PDF) of LFP signals and applying Kullback-Leibler divergence (KLD), data were classified to the source of the reward. Also, HIP and NAc regions were visually separated and classified using the symmetrized dot pattern technique, which can be applied in real-time to ensure the deep brain region of interest is being targeted accurately during LFP recording. We believe our method provides a computationally light and fast, real-time signal analysis approach with real-world implementation.Comment: 12 pages, 7 figures first two authors contributed equally to this wor

    Recent Advances in Single-Particle Tracking: Experiment and Analysis

    Get PDF
    This Special Issue of Entropy, titled “Recent Advances in Single-Particle Tracking: Experiment and Analysis”, contains a collection of 13 papers concerning different aspects of single-particle tracking, a popular experimental technique that has deeply penetrated molecular biology and statistical and chemical physics. Presenting original research, yet written in an accessible style, this collection will be useful for both newcomers to the field and more experienced researchers looking for some reference. Several papers are written by authorities in the field, and the topics cover aspects of experimental setups, analytical methods of tracking data analysis, a machine learning approach to data and, finally, some more general issues related to diffusion
    • …
    corecore