4 research outputs found

    Software framework for high precision motion control applications

    Get PDF
    Developing a motion control system requires much effort in different domains. Namely control, electronics and software engineering. In addition to these, there are the system requirements which may be completely different to these spanning from biomedical engineering to psychology. Collaboration between these fields is vital, however these fields should be involved only as much as they are needed to be in the fields of expertise of the others. Several software frameworks exist for the creation of robotics applications. But currently there is no standard for the creation of mechatronics systems nor is there a complete software package that can deal with all aspects in the programming of such systems. Existing frameworks each have their advantages and disadvantages, however they generally have limited or no dedicated structure for the development of the motion control aspect of the problem and deal extensively with the robotenvironment interactions and inter mechanism communications. Dealing with the higher levels of the problem, they are usually not well suited for hard realtime; since the interactions can run on soft realtime constraints. The software framework proposed in this study aims to achieve a level of abstraction between the different domains utilized within a system. The aim in using the framework is to achieve a sustainable software structure for the system. Sustainability is an important part of systems, as it permits a system to evolve with changing requirements and variable hardware, with the ultimate goal of having robust software that can be utilized on different platforms and with other systems using an abstraction layer between the hardware and the software. This ensures that the system can be migrated from a processing platform to any other platform and also from one set of hardware to another. The framework was tested on several systems that have precision motion control requirements such as a 10 degree of freedom micro assembly workstation, a modular micro factory and a haptic system with time delay. Each of the systems works in di erent processing platforms and have different motion control requirements. The achieved results from the implementations show that the software framework is an important tool for the development of motion control software

    Human-machine-centered design and actuation of lower limb prosthetic systems

    Get PDF
    People with lower limb loss or congenital limb absence require a technical substitute that restores biomechanical function and body integrity. In the last decades, mechatronic prostheses emerged and especially actuated ones increased the biomechanical functionality of their users. Yet, various open issues regarding the energy efficiency of powered systems and the impact of user-experience of the prosthesis on technical design remain. As tackeling the latter aspect urgently requires the consideration of user demands, this thesis proposes a novel human-machine-centered design (HMCD) approach for lower limb prosthetics. Further, it contributes to the design and control of elastic (prosthetic) actuation. The HMCD approach describes a framework that equally considers technical and human factors. Therefore, seven human factors influencing lower limb prosthetic design are determined, analyzed, and modeled using human survey data: Satisfaction, Feeling of Security, Body Schema Integration, Support, Socket, Mobility, and Outer Appearance. Based on the application of quality function deployment (QFD), those factors can be considered as a HMCD focus in systems engineering. As an exemplary application, a powered prosthetic knee concept is elaborated with the HMCD approach. The comparison of the HMCD focus with a purely technical one, which is determined with a control group, reveals distinct differences in the weighting of requirements. Hence, the proposed method should lead to different prosthetic designs that might improve the subjective user-experience. To support this by integrating users throughout the systems engineering process, two concepts for human-in-the-loop experiments are suggested. As an enabling technology of powered lower limb prostheses, variable (series) elastic actuation and especially such with variable torsion stiffness (VTS) is investigated. Inverse dynamics simulations with synthetic and human trajectories as well as experiments show that the consideration of the actuator inertia is crucial: Only by including it in advanced models, the whole range of natural dynamics and antiresonance can be exploited to minimize power consumption. A corresponding control strategy adapts the actuator to achieve energy efficiency over a wide range of operational states using these models. The exemplary design of the powered prosthetic knee with respect to the HMCD prioritization of requirements confirms the fundamental suitability of VTS for integration in prosthetic components. In this, considering actuator inertia enables the determination of an optimal stiffness for serial elastic actuation of the human knee during walking that is not found in previous studies. A first simulation considering the changed dynamics of prosthetic gait indicates the potential to reveal lower design requirements. The designed knee concept combines promising biomechanical functionality and long operating time due to elastic actuation and energy recuperation. Beyond lower limb prosthetics, the proposed HMCD framework can be used in other applications with distinct human-machine interrelations by adjusting the human and technical factors. Likewise, the insights into variable elastic actuation design and control can be transferred to other systems demanding energy-efficient performance of cyclic tasks

    The 21st Aerospace Mechanisms Symposium

    Get PDF
    During the symposium technical topics addressed included deployable structures, electromagnetic devices, tribology, actuators, latching devices, positioning mechanisms, robotic manipulators, and automated mechanisms synthesis. A summary of the 20th Aerospace Mechanisms Symposium panel discussions is included as an appendix. However, panel discussions on robotics for space and large space structures which were held are not presented herein

    A Flexible, Low-Power, Programmable Unsupervised Neural Network Based on Microcontrollers for Medical Applications

    Get PDF
    We present an implementation and laboratory tests of a winner takes all (WTA) artificial neural network (NN) on two microcontrollers (μC) with the ARM Cortex M3 and the AVR cores. The prospective application of this device is in wireless body sensor network (WBSN) in an on-line analysis of electrocardiograph (ECG) and electromyograph (EMG) biomedical signals. The proposed device will be used as a base station in the WBSN, acquiring and analysing the signals from the sensors placed on the human body. The proposed system is equiped with an analog-todigital converter (ADC), and allows for multi-channel acquisition of analog signals, preprocessing (filtering) and further analysis
    corecore