209 research outputs found

    New variational and multisymplectic formulations of the Euler-Poincar\'e equation on the Virasoro-Bott group using the inverse map

    Full text link
    We derive a new variational principle, leading to a new momentum map and a new multisymplectic formulation for a family of Euler--Poincar\'e equations defined on the Virasoro-Bott group, by using the inverse map (also called `back-to-labels' map). This family contains as special cases the well-known Korteweg-de Vries, Camassa-Holm, and Hunter-Saxton soliton equations. In the conclusion section, we sketch opportunities for future work that would apply the new Clebsch momentum map with 22-cocycles derived here to investigate a new type of interplay among nonlinearity, dispersion and noise.Comment: 19 page

    A discontinuous finite element baroclinic marine model on unstructured prismatic meshes: I. Space discretization

    Get PDF
    We describe the space discretization of a three-dimensional baroclinic finite element model, based upon a discontinuous Galerkin method, while the companion paper (Comblen et al. 2010a) describes the discretization in time. We solve the hydrostatic Boussinesq equations governing marine flows on a mesh made up of triangles extruded from the surface toward the seabed to obtain prismatic three-dimensional elements. Diffusion is implemented using the symmetric interior penalty method. The tracer equation is consistent with the continuity equation. A Lax–Friedrichs flux is used to take into account internal wave propagation. By way of illustration, a flow exhibiting internal waves in the lee of an isolated seamount on the sphere is simulated. This enables us to show the advantages of using an unstructured mesh, where the resolution is higher in areas where the flow varies rapidly in space, the mesh being coarser far from the region of interest. The solution exhibits the expected wave structure. Linear and quadratic shape functions are used, and the extension to higher-order discretization is straightforward

    Variational water-wave model with accurate dispersion and vertical vorticity

    Get PDF
    A new water-wave model has been derived which is based on variational techniques and combines a depth-averaged vertical (component of) vorticity with depth-dependent potential flow. The model facilitates the further restriction of the vertical profile of the velocity potential to n-th order polynomials or a finite-element profile with a small number of elements (say), leading to a framework for efficient modeling of the interaction of steepening and breaking waves near the shore with a large-scale horizontal flow. The equations are derived from a constrained variational formulation which leads to conservation laws for energy, mass, momentum and vertical vorticity. It is shown that the potential-flow water-wave equations and the shallow-water equations are recovered in the relevant limits. Approximate shock relations are provided, which can be used in numerical schemes to model breaking waves

    Compatible finite element methods for geophysical fluid dynamics

    Get PDF
    This article surveys research on the application of compatible finite element methods to large scale atmosphere and ocean simulation. Compatible finite element methods extend Arakawa's C-grid finite difference scheme to the finite element world. They are constructed from a discrete de Rham complex, which is a sequence of finite element spaces which are linked by the operators of differential calculus. The use of discrete de Rham complexes to solve partial differential equations is well established, but in this article we focus on the specifics of dynamical cores for simulating weather, oceans and climate. The most important consequence of the discrete de Rham complex is the Hodge-Helmholtz decomposition, which has been used to exclude the possibility of several types of spurious oscillations from linear equations of geophysical flow. This means that compatible finite element spaces provide a useful framework for building dynamical cores. In this article we introduce the main concepts of compatible finite element spaces, and discuss their wave propagation properties. We survey some methods for discretising the transport terms that arise in dynamical core equation systems, and provide some example discretisations, briefly discussing their iterative solution. Then we focus on the recent use of compatible finite element spaces in designing structure preserving methods, surveying variational discretisations, Poisson bracket discretisations, and consistent vorticity transport.Comment: correction of some typo

    Variational integrators for the rotating shallow water equations

    Get PDF
    The numerical simulation of the Earth’s atmosphere plays an important role in developing our understanding of climate change. The atmosphere and ocean can be seen as a shallow fluid on the globe; here, we use the shallow water equations as a first step to approximate these geophysical flows. Then, the numerical model can only be accurate if it has good conservation properties, e.g. without conserving mass the simulation can not be physical. Obtaining such a numerical model can be achieved using numerical variational integration. Here, we have derived a numerical variational integrator for the rotating shallow water equations on the sphere using the Euler–Poincaré framework. First, the continuous Lagrangian is discretized; then, the numerical scheme is obtained by computing the discrete variational principle. The conservational properties and accuracy of the model are verified with standard test cases. However, in order to obtain more realistic simulations, the shallow water equations need to include physical parametrizations. Thus, we introduce a new representation of the rotating shallow water equations based on a stochastic transport principle. Then, benchmarks are carried out to demonstrate that the spatial part of the stochastic scheme preserves the total energy. The proposed random model better captures the structure of a large-scale flow than a comparable deterministic model. Furthermore, to be able to carry out long term simulations we extend the discrete Euler–Poincaré framework with a selective decay. The selective decay dissipates an otherwise conserved quantity while conserving energy. We apply the new framework to the shallow water equations to dissipate the potential enstrophy. Then, we carry out standard benchmarks to demonstrate the conservation properties. We show that the selective decay resolves more small scales compared to a standard dissipation

    Efficient numerical schemes for viscoplastic avalanches. Part 2: the 2D case

    Get PDF
    This paper deals with the numerical resolution of a shallow water viscoplastic flow model. Viscoplastic materials are characterized by the existence of a yield stress: below a certain critical threshold in the imposed stress, there is no deformation and the material behaves like a rigid solid, but when that yield value is exceeded, the material flows like a fluid. In the context of avalanches, it means that after going down a slope, the material can stop and its free surface has a non-trivial shape, as opposed to the case of water (Newtonian fluid). The model involves variational inequalities associated with the yield threshold: finite volume schemes are used together with duality methods (namely Augmented Lagrangian and Bermúdez–Moreno) to discretize the problem. To be able to accurately simulate the stopping behavior of the avalanche, new schemes need to be designed, involving the classical notion of well-balancing. In the present context, it needs to be extended to take into account the viscoplastic nature of the material as well as general bottoms with wet/dry fronts which are encountered in geophysical geometries. Here we derive such schemes in 2D as the follow up of the companion paper treating the 1D case. Numerical tests include in particular a generalized 2D benchmark for Bingham codes (the Bingham–Couette flow with two non-zero boundary conditions on the velocity) and a simulation of the avalanche path of Taconnaz in Chamonix—Mont-Blanc to show the usability of these schemes on real topographies from digital elevation models (DEM)

    An accurate finite volume method using fourth order Adams scheme on triangular grids for the Saint-Venant System

    Get PDF
    In this study, a new finite volume method is developed for shallow water equations on a rotating frame. Most upwind methods, which perform well for gravity waves, lead to large oscillations and/or numerical damping for Rossby waves. We propose an upwind finite volume method on unstructured grids which provides accurate results both for Rossby and gravity waves. This method uses a high-order upwind scheme for the calculation of the numerical flux, and a fourth-order Adams method with an operator splitting approach for temporal integration. The Coriolis term is integrated analytically before and after solving the conservation law. The proposed method can successfully suppress the short-wave numerical noise without damping the long waves. The balance between the flux and Coriolis terms is preserved. This method presents more accurate results than some well-known upwind schemes.This publication was made possible by NPRP grant # 4-935-2-354 from the Qatar National Research Fund (a member of Qatar Foundation)

    Low-Dissipation Simulation Methods and Models for Turbulent Subsonic Flow

    Get PDF
    The simulation of turbulent flows by means of computational fluid dynamics is highly challenging. The costs of an accurate direct numerical simulation (DNS) are usually too high, and engineers typically resort to cheaper coarse-grained models of the flow, such as large-eddy simulation (LES). To be suitable for the computation of turbulence, methods should not numerically dissipate the turbulent flow structures. Therefore, energy-conserving discretizations are investigated, which do not dissipate energy and are inherently stable because the discrete convective terms cannot spuriously generate kinetic energy. They have been known for incompressible flow, but the development of such methods for compressible flow is more recent. This paper will focus on the latter: LES and DNS for turbulent subsonic flow. A new theoretical framework for the analysis of energy conservation in compressible flow is proposed, in a mathematical notation of square-root variables, inner products, and differential operator symmetries. As a result, the discrete equations exactly conserve not only the primary variables (mass, momentum and energy), but also the convective terms preserve (secondary) discrete kinetic and internal energy. Numerical experiments confirm that simulations are stable without the addition of artificial dissipation. Next, minimum-dissipation eddy-viscosity models are reviewed, which try to minimize the dissipation needed for preventing sub-grid scales from polluting the numerical solution. A new model suitable for anisotropic grids is proposed: the anisotropic minimum-dissipation model. This model appropriately switches off for laminar and transitional flow, and is consistent with the exact sub-filter tensor on anisotropic grids. The methods and models are first assessed on several academic test cases: channel flow, homogeneous decaying turbulence and the temporal mixing layer. As a practical application, accurate simulations of the transitional flow over a delta wing have been performed
    corecore