8 research outputs found

    Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models

    Get PDF
    Recently, Donaldson and Kamstra (1997) proposed a class of NN-GARCH models which are extended to a class of NN-GARCH family by Bildirici and Ersin (2009). The study aims to analyze the nonlinear behavior and leptokurtic distribution in petrol prices by utilizing a newly developed family of econometric models that deal with these concepts by benefiting from both LSTAR type and ANN based nonlinearity. With this purpose, the study proposed several LSTAR-GARCH-NN family models. It is noted that the multilayer perceptron (MLP) neural network and LSTAR models have significant architectural similarities. Accordingly, linear GARCH, fractionally integrated FI-GARCH, asymmetric power APGARCH and fractionally integrated asymmetric power APGARCH models are augmented with a family of Neural Network models. The study has following contributions: i. STAR-GARCH and LSTAR-GARCH are extended to their fractionally integrated asymmetric power versions and STAR-ST-FIGARCH and STAR-ST-APGARCH, STAR-ST-FIAPGARCH models are developed and evaluated. ii. By extending these models with neural networks, LSTAR-LST-GARCH-MLP family models are developed and investigated. These models benefit from LSTAR type nonlinearity and NN based nonlinear NN-GARCH models to capture time varying volatility and nonlinearity in petrol prices. ANN augmented versions of LSTAR-LST-GARCH models are as follows: LSTAR-LST-GARCH-MLP, LSTAR-LST-FIGARCH-MLP, LSTAR-LST-APGARCH-MLP and LSTAR-LST-FIAPGARCH-MLP. Empirical findings are collected as follows. i. To model petrol prices, fractionally integrated and asymmetric power versions provided improvements among the GARCH family models in terms of forecasting. ii. LSTAR-LST-GARCH model family is promising and show significant gains in out-of-sample forecasting. iii. MLP-GARCH family provided similar results with the LSTAR-LST-GARCH family models, except for the MLP-FIGARCH and MLP-FIAPGARCH models. iv. Volatility clustering, asymmetry and nonlinearity characteristics of petrol prices are captured most efficiently with the LSTAR-LST-GARCH-MLP models benefiting from forecasting capabilities of neural network techniques, whereas, among the newly developed models, LSTAR-LST-APGARCH-MLP model provided the best performance overall

    Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models

    Get PDF
    Recently, Donaldson and Kamstra (1997) proposed a class of NN-GARCH models which are extended to a class of NN-GARCH family by Bildirici and Ersin (2009). The study aims to analyze the nonlinear behavior and leptokurtic distribution in petrol prices by utilizing a newly developed family of econometric models that deal with these concepts by benefiting from both LSTAR type and ANN based nonlinearity. With this purpose, the study proposed several LSTAR-GARCH-NN family models. It is noted that the multilayer perceptron (MLP) neural network and LSTAR models have significant architectural similarities. Accordingly, linear GARCH, fractionally integrated FI-GARCH, asymmetric power APGARCH and fractionally integrated asymmetric power APGARCH models are augmented with a family of Neural Network models. The study has following contributions: i. STAR-GARCH and LSTAR-GARCH are extended to their fractionally integrated asymmetric power versions and STAR-ST-FIGARCH and STAR-ST-APGARCH, STAR-ST-FIAPGARCH models are developed and evaluated. ii. By extending these models with neural networks, LSTAR-LST-GARCH-MLP family models are developed and investigated. These models benefit from LSTAR type nonlinearity and NN based nonlinear NN-GARCH models to capture time varying volatility and nonlinearity in petrol prices. ANN augmented versions of LSTAR-LST-GARCH models are as follows: LSTAR-LST-GARCH-MLP, LSTAR-LST-FIGARCH-MLP, LSTAR-LST-APGARCH-MLP and LSTAR-LST-FIAPGARCH-MLP. Empirical findings are collected as follows. i. To model petrol prices, fractionally integrated and asymmetric power versions provided improvements among the GARCH family models in terms of forecasting. ii. LSTAR-LST-GARCH model family is promising and show significant gains in out-of-sample forecasting. iii. MLP-GARCH family provided similar results with the LSTAR-LST-GARCH family models, except for the MLP-FIGARCH and MLP-FIAPGARCH models. iv. Volatility clustering, asymmetry and nonlinearity characteristics of petrol prices are captured most efficiently with the LSTAR-LST-GARCH-MLP models benefiting from forecasting capabilities of neural network techniques, whereas, among the newly developed models, LSTAR-LST-APGARCH-MLP model provided the best performance overall

    Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    Get PDF
    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications

    Time dependent Directional Profit Model for Financial Time Series Forecasting

    No full text
    Goodness-of-fit is the most popular criterion for neural network time series forecasting. In the context of financial time series forecasting, we are not only concerned at how good the forecasts fit their targets, but we are more interested in profits. In order to increase the forecastability in terms of profit earning, we propose a profit based adjusted weight factor for backpropagation network training. Instead of using the traditional least squares error, we add a factor which contains the profit, direction, and time information to the error function. The results show that this new approach does improve the forecastability of neural network models, for the financial application domain

    New hurricane impact level ranking system using artificial neural networks, A

    Get PDF
    2015 Spring.Includes bibliographical references.Tropical cyclones are intense storm systems that form over warm water but have the potential to bring multiple related hazards ashore. While significant advancements have been made for forecasting of such extreme weather, the estimation for the resulting damage and impact to society is significantly complex and requires substantial improvements. This is primarily due to the intricate interaction of multiple variables contributing to the socio-economic damage on multiple scales. Subsequently, this makes communicating the risk, location vulnerability, and the resulting impact of such an event inherently difficult. To date, the Saffir-Simpson Scale, based off of wind speed, is the main ranking system used in the United States to describe an oncoming tropical cyclone event. There are models currently in use to predict loss by using more parameters than just wind speed. However, they are not actively used as a means to concisely categorize these events. This is likely due to the scrutiny the model would be placed under for possibly outputting an incorrect damage total. These models use parameters such as; wind speed, wind driven rain, and building stock to determine losses. The relationships between meteorological and locational parameters (population, infrastructure, and geography) are well recognized, which is why many models attempt to account for so many variables. With the help of machine learning, in the form of artificial neural networks, these intuitive connections could be recreated. Neural networks form patterns for nonlinear problems much as the human brain would, based off of historical data. By using 66 historical hurricane events, this research will attempt to establish these connections through machine learning. In order to link these variables to a concise output, the proposed Impact Level Ranking System will be introduced. This categorization system will use levels, or thresholds, of economic damage to group historical events in order to provide a comparative level for a new tropical cyclone event within the United States. Discussed herein, are the effects of multiple parameters contributing to the impact of hurricane events, the use and application of artificial neural networks, the development of six possible neural network models for hurricane impact prediction, the importance of each parameter to the neural network process, the determination of the type of neural network problem, and finally the proposed Impact Level Ranking System Model and its potential applications

    Trust region algorithms and neural networks for financial forecasting

    Get PDF
    Master'sMASTER OF SCIENC

    A pair-wise framework for country asset allocation using similarity ratio

    Get PDF
    Master'sMASTER OF SCIENC

    Stock market predictions based on quantified intermarket influences

    Get PDF
    This research investigated the feasibility and capability of neural network-based approaches for predicting the direction of the Australian Stock market index (the target market). It includes several aspects: univariate feature selection from the historical time series of the target market, inter-market analysis for finding the most relevant influential markets, investigations of the effect of time cycles on the target market and the discovery of the optimal neural network architectures. Previous research on US stock markets and other international markets have shown that the neural network approach is one of most powerful techniques for predicting stock market behaviour. Neural networks are capable of capturing the non-linear stochastic and chaotic patterns in the stock market time series data. This study discovered that the relative return series of the Open, High, Low and Close prices of the target market, show 6-day cycles during the studied period of about 14 years. Multi-layer feedforward neural networks trained with a backpropagation algorithm were used for the experiments. Two major testing methods: testing with randomly selected test data and forward testing, were examined and compared. The best neural network developed in this study has achieved 87%, 81% 83% and 81% accuracy respectively in predicting the next-day direction of the relative return of the Open, High, Low and Close prices of the target market. The architecture of this network consists of 33 input features, one hidden layer with 3 neurons and 4 output neurons. The best input features set includes the relative returns from 1 to 6 days in the past of the Open, High, Low and Close prices of the target market, the day of the week, and the previous day’s relative return of the Close prices of the US S&P 500 Index, US Dow Jones Industrial Average Index, US Gold/Silver Index, and the US Oil Index.Doctor of Philosoph
    corecore