119 research outputs found

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    High capacity multiuser multiantenna communication techniques

    Get PDF
    One of the main issues involved in the development of future wireless communication systems is the multiple access technique used to efficiently share the available spectrum among users. In rich multipath environment, spatial dimension can be exploited to meet the increasing number of users and their demands without consuming extra bandwidth and power. Therefore, it is utilized in the multiple-input multiple-output (MIMO) technology to increase the spectral efficiency significantly. However, multiuser MIMO (MU-MIMO) systems are still challenging to be widely adopted in next generation standards. In this thesis, new techniques are proposed to increase the channel and user capacity and improve the error performance of MU-MIMO over Rayleigh fading channel environment. For realistic system design and performance evaluation, channel correlation is considered as one of the main channel impurities due its severe influence on capacity and reliability. Two simple methods called generalized successive coloring technique (GSCT) and generalized iterative coloring technique (GICT) are proposed for accurate generation of correlated Rayleigh fading channels (CRFC). They are designed to overcome the shortcomings of existing methods by avoiding factorization of desired covariance matrix of the Gaussian samples. The superiority of these techniques is demonstrated by extensive simulations of different practical system scenarios. To mitigate the effects of channel correlations, a novel constellation constrained MU-MIMO (CC-MU-MIMO) scheme is proposed using transmit signal design and maximum likelihood joint detection (MLJD) at the receiver. It is designed to maximize the channel capacity and error performance based on principles of maximizing the minimum Euclidean distance (dmin) of composite received signals. Two signal design methods named as unequal power allocation (UPA) and rotation constellation (RC) are utilized to resolve the detection ambiguity caused by correlation. Extensive analysis and simulations demonstrate the effectiveness of considered scheme compared with conventional MU-MIMO. Furthermore, significant gain in SNR is achieved particularly in moderate to high correlations which have direct impact to maintain high user capacity. A new efficient receive antenna selection (RAS) technique referred to as phase difference based selection (PDBS) is proposed for single and multiuser MIMO systems to maximize the capacity over CRFC. It utilizes the received signal constellation to select the subset of antennas with highest (dmin) constellations due to its direct impact on the capacity and BER performance. A low complexity algorithm is designed by employing the Euclidean norm of channel matrix rows with their corresponding phase differences. Capacity analysis and simulation results show that PDBS outperforms norm based selection (NBS) and near to optimal selection (OS) for all correlation and SNR values. This technique provides fast RAS to capture most of the gains promised by multiantenna systems over different channel conditions. Finally, novel group layered MU-MIMO (GL-MU-MIMO) scheme is introduced to exploit the available spectrum for higher user capacity with affordable complexity. It takes the advantages of spatial difference among users and power control at base station to increase the number of users beyond the available number of RF chains. It is achieved by dividing the users into two groups according to their received power, high power group (HPG) and low power group (LPG). Different configurations of low complexity group layered multiuser detection (GL-MUD) and group power allocation ratio (η) are utilized to provide a valuable tradeoff between complexity and overall system performance. Furthermore, RAS diversity is incorporated by using NBS and a new selection algorithm called HPG-PDBS to increase the channel capacity and enhance the error performance. Extensive analysis and simulations demonstrate the superiority of proposed scheme compared with conventional MU-MIMO. By using appropriate value of (η), it shows higher sum rate capacity and substantial increase in the user capacity up to two-fold at target BER and SNR values

    I/Q Imbalance in Multiantenna Systems: Modeling, Analysis and RF-Aware Digital Beamforming

    Get PDF
    Wireless communications has experienced an unprecedented increase in data rates, numbers of active devices and selection of applications during recent years. However, this is expected to be just a start for future developments where a wireless connection is seen as a fundamental resource for almost any electrical device, no matter where and when it is operating. Since current radio technologies cannot provide such services with reasonable costs or even at all, a multitude of technological developments will be needed. One of the most important subjects, in addition to higher bandwidths and flexible network functionalities, is the exploitation of multiple antennas in base stations (BSs) as well as in user equipment (UEs). That kind of multiantenna communications can boost the capacity of an individual UE-BS link through spatial antenna multiplexing and increase the quality as well as robustness of the link via antenna diversity. Multiantenna technologies provide improvements also on the network level through spatial UE multiplexing and sophisticated interference management. Additionally, multiple antennas can provide savings in terms of the dissipated power since transmission and reception can be steered more efficiently in space, and thus power leakage to other directions is decreased. However, several issues need to be considered in order to get multiantenna technologies widely spread. First, antennas and the associated transceiver chains are required to be simple and implementable with low costs. Second, size of the antennas and transceivers need to be minimized. Finally, power consumption of the system must be kept under control. The importance of these requirements is even emphasized when considering massive multiple-input multiple-output (MIMO) systems consisting of devices equipped with tens or even hundreds of antennas.In this thesis, we consider multiantenna devices where the associated transceiver chains are implemented in such a way that the requirements above can be met. In particular, we focus on the direct-conversion transceiver principle which is seen as a promising radio architecture for multiantenna systems due to its low costs, small size, low power consumption and good flexibility. Whereas these aspects are very promising, direct-conversion transceivers have also some disadvantages and are vulnerable to certain imperfections in the analog radio frequency (RF) electronics in particular. Since the effects of these imperfections usually get even worse when optimizing costs of the devices, the scope of the thesis is on the effects and mitigation of one of the most severe RF imperfection, namely in-phase/quadrature (I/Q) imbalance.Contributions of the thesis can be split into two main themes. First of them is multiantenna narrowband beamforming under transmitter (TX) and receiver (RX) I/Q imbalances. We start by creating a model for the signals at the TX and RX, both under I/Q imbalances. Based on these models we derive analytical expressions for the antenna array radiation patterns and notice that I/Q imbalance distorts not only the signals but also the radiation characteristics of the array. After that, stemming from the nature of the distortion, we utilize widely-linear (WL) processing, where the signals and their complex conjugates are processed jointly, for the beamforming task under I/Q imbalance. Such WL processing with different kind of statistical and adaptive beamforming algorithms is finally shown to provide a flexible operation as well as distortion-free signals and radiation patterns when being under various I/Q imbalance schemes.The second theme extends the work to wideband systems utilizing orthogonal frequency-division multiplexing (OFDM)-based waveforms. The focus is on uplink communications and BS RX processing in a multiuser MIMO (MU-MIMO) scheme where spatial UE multiplexing is applied and further UE multiplexing takes place in frequency domain through the orthogonal frequency-division multiple access (OFDMA) principle. Moreover, we include the effects of external co-channel interference into our analysis in order to model the challenges in heterogeneous networks. We formulate a flexible signal model for a generic uplink scheme where I/Q imbalance occurs on both TX and RX sides. Based on the model, we analyze the signal distortion in frequency domain and develop augmented RX processing methods which process signals at mirror subcarrier pairs jointly. Additionally, the proposed augmented methods are numerically shown to outperform corresponding per-subcarrier method in terms of the instantaneous signal-to-interference-and-noise ratio (SINR). Finally, we address some practical aspects and conclude that the augmented processing principle is a promising tool for RX processing in multiantenna wideband systems under I/Q imbalance.The thesis provides important insight for development of future radio networks. In particular, the results can be used as such for implementing digital signal processing (DSP)-based RF impairment mitigation in real world transceivers. Moreover, the results can be used as a starting point for future research concerning, e.g., joint effects of multiple RF impairments and their mitigation in multiantenna systems. Overall, this thesis and the associated publications can help the communications society to reach the ambitious aim of flexible, low-cost and high performance radio networks in the future

    Demonstration of radio-over-fiber-supported 60 GHz MIMO using separate antenna-pair processing

    Get PDF
    Coverage at millimeter-wave (mmW) frequencies is a constraining bottleneck. Spatial diversity and spatial multiplexing multiple-input multiple-output (MIMO) improve performance over a spread of user locations and these can benefit from wider antenna spacing. Radio-over-Fiber (RoF) transport provides flexibility in deploying a number of widely-spaced Remote Antenna Units (RAUs) connected to the same Central Unit (CU). Hence, mmW systems with an integrated analog RoF fronthaul are strong candidates for use in future 5G networks. An approach to measure channel coefficients individually for MIMO processing has been demonstrated in a RoF transported 2×2 MIMO system at 60 GHz. Experimental results verify this approach through real 2×2 experiments

    Interference mitigation using group decoding in multiantenna systems

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Performance Analysis and Mitigation Techniques for I/Q-Corrupted OFDM Systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has become a widely adopted modulation technique in modern communications systems due to its multipath resilience and low implementation complexity. The direct conversion architecture is a popular candidate for low-cost, low-power, fully integrated transceiver designs. One of the inevitable problems associated with analog signal processing in direct conversion involves the mismatches in the gain and phases of In-phase (I) and Quadrature-phase (Q) branches. Ideally, the I and Q branches of the quadrature mixer will have perfectly matched gains and are orthogonal in phase. Due to imperfect implementation of the electronics, so called I/Q imbalance emerges and creates interference between subcarriers which are symmetrically apart from the central subcarrier. With practical imbalance levels, basic transceivers fail to maintain the sufficient image rejection, which in turn can cause interference with the desired transmission. Such an I/Q distortion degrades the systems performance if left uncompensated. Moreover, the coexistence of I/Q imbalance and other analog RF imperfections with digital baseband and higher layer functionalities such as multiantenna transmission and radio resource management, reduce the probability of successful transmission. Therefore, mitigation of I/Q imbalance is an essential substance in designing and implementing modern communications systems, while meeting required performance targets and quality of service. This thesis considers techniques to compensate and mitigate I/Q imbalance, when combined with channel estimation, multiantenna transmission, transmission power control, adaptive modulation and multiuser scheduling. The awareness of the quantitative relationship between transceiver parameters and system parameters is crucial in designing and dimensioning of modern communications systems. For this purpose, analytical models to evaluate the performance of an I/Q distorted system are considered

    Optimization of Spectrum Management in Massive Array Antenna Systems with MIMO

    Get PDF
    Fifth generation (5G), is being considered as a revolutionary technology in the telecommunication domain whose the challenges are mainly to achieve signal quality and great ability to work with free spectrum in the millimetre waves. Besides, other important innovations are the introduction of a more current architecture and the use of multiple antennas in transmission and reception. Digital communication using multiple input and multiple output (MIMO) wireless links has recently emerged as one of the most significant technical advances in modern communications. MIMO technology is able to offer a large increase in the capacity of these systems, without requiring a considerable increase in bandwidth or power required for transmission. This dissertation presents an overview of theoretical concepts of MIMO systems. With such a system a spatial diversity gain can be obtained by using space-time codes, which simultaneously exploit the spatial domain and the time domain. SISO, SIMO and MISO systems are differentiated by their channel capacity and their configuration in relation to the number of antennas in the transmitter/receiver. To verify the effectiveness of the MIMO systems a comparison between the capacity of SISO and MIMO systems has been performed using the Shannon’s principles. In the MIMO system some variations in the number of antennas arrays have been considered, and the superiority of transmission gains of the MIMO systems have been demonstrated. Combined with millimetre waves (mmWaves) technology, massive MIMO systems, where the number of antennas in the base station and the number of users are large, is a promising solution. SDR implementations have been performed considering a platform with Matlab code applied to MIMO 2x2 Radio and Universal Software Peripheral Radio (USRP). A detailed study was initially conducted to analyze the architecture of the USRP. Complex structures of MIMO systems can be simplified by using mathematical methods implemented in Matlab for the synchronization of the USRP in the receiver side. SISO transmission and reception techniques have been considered to refine the synchronization (with 16-QAM), thus facilitating the future implementation of the MIMO system. OpenAirInterface has been considered for 4G and 5G implementations of actual mobile radio communication systems. Together with the practical MIMO, this type of solution is the starting point for future hardware building blocks involving massive MIMO systems.A quinta geração (5G) está sendo considerada uma tecnologia revolucionária no setor de telecomunicações, cujos desafios são principalmente a obtenção de qualidade de sinal e grande capacidade de trabalhar com espectro livre nas ondas milimétricas. Além disso, outras inovações importantes são a introdução de uma arquitetura mais atual e o uso de múltiplas antenas em transmissão e recepção. A comunicação digital usando ligaçõe sem fio de múltiplas entradas e múltiplas saídas (MIMO) emergiu recentemente como um dos avanços técnicos mais significativos nas comunicações modernas. A tecnologia MIMO é capaz de oferecer um elevado aumento na capacidade, sem exigir um aumento considerável na largura de banda ou potência transmitida. Esta dissertação apresenta uma visão geral dos conceitos teóricos dos sistemas MIMO. Com esses sistemas, um ganho de diversidade espacial pode ser obtido utilizando códigos espaço-tempo reais. Os sistemas SISO, SIMO e MISO são diferenciados pela capacidade de seus canais e a sua configuração em relação ao número de antenas no emissor/receptor. Para verificar a eficiência dos sistemas MIMO, realizou-se uma comparação entre a capacidade dos sistemas SISO e MIMO utilizado os princípios de Shannon. Nos sistemas MIMO condecideraram-se algumas variações no número de agregados de antenas, e a superioridade dos ganhos de transmissão dos sistemas MIMO foi demonstrada. Combinado com a tecnologia de ondas milimétricas (mmWaves), os sistemas massivos MIMO, onde o número de antenas na estação base e o número de usuários são grandes, são uma solução promissora. As implementações do SDR foram realizadas considerando uma plataforma com código Matlab aplicado aos rádios MIMO 2x2 e Universal Software Peripheral Radio (USRP). Um estudo detalhado foi inicialmente conduzido para analisar a arquitetura da USRP. Estruturas complexas de sistemas MIMO podem ser simplificadas usando métodos matemáticos implementados no Matlab para a sincronização do USRP no lado do receptor. Consideraram-se técnicas de transmissão e recepção SISO para refinar a sincronização (com 16-QAM), facilitando assim a implementação futura do sistema MIMO . Considerou-se o OpenAirInterface para implementações 4G e 5G de sistemas reais de comunicações móveis. Juntamente com o MIMO na pratica, este tipo de solução é o ponto de partida para futuros blocos de construção de hardware envolvendo sistemas MIMO massivos
    corecore