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Summary 

There is no evidence that pair-wise modeling is widely applied in active portfolio management. Many 

forecasting models are constructed to predict individual asset’s returns and the results are used in stock 

selection. To apply pair-wise strategies in portfolio construction requires forecasts of the relative returns of 

all possible pair-wise combinations in the investment universe. As the number of forecasts required is a 

small fraction of the total number of forecasts generated, it means a good measure of quality would  be 

required to select the best set of forecasts. 

 

In assessing the quality of relative returns forecast, the most important criterion is the accuracy of 

predicting the direction (or sign) of the relative returns. The quality of forecasts is reflected in the model’s 

ability in predicting the sign. However, there is a lack of research and effort in designing a scoring measure 

that aims to quantify the forecasting model in terms of directional accuracy. The commonly accepted 

measure is Information Coefficient or the number of correct sign-predictions expressed as a percentage of 

the total number of predictions (Hit Rate).  

 

This thesis presents a pair-wise framework to construct a country allocation portfolio and a measure called 

the Similarity Ratio as the confidence score of each forecasting model. In essence, the framework 

recommends that one should customize a model for each asset pair in the investment universe. The model 

is used to generate a forecast of the relative performance of the two assets, and at the same time, calculate 

the Similarity Ratio.  

 

The Similarity Ratio is used to rank the pair-wise forecasts so that only forecasts with the best quality is 

used in portfolio construction. The Similarity Ratio is a distance-based measure that is innovative and 

intuitive. It emphasizes on directional accuracy and yet able to make use of the magnitudes of the forecasts 

as tie-breaker if the models have the same directional accuracy.  
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We provide extensive empirical examinations by constructing various country allocation portfolios using 

the pair-wise framework and Similarity Ratio. We show that the portfolios delivered better risk-adjusted 

performance than top quartile managers who have similar mandates. The global, European and Emerging 

Asia portfolios generated Information Ratios of 1.15, 0.61 and 1.27 respectively for the seven-year period 

from 2000 to 2006. We also find empirical evidences that show the portfolios constructed using Similarity 

Ratio out-performed all other portfolios constructed using other scoring measures, such as Information 

Coefficient and Hit Rate. 
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1 Introduction 

There is no wide application of pair-wise strategies in active portfolio management. This is probably why 

this is a lack of effort in finding a scoring measure that quantifies the quality of models that forecast 

relative returns or direction of asset returns. The more commonly used approaches are Information 

Coefficient and Hit Rate, which is the number of correct sign-predictions expressed as a percentage of the 

total number of predictions.  

 

This thesis presents a pair-wise framework to construct country allocation portfolio in a systematic and 

objective manner. The framework comprises of two parts, first it recommends contextual forecasting 

models should be built to predict asset pairs’ relative returns, with emphasis on the sign-accuracy. Next it 

presents Similarity Ratio as an ideal scoring measure to quantify the quality of pair-wise forecasting 

models. Similarity Ratio is an innovative and intuitive measure that emphasizes on directional accuracy and 

yet able to make use of the magnitudes of the forecasts as tie-breaker if two sets of data have the same 

directional accuracy.  

 

The focus of the research is not to find the best model that forecast relative returns or the best way to put 

these forecasts together. The emphasis is to build forecasting models to predict relative returns and the use 

of Similarity Ratio to measure the quality of such predictions. In this chapter, we start by examining the 

empirical results using perfect forecasts. We then review the problems related to pair-wise modeling that 

we have observed based on current practices and research. We conclude the chapter with the contributions 

of this research and outline of the report.  
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1.1 Interesting Results from an Empirical Study Using Perfect 

Forecasts 
Before we go further, there are some interesting results that we observed with the use of perfect forecasts. 

Using perfect forecasts means we assume we have the perfect foresight of future asset returns, that is, we 

used the actual asset returns as our forecasts. While this is not realistic in real life, it does allow us to ignore 

the quality issue of forecasting models and focus on the drivers of portfolio performance. We fed the 

perfect forecasts into the Black-Litterman formula to obtain an expected return vector. This vector was then 

used together with Mean-variance Optimization to construct the test portfolios. 

 

1.1.1 Portfolio Constructed Using Relative Returns Performed Better 

We constructed two global country portfolios: one used perfect forecasts of the individual returns of each 

country in the benchmark universe, and the other used the relative returns of every country pair. We call 

these two portfolios the Individual Model and Pair-wise Model respectively. Both portfolios were 

benchmarked against the world equity index. The portfolios were held for three months and rebalanced at 

the end of the holding period. We tracked the portfolios performances for seven years: 

• Individual Model’s annualized value-added is 5.11% compared to the Pair-wise Model’s 7.75% 

• Individual Model’s Information Ratio is 2.43 compared to the Pair-wise Model’s 4.83 

• Individual Model out-performed the benchmark returns 89.3% in the seven-year period. The Pair-

wise Model out-performed the benchmark returns in every quarter over the seven-year period. 

 

The results suggest that there are some merits in using a pair-wise approach to portfolio construction. The 

intuition behind is likely due to the fact that in constructing a portfolio with a given set of investment 

universe, it is the trade-off between each asset pair that helps to decide which asset to be allocated more 
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weights and hence a good set of relative returns forecasts help to make such trade-off decision. This makes 

the pair-wise approach a more natural and intuitive portfolio construction approach. 

 

1.1.2 Directional Accuracy Drives Investment Performance 

The previous test suggests that portfolios which are constructed based on pair-wise returns are likely to 

generate better performances. In the next test, we want to test how much is the superior portfolio 

performance coming from directional accuracy of the relative returns forecasts.  We constructed a Perfect 

Direction portfolio in which we preserved only the signs of the perfect forecasts. The magnitudes of the 

forecasts were set to be the historical average. For example, if the relative return is “predicted” to be 

positive, we will use the average positive relative returns over the previous five years as the magnitude. 

Like before, we put these forecasts into the Black-Litterman framework and used optimizer to find the 

weight of the holdings. 

 

The results clearly point to the fact that it is “directional accuracy” that matters most: 

• Perfect Direction delivers an annualized value-added of 7.23% as compared to the 7.75% of the 

Perfect Forecast. 

• Perfect Direction’s Information Ratio is 4.41 as compared to Perfect Forecast’s 4.83 

• Perfect Direction out-performed the benchmark returns every quarter for the seven-year period, just 

like the Perfect Forecast. 

 

Considering the fact that the Pair-wise Model used Perfect Forecasts (i.e. perfect direction and magnitude) 

and only marginally better than the Perfect Direction portfolio, it is clear that bulk of the out-performance 

is actually driven by directional accuracy and not magnitude.  
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Impact of Forecasts’ Magnitudes on Portfolio Performances 

To see the impact of the magnitudes of the forecasts on the perfect direction portfolio, we constructed 

different perfect direction portfolios by varying the magnitudes of the forecasts. We started with a 1% 

relative performance and increase it to 50%. The annual value-added for this group of portfolios ranges 

from 6.40% to 8.20%, while the Information Ratio ranges from 3.91 to 5.15. We see that even the worst 

portfolio is still able to generate a performance that is about 80% of the perfect forecasts portfolio:  

 

Figure 1-a: Impact of Magnitudes of Forecasts on Perfect Direction Portfolios 

 

While this clearly supports our belief that it is direction accuracy of the relative returns forecasts that drives 

the portfolio performances, it also shows that magnitude of forecasts does have some impacts on the 

portfolio performance. The impact may be small but certainly not negligible.  

 

1.1.3 Magnitude of Forecasts Determines Bet Size 

Consider two pair-wise forecasts: (1) asset A to out-perform asset B by 10%, and (2) asset C to out-perform 

asset D by 1%. Assuming all other considerations are the same, including the level of confidence in the 

forecasts, the first forecast is more likely to result in a larger bet than that of the second since we expect it 

to generate a larger out-performance. 
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Hence we see that it is “direction” that determines the type of trades (buy or sell, long or short), it is the 

“magnitude” that determines the size of the trades. In other words, “direction” decides whether the trade 

ended up in profit or loss, and “magnitude” determines the size of the profit or loss.  

 

1.2 Directional Accuracy Drives Investment Profitability 
This simple empirical study using perfect forecasts highlight three important points: 

1. Accuracy of pair-wise relative returns is more important than accurate returns of individual 

assets in the quantitative approach in constructing portfolio 

2. Directional accuracy is the driving factor behind the performance of the portfolios 

3. Magnitude of forecasts do have some values in determining portfolio performance 

 

The key observation from the empirical study using perfect forecast is the importance of directional 

accuracy in portfolio construction. Numerous studies were also done to confirm the importance of 

predicting correct direction in the area of financial forecasting, for example, Yao and Tan (2000), Aggarwal 

and Demaskey (1997), Green and Pearson (1994) and Levich (1981) all supported the claim with empirical 

studies.  

 

While most of these studies focus on the direction- or sign-prediction of individual assets, we believe that 

the focus should be the direction- or sign-prediction of the relative returns of asset pair. In constructing 

portfolio with the expectation to beat a benchmark, the ability to know which of any two assets will 

perform better is important, that is, the ability to pick the winner for any two assets. This is because it 

allows the investor to make the “trade-off” decision relating to the two assets. This decision is determined 

by the direction of the relative returns forecast.  
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While directional accuracy is the main driver for portfolio performance, we also see that forecast’s 

magnitude should not be ignored completely. Thus we think that when assessing the quality of pair-wise 

forecasts, the ideal scoring measure should take into consideration the magnitude of forecasts. The pair-

wise framework and Similarity Ratio are built with these two ideas as the underlying concept. 

 

1.3 Observations from Current Practices and Research 

1.3.1 Modeling of Individual Asset Return is not Necessary the Best Approach 

Modeling of financial assets’ expected returns has been the cornerstone of conventional quantitative 

approach to construct an equity portfolio. Researchers and practitioners aim to find the set of factors that 

best model the behavior of assets’ returns. Individual forecasting models are constructed based on the 

selected set of factors to predict future returns for individual asset or market. Information Coefficient1 (IC) 

is often used as a gauge to assess the quality of the forecasting model.   

 

Intuitively, we know that it is the asset pairs’ relative returns that help one to decide which asset to over-

weight and at the expense of which asset. This was further confirmed by our empirical study using perfect 

forecasts. This raises doubts that if modeling of individual asset return is the best way forward in 

constructing a country asset allocation portfolio. 

 

1.3.2 Pair-wise Modeling is Rarely Used in Portfolio Management 

The idea of pair-wise strategies is to look at the assets a pair at a time. The most common form of 

implementing such strategy is the pair-trading of stocks, or relative value trading. Typically, the trader will 

first select a pair of stocks, for example, based on the stocks’ co-integration, then long the security that (he 

thinks) will out-perform and short the other.  

                                                      
1 IC is defined as the correlation coefficient between the forecasts and the actual returns over time. 
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There seems to be limited usage of the pair-wise strategies to construct active portfolio. Among the limited 

literature found, Alexander and Dimitriu (2004) constructed a portfolio consisting of stocks in the Dow 

Jones Index based on the co-integration of the index and the constituent stocks. However, this approach 

still does not take into consideration any potential relationship between the stock-pairs. Also, the scope of 

the implementation is restricted to Dow Jones’ 30-stock universe. 

 

Qian (2003) was another one who suggests the use a pair-wise strategy in tactical asset allocation. In his 

paper, he proposes the use of Pair-wise Information Coefficient (Pair-wise IC) as the means to influence 

asset weights. In the case where there is no significant Pair-wise IC, his model reverts back to use the 

Information Coefficient of individual asset model. However, there is no extensive empirical evidence 

provided on this pseudo pair-wise approach.  

 

In general, pair-wise strategies are uncommon in active portfolio management and country asset allocation. 

This is possibly due to the lacking of a good scoring measure to help picks the right set of pair-wise relative 

returns forecasts as, and we will show, that the commonly used IC or Pair-wise IC may not work under a 

pair-wise framework. 

 

1.3.3 No Known Scoring Measure that Emphasizes on Directional Accuracy 

With successful pair-selection playing an important role in a pair-wise framework, it is important that we 

have a scoring measure that emphasizes on direction accuracy. Given the limited application, if any, of 

pair-wise modeling, it is not surprising to find that there is no scoring measure designed specifically for 

such purpose. The most commonly used measures are hit rate and distance-based measures (e.g. IC). Qian 

(2003) suggest Pair-wise IC but this measure also does not take into consideration the directional accuracy. 

In addition, it is susceptible to the existence of outliers, as we will show in 3.2.3. If the generally accepted 

Information Coefficient is not an ideal measure in the pair-wise world, what would be?  
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1.3.4 Regression-based Forecasting Model Commonly Used in Individual 

Model Construction 

Regression is not a popular choice in academia research on forecasting model, and it is often used as a 

inferior alternative compared to a more complex approach such as neural network and support vector 

machine. Despite this, regression remains a popular approach in the finance industry because its simplicity 

makes it easier to interpret and explain the models.  

 

We have used regression to generate the forecasts required for our empirical study. Although the focus of 

our research is not to find the best forecasting model, we want to study if the commonly used forecasting 

approach still works in a pair-wise environment. While regression model is commonly used in forecasting 

of individual asset returns, does it also work in the pair-wise framework? 

 

1.4 Contributions of this Research 
Against the backdrop of a lack of application of pair-wise strategies in active portfolio management, our 

research works provide:  

• a generic framework to implement pair-wise strategies 

• an innovative scoring measure that emphasizes on directional accuracy of relative returns forecasts 

• a comparison of linear forecasting model built using robust regression against other classification 

techniques to predict signs of relative returns. 

 

Forecasting model is often proprietary and highly guarded by investment houses. The model is a reflection 

of institutional research and creativity. We emphasize that the pair-wise framework does not depend on the 

type of forecasting models used to predict relative returns or the way to transform the forecasts into a 

portfolio. What is important is that we recommend that forecasting model should be built to predict relative 
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returns, and use Similarity Ratio as a scoring measure to quantify the forecasting quality. Thus the 

framework allows investment firms to retain their respective competitive advantage in generating forecasts 

and portfolio construction while incorporating the pair-wise framework that we propose. 

 

1.4.1 A Framework to Implement Pair-wise Strategies 

The outline of the framework to generate pair-wise forecasts is as follows: 

1. Identify a set of factors to use 

2. Decides the criteria to be used to determine the predictive power of the factors 

3. For each asset pair, choose the best factor and construct the model 

4. When all the forecasts for the possible asset pairs have been generated, use Similarity Ratio to 

rank the pairs. 

5. Select the pairs to construct the portfolio 

 

We can see the framework as consists of the two stages: 

• Stage 1: For each of the possible pair of assets, construct a contextual model that forecast the 

relative returns. 

• Stage 2: Screen the best models based on Similarity Ratio and used the selected forecasts to 

construct the portfolio.  

 

The results of the first stage will be the pair-wise forecasts for all possible combinations of two assets. In an 

N-asset investment universe, there will be ( ) 21−× NN  possible combinations. In order to construct a 

portfolio with a view on each asset in the investment universe, we will need only a maximum of ( )1−N  
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pair-wise forecasts. Thus the pair-wise model leads to a large redundancy of forecasts. As the number of 

assets gets larger, more forecasts will be redundant. Thus how stage 2 being carried out will have a 

significant impact on the success of the pair-wise model. This hinges on the choice of a scoring measure to 

select the right set of pairs.  

 

1.4.2 Innovative Scoring Measure that Emphasizes on Directional Accuracy 

As acknowledged by Alexander and Weddington (2001), the “selection process is perhaps the hardest but 

most important part” in forecasting.  We designed a scoring measure to quantify the forecasting quality of a 

model. The scoring mechanism embedded in Similarity Ratio uses directional accuracy as the main 

consideration when assigning a score, and supplement with the magnitude of forecast.  

 

For an actual-forecast pair ( )fa, , Similarity Ratio is defined as: 

Similarity Ratio ( )fa,  =

⎪
⎪
⎪
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Similarity Ratio for a model will be the average Similarity Ratio for every actual-forecast pair generated 

from the model.  

 

The intuition of Similarity Ratio can be seen geometrically; let’s consider a Cartesian plane with the x-axis 

as the actual values (a) and the y-axis as the forecast (f) values, then each actual-forecast pair, (a, f), can be 

plotted on the Cartesian plane. The line xy =  contains all the points where the forecasts matched the 

corresponding observed values. The line xy −=  contains all the forecasts that are directly opposite of the 

observed values.  
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Intuitively, a point that is nearer to the xy = line is good in terms of the accuracy of the forecast. On the 

contrary, if a point is near to the xy −= line is bad. Thus we called the lines xy = and xy −= as the 

Good line and Bad line respectively. Conventional distance-based measures (e.g. Information Coefficient) 

rely on the projections to the Good line but we recognized that this alone is not sufficient. Similarity Ratio 

was derived based on the distances of the orthogonal projections of each actual-forecast pair to BOTH the 

Good and Bad lines. 

 

Not only did the portfolios constructed using Similarity Ratio out-performed other scoring measures 

empirically, Similarity Ratio also exhibits important characteristics of an ideal scoring measure: 

• Model with a higher accuracy in forecasting the direction of relative returns (hit rate) has a higher 

score. 

• If there are two models having the same hit rate, higher score will be given to the model with more 

accurate forecasts, that is the deviations from actual values observed is smaller. 

• The model’s score is not susceptible to the presence of outlier in the sample. 

 

We surveyed and tested various scoring measures such as Information Coefficient, Theil’s Forecast 

Accuracy Coefficient, etc. We found that none of them meets all the criteria we have specified for the ideal 

measure. Thus we propose to use Similarity Ratio as the scoring measure for our pair-wise framework. 

 

1.4.3 Comparison of Regression Model with Classification Techniques 

We conducted extensive empirical study to find evidences to support that regression approach still works in 

the Pair-wise framework. The empirical results provide invaluable evidences to show that the portfolios 

constructed using regression-based forecasting models out-performed those constructed using classification 
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techniques such as Neural Network, Discriminant Analysis, etc.  In addition, this study also shows that it is 

possible to incorporate different forecasting models into the framework and this supports our claim that the 

framework is model-independent.  

 

1.5 Outline of this report 
The rest of this report is organized as follows:  

• Describes the two stages in contextual pair-wise framework: (1) forecasts generation for all asset 

pairs and (2) pair-selection 

• Reviews different scoring measures and provides a full description of the Similarity Ratio 

• Presents the approach and implementation details for the empirical study to test the pair-wise 

framework and Similarity Ratio.  

• Lists the evaluation criteria that will be used to measure the performances of the test portfolios 

• Presents the results of the various empirical tests, including the performances of the model 

portfolios. 

• Reviews the application of classification techniques in the pair-wise framework. Different 

classification techniques were used to construct test portfolios and the results were presented in this 

chapter.  
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2 Contextual Model in the Pair-wise Framework 

The motivation behind the pair-wise framework is that we recognize it is the “directional accuracy” of an 

investment decision that determines its profitability. We feel that the best approach to obtain better 

“directional accuracy” in forecasting is to model relative returns instead of absolute returns. We propose 

the main objective of forecasting should be to predict the “direction” or sign of relative returns. Relative 

returns forecasts should not be a by-product of asset returns modeling, as in many of the forecasting 

models. 

 

In addition, we found that each asset pair is different and that one should not be tempted to use a single 

model to forecast the relative returns for all asset pairs. Instead, one should have a contextual model for 

each pair. The pair-wise framework consists of two stages; first is to have a contextual model for each asset 

pair, the second stage is to select the best forecasts to be used in constructing portfolios. This chapter 

describes the contextual modeling and the framework. We also cover the details on how we implemented 

the two-stage framework for our empirical study.  

 

2.1 The Need for a Contextual Model 

2.1.1 What if there is no Contextual Modeling? 

In constructing forecasting models, two questions that need to be answered are: 

1. What factors should we use to construct the forecasting model for each asset pair? 

2. How often should we review the efficacy of these models? 

 

To answer these questions, one will need to do extensive back-testing. However, that does not mean that a 

set of factors that performed well during back-testing will translate to outstanding portfolio performance 

going forward. The problems could be due to data snooping, structural breaks, etc.  
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Even if the models do work during the initial period, one will need to decide on when the models should be 

reviewed. Had one waited for the model to break before reviewing, it may be too late as the damage to the 

portfolio performance may be too great by then. Without contextual modeling, it is analogous to having an 

“expiry date” for the models and yet no one knows when it is until it is expired – this may mean great 

financial loss.  

 

Since no one knows when a model will actually “expired”, it makes sense to consider it as only good-for-

one-use, and that each time one needs a model to generate forecast, reconstruct the model building process. 

This is what contextual model proposes. 

 

2.1.2 Empirical Study on Indicator’s Predictive Power 

To find empirical evident to support our claim of a contextual model, we made use momentum-based 

indicators1. We identified three sets of indicators commonly used in the publications related to momentum-

based indicators: 

• Short term indicators = 1-, 2-, 3-month returns 

• Medium term indicators = 6-, 9-, 12-month returns 

• Long-term indicators = 24-, 36-, 60-month returns 

 

We classified “short term” and “medium term” indicators as “positive momentum”, and we expect indices 

that exhibit these characteristics to continue their current trend. We considered “long term” as an indication 

that the market is positioned for a reversal in current trend. We expect the relationship between the reversal 

indicators and future returns to be negative hence we reversed the sign of the indicators.  
                                                      
1 A detailed review of the momentum indicators can be found in the appendix 
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We denote the indicators as Im, where m ∈{1, 2, 3, 6, 9, 12, -24, -36, -60}. We use the negative sign to 

distinguish the momentum and reversal indicators. When referring to the indicator value for a particular 

time period, t , we add a subscript to it. That is, mttm rmsignI −= )(, . For example, 60,60 −− −= tt rI  and 

3,3 −+= TT rI , where 
t

tT
tT p

ppr −
=−

 and Tp is the price level at time T. 

 

Definition of Predictive Power of Indicators 

To determine if an indicator Im is to be included as an input factor to the forecasting model, it needs to have 

explanatory power to predict the direction of the returns h-period ahead. We define the predictive power of 

the indicator as the number of times the indicator correctly predicted the direction and expressed it as a 

percentage to the total number of predictions made. We call this percentage Classification Hit Rate for the 

indicator, or simply Hit Rate.  

 

The direction of the relative returns is indicated by the sign of the returns. A positive sign indicates an out-

performance while a negative sign indicates an under-performance. Hence if the signs of two values, say x 

and y, are the same, their product will be greater than zero. 

 

From a data and implementation perspective, we defined Sign Test as follows:  

SignTest (x, y) =  
⎩
⎨
⎧
0
1

 
( )( )
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yxif 0>

 

 

Where Ryx ∈,  

 

Lastly, we define: 
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Where T = number of sample data  

 

Hit Rate is simple, effective and intuitive. We believe that it is a good measure for the predictive power of 

the indicators. Some other names used for Classification Hit Rate are Directional Change (Refenes 1995), 

Hit Ratio (Huang et al 2005) and Directional Symmetry (Tay and Cao 2001).  

 

Result 1: Indicator’s Predictive Power Changes over Time 

The historical hit rates of each indicator in predicting the direction of the relative returns of the EU/ AP pair 

are plotted in Figure 2-a.  
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Figure 2-a: Historical Hit Rates for Various Indicators for EU_AP Pairs 

 

We see that while the indicators generally stay relevant and effective for a certain period, the length of the 

periods vary from indicator to indicator. For example, we see that the predictive power of I-24 diminishes 
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over time while I6 gets better in later part of the sample period. This suggests that having a fixed period to 

review the efficacy of the indicators may not be able to capture failing indicator, or include the more 

effective indicator in the forecasting model. This study supports the need to have a contextual model where 

the most appropriate indicators are used at the time when investment decision is to be made. 

 

Having a fixed period to review the efficacy of the indicators in forecasting is not necessary a good idea. In 

fact, imagine an investor did some back-testing at end of 1996 and found that I-24 to be an excellent 

indicator to use in constructing factor model. If he had not review the predictive power of the indicators 

regularly, he will be hurt by the poor performance of the indicators.  

 

Result 2: Different Indicators Work for Different Asset Pairs 

There is no universal set of indicators that is suitable for all the asset pairs. Figure 2-b shows the historical 

hit rates of I6 for all asset pairs. While it is consistently a good indicator in predicting the direction of North 

America’s returns relative to Japan, it is obviously not a suitable candidate for the JP/AP pair: 

Historical Hit Rates for 6-mth Returns in Predicting Direction of All Regional Pairs
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Figure 2-b: Historical Hit Rates for 6-mth Returns in Predicting Direction of All Regional Pairs 
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This brings us to the point where we need to model each asset pair independently. For each asset pair, 

choose the set of indicators that has the best descriptive power of the pair’s relative returns, and use these 

indicators to construct the forecasting model. 

 

2.1.3 Contextual Model Uses the Most Appropriate Set of Indicators for Each 

Asset Pair 

From our preliminary study, we observe the following characteristics of the momentum and reversal 

indicators: 

1. The indicator’s predictive power changes over time. There is no one indicator continue to stay 

the best over a long period 

2. Each asset pair is unique and hence different indicators are needed to model the pair’s relative 

returns 

 

Contextual model requires that one always applies the indicators that are most appropriate at the decision 

time. Every previous model is discarded each time a forecast is to be generated and re-start the models 

construction process and used data available up to that point in time. By doing this, there is no “expiry 

date” to each model. This makes the models less susceptible to data snooping and manipulation. More 

importantly, this can become an on-going process without having to set a review period to re-test the 

efficiency of the indicators. 

 

2.2 Pair-wise Framework is a Two-stage Process 
In our pair-wise framework, we place emphasis on the modeling of relative returns to determine the 

winning asset of each possible pair-wise combination. We recommend using the most appropriate set of 
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indicators available at decision time to construct the forecasting model. A set of evaluation criteria should 

be used to identify the indicators that best explain the pair-wise relative returns. 

 

We mentioned earlier that with the set of factors and the criteria to determine the predictive strength of 

these factors decided, the pair-wise framework is a two-stage process: 

1. Generate forecasts on the relative performance for each possible pairs of assets in the 

investment universe 

2. Select the right set of views to be included in the market view 

 

In Stage 1, a contextual model will be built for each asset pair. All the forecasting models will undergo a 

series of fitness tests and only those deemed “fit” enough will be used in forecasting. Stage 2 of the pair-

wise model is to determine among the fit models, which are the ones that should eventually be fed into the 

optimizer. The next two sections describe both stages. By detailing the implementation considerations we 

have adopted in our research also shows how the framework can be implemented in an investment process. 

 

2.3 Stage 1 – Build Contextual Model for All Possible Pairs 
The pair-wise framework proposed a contextual model to be constructed for each asset pair. The following 

steps outline the approach in which the contextual models are constructed: 

• Select the indicators to use 

• Construct forecasting model to predict relative returns 

• Validate the model 

• Computes the confidence score for the model 
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2.3.1 Select the Indicators to Use 

One needs to decide on a set of evaluation criteria to select a set of indicators. The important point to note 

is that in the selection of indicators, the emphasis is to choose the set of indicators that best predicts the 

direction of the pair-wise relative returns. In our implementation, we have been using hit rate as a measure 

but we don’t rule out other possible evaluation criteria.  

 

For each of the indicators, we compute the hit rate of its accuracy in predicting the winner. We used five-

year monthly data, which gives us a 60-period sample size. Recalled that our set of indicators range from 1-

mth to 60-mth price returns; using a 60-period sample size effectively requires we have at least 10-year of 

monthly data. In addition, we have also reserved seven-year of data for out-of-sample empirical studies, 

thus we are using a full 17-year of data for our analysis.  

 

The number of data points needed in a regression study depends on the size of pool of potentially useful 

explanatory variables available. Kutnet et al (2005) suggest that the rule-of-thumb in deciding the sample 

size and number of variables is that there should be at least 6 to 10 cases for every variable in the pool. To 

ensure that we have sufficient data points to capture the relationship between the predictor and the 

dependent variable, we recommended 20 points per variable. With an in-sample size of 60, we used 

Kutnet’s rule-of-thumb to back out the maximum number of independent variables we can have: 60 ÷ (2 × 

10) = 3. However, we will only consider indicator with a hit rate of at least 50%.  

 

2.3.2 Construct a Forecasting Model 

Pair-wise framework does not specify the forecasting approach to use. What it does specify is that the 

forecasting models should emphasize on sign-prediction of asset’s relative returns. In our implementation, 

we build a linear model and estimate the factor loadings using robust regression. We have also explored 
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other forecasting techniques, such as Neural Network, Discriminant Analysis, etc. The empirical results of 

these classification techniques can be found towards the end of this report. Here we focus only on the 

regression model. 

 

Supposed the indicators selected are I1, I3 and I6. Then the linear model is as follows: 

6332110
ˆ IIIY ββββ +++=  

Where 

=Ŷ Forecast of relative returns 

 

Robust Regression is used to Estimate Factor Loadings 

Financial markets can experience sudden moves and deviate from the structure observed from the past data. 

This results in outlier data which affects the effectiveness of the regression model. The figure below 

displays an error bar plot of the confidence intervals on the residuals from a least squares regression of 

Japanese Yen one-month volatility forecast with historical and implied volatilities as the predictors. The 

plot represents residuals as error bars passing through the zero line. The outliers, those that lie outside the 

95% confidence intervals, are marked in red. 
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Figure 2-c: Error bar plot of the confidence intervals on the residuals from a least squares regression of daily 
FX returns 

  

To down-weigh the undesired impact of these outliers in the observations, robust regression is used to 

estimate the regression coefficient of the contextual model. Robust regression techniques are an important 

complement to classical least squares regression. While least squares regression weights all observations 

equally, a robust method applies a weighting function to reduce the impact of outliers in the observations.  

 

Robust regression techniques available are least trimmed squares (LTS) regression, least median squares 

(LMS) regression, least absolute deviations (L1) regression, and M-estimates of regression. The different 

regression techniques are briefly described in the appendix (for a more detailed discussion, refer to Draper 

and Smith 1998).  In this paper, Andrew’s wave function is used for the M-Estimation, with the tuning 

constant set to 1.339. 
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2.3.3 Validate the Model 

Each constructed model is put through a series of fitness tests to ensure that it is stable and that the forecast 

generated is good for use. This quality assurance process will reject a model if it failed any of the tests.  

 

The list of statistical tests used to determine the model’s fitness is as follows. The statistical tests are 

conducted at a 95% confidence level: 

• Test the stationarity of dependent variable 

• Test the significance of the regression coefficients 

• Test the normality and independence of model residuals 

 

Test the Stationary of Dependent Variable 

The foundation of time series analysis is stationarity, either strictly or weakly stationarity. A process that is 

weakly stationary implies that the time plot of the data would show that the values fluctuate with constant 

variation around a constant level. Because it only requires the first and second moments to be constant with 

respect to time, weak stationarity is also called covariance stationarity. In financial modeling, it is common 

to assume asset returns to be weakly stationary, for example, Balvers and Wu (2005). 

 

Even if weak stationarity is an accepted assumption, Tsay (2002) recommends one should check this 

assumption empirically to ensure forecasting model’s stability. We implemented the KPSS1 test, as 

Pretorius et al (2007) did, to ensure that relative returns series that violates the stationarity assumption will 

not be included.   

 

                                                      
1 Kwaitowski et al (1992). 
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In the KPSS test, we compute the test statistics, ( )∑ ∑
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Where  

ir = Asset pair relative returns for time period i 

2σ = Estimate of the long-term population variance of the asset pair relative returns 

r = Mean asset pair relative returns  

T = Number of data period 

 

Intuitively, the sequence of relative returns measures recursively the volatility of the relative returns series. 

High values of the statistics imply that the estimated volatility is unstable, an indication of non-stationarity.  

 

Test the Significance of the Regression Coefficients 

The regression coefficients were tested with the null hypothesis that they are zero against the alternative 

hypothesis that they are not. The t-stats for each regression coefficient are being calculated and only models 

with significant predictors are considered as suitable.  

  

Test the Normality and Independence of the Regression Residuals 

For regression model, the error terms are assumed to be independent and normally distributed, with zero 

mean and constant variance σ2. We apply the following tests to the residuals of each model: 

• Jarque-Bera test – test for normality 

• t-test – test for zero mean 

• Durbin Watson test – test for independence 
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2.3.4 Generate Confidence Score for the Model 

The quality of a forecast is dependent on the quality of the forecasting model that generated the forecast. 

Qian (2003) correctly pointed out that information gained from the forecasting process should be used in 

the portfolio construction process. This can be achieved if the scoring measure is constructed based on the 

out-of-sample track record of the forecasting models. The best way to assess the quality of a model is 

indeed the model’s track record of out-of-sample forecasting accuracy. Based on the track record, which is 

a series of model’s predictions and the corresponding observed values, we construct a confidence score that 

is ranges from “0” to “1”, indicating “completely no confidence” and “perfectly certain” respectively.  

 

Methods of Data Partitioning 

We shall call the data used for obtaining this track record the semi-out-of-sample. In our implementation, 

we considered a few options in data partitioning: 

  

Cross-validation 

Cross-validation is the most common way of partitioning the data set into in-sample and semi-out-

of-sample. In its most elementary form, cross-validation consists of dividing the data into m 

samples. Each sub-sample is predicted via the classification rule constructed from the remaining 

(m-1) sub samples, and the set of predictions and the corresponding observations formed the semi-

out-of-sample set. Stone (1974) describes cross-validation methods for giving unbiased estimates 

of the error rate. As for what should m be set to, it will depend on the context of work, for example, 

Qian and Rasheed (2007) set m to 5 when building multiple classifier for stock prediction. 

 

“One-Shot” Train-and-test 

The commonly seen procedure of splitting the sample data into training and testing set is a special 

case of cross-validation with m = 1. Michie et al (1994) termed this as the “one-shot” train-and-test. 
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This procedure requires large samples. Michie et al (1994) suggest that one should only use this 

method if they have more than 1000 data points in the training set. 

 

Leave-one-Out or Holdout Method 

At the other extreme of cross-validation, m can be set to the size of the sample set minus one. This 

is the leave-one-out method of Lachenbruch and Mickey (1968), or the Holdout method described 

in Rencher (2002). The Holdout method is an improved version of the sample-splitting procedure. 

In the holdout procedure, all but one observation is used to compute the classification rule, and this 

rule is then used to classify the omitted observations. 

 

Generating the Confidence Score 

We adopted the Holdout method so that we can make full use of the sample data we have. Supposed we 

need to construct a model at decision time T (that is, the time period where the decision is to be made), our 

sample period is from (T – S – h + 1) to (T – h),  

 

Where  

S = number of sample points 

T = decision time 

h = holding period, or look-ahead (forecast) period 

 

Using the Holdout method, we exclude one set of data values (which include the actual value of dependent 

variable and a set of values for the independent variables) and use the rest of the data points to estimate the 

coefficients. If there are a total of S sample points, then the coefficients are estimated using the rest of the 

(S-1) data points. The indicator values from the excluded point were use to generate a forecast, and together 

with the actual observed value for the dependent variable in the first data period, we obtained the one 

forecast-actual pair. The procedure is repeated until each data point had been excluded once, and at the end 
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of the procedure, we have generated S pairs of forecast-actual values. These data are then used to calculate 

the confidence score of the final model. To generate the final forecast, all the sample data are used to 

construct the final model. Throughout the whole process, the same set of momentum and reversal indicators 

is used. 

  

2.4 Stage 2 – Select the Pair-wise Forecasts to Use 

2.4.1 Probability of Selecting Right Pairs Diminishes with Increasing Number 

of Assets 

Percentage of Pairs Needed Falls with Increased Number of Assets
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Figure 2-d: Pair-wise Forecast Usage Level for Different Number of Assets in Universe 

 

The maximum number of views needed in an N-asset investment universe is N-1, out of the possible 

( ) 21−× NN  pairs. The number of pairs increased exponentially with every additional asset in the 

universe. This difference in growth rate means that sieving the correct views becomes more difficult as the 

number of assets in the universe increases. Figure 2-d shows that while the number of pairs increased 
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exponentially with each additional asset, the proportion of these pairs needed to formulate the market view 

decreased exponentially as well. For example, for a 10-asset investment universe, we need only about 20% 

of the number of pair-wise views generated. In other words, we have a 20% chance of picking the right 

pairs if we pick them randomly.  

 

MSCI World has 23 countries, and MSCI Europe is formed by 16 countries – this means that our chances 

of picking the right pairs for our country allocation portfolios is about than 10%. This highlights the 

importance of having a good scoring measure that allows us to rank the relative returns forecasts for all the 

pairs.  

 

2.4.2 Pairs Selection Consideration and Algorithm 

Pairs Selected to Avoid Cycles 

The selection process is done based on the confidence score of each view. We start screening the forecasts 

from the highest to the lowest. The screening process stopped if any of the following conditions is met: 

1. All of the assets in the investment universe are being represented. 

2. There is no more forecast that has a score higher than 0.5 

 

Each forecast is the relative returns of one asset over another asset, thus we say that an asset is being 

represented if it is one of the two assets that were in a selected forecast. Supposed L contains the list of 

assets after each iteration of screening, then if the pair of assets in the current iteration is not a sub-set of 

the set L, it means that at least one of the two assets are not an element of set L, thus we can include the 

asset in set L. By doing so, we avoid having “cycles” or “deadlock” in our market view. Having cycles 

would make the market view meaningless. For example, consider the three views are those with highest 

confidence scores: 
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• View 1: Asset A out-performs Asset B 

• View 2: Asset B out-performs Asset C 

• View 3: Asset C out-performs Asset A 

 

In addition, we impose a hurdle rate of 0.5 (that is, 50% confidence level) for the confidence score to 

prevent our process from including non-contributing forecasting model. However, this would mean not all 

assets in our investment universe will have a view representing its relative performance to another asset. 

 

Algorithm to Select Pairs 

The following algorithm outlines the selection process to select the set of forecasts that is required to 

represent the views of the relative performance of all the assets: 

 

L = Empty Set 

U = Set of assets in the investment universe 

V = Array of forecasts sorted in descending order of confidence score 

W = Empty Set 

P = Array of asset pairs with corresponding score in V 

FOR each view w in the array V 

 IF L = U THEN 

  EXIT FOR 

 END IF 

P = the two assets in the pair in view w 

IF Score of w ≥ 0.5 THEN 

 IF P ⊄  L THEN 

  L = L ∪  P 

  W = W ∪  w 

 END IF 
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END IF 

END FOR 

 

At the end of the process, set W contains the list of views that were selected to form the market view, and 

set L contains the list of assets from the investment universe that are being represented in the views set W.  

 

Minimum Number of Assets in the set of Selected Views  

As one can see from the algorithm above, there is no requirement that there must be at least one view or 

forecast to be selected. In the scenario where no view has a confidence score that is higher than 50%, it will 

result in an empty set being return. There is no part of the algorithm that enforces all the assets must be 

represented in the set of views selected -- again the selection is determined by the confidence score. 

 

2.5 Critical Success Factor to the Pair-wise Framework 
The contextual modeling stage of the pair-wise framework generates relative returns forecasts for all the 

possible combinations of asset pairs in the investment universe. As we do not require all the forecasts, 

hence we require the second stage to select the best set based on our confidence to all the models.  

 

As we based our selection on the confidence score, the implicit assumption is that the confidence score is a 

good reflection of the quality of the forecasting model. By selecting the views generated by models with 

highest score possible is selecting those best views that we can use to formulate our market view. The 

reliance on this assumption makes the choice of scoring measure the most important part of this research. 

The next chapter is devoted for the derivation of the scoring measure used in the pair-wise process. 
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3 Similarity Ratio Quantifies Forecast Quality 

We have seen the importance of having a good scoring measure in the pair-wise model to select the right 

set of pair-wise forecasts. This score reflects our confidence in the forecasting model, and hence our belief 

of the likelihood of the forecast being correct. This chapter reviews some potential candidates for the 

scoring measure. We then proposed a new measure that was based on comparing the distances of two 

orthogonal projections. We called this innovative measure Similarity Ratio, and we will present the full 

derivation of this measure in this chapter.  

 

3.1 Scoring Measure for a Forecasting Model 

3.1.1 Assessing Quality of a Point Forecast 

Suppose there are three models and each forecasted the performance of asset A relative to asset B for a 

holding period of three-month ahead:  

Model Relative Returns 
Forecast Interpretation 

1 6% Asset A out-performed asset B by 6% 
2 3% Asset A out-performed asset B by 3% 
3 -0.5% Asset A under-performed asset B by 0.5% 

 

At the end of the holding period, we observed that the asset A out-performed asset B by 1%. With this 

information at hand, we can assess the forecast quality of each of the three models. Clearly models 1 and 2 

had done better than model 3 because both models correctly predicted that asset A will out-perform asset B. 

If we have to choose between the two models then we will have to compare to see which forecast is closer 

to the actual value observed. Model 2’s forecast of 3% out-performance is much closer to the actual value 

of 1%, as compared to model 1’s forecast, thus it is clear that model 2’s forecast is more accurate.  
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Let’s look at the differences in the magnitude between each forecast and the observed value. Model 1’s 

difference is 5%, which is more than three-times the difference of model 3’s forecast and actual value. But 

we know that trade executed based on model 1’s forecast will result in profit of 1% simply because it had 

correctly predicted the winner of the two assets.  

 

Trade executed based on model 3’s forecast will result in a loss of -1.5%. However, the difference in 

magnitude suggested that model 3 is better than model 2 since the difference between the forecast and 

actual of 1.5% is less than 2% of model 2.  This is the main reason why most distance-based measures do 

not work well in the pair-wise framework is that the focus is on measuring the magnitude of deviation and 

not directional accuracy. 

 

The above observations lead to the following conclusions on assessing the quality of forecast: 

• Correctly predicted direction is more important than having small deviation between forecast and 

actual value but with the direction wrong. 

• The size of the difference between forecast and actual value can be used to distinguish two 

forecasts of the same direction (e.g. both correctly predicted the direction of the relative returns or 

both got it wrong) 

 

3.1.2 Assessing Quality of a Collection of Point Forecasts 

To assess the quality of a forecast model, we can look into the track record of the model’s out-of-sample 

forecasts. From the forecast/observations pairs (samples) pooled over time we can get a reliable verification 

statistics. This can be done by treating the sample as a whole and study the statistics of the sample, for 

example, correlation between the forecast and observed values. Alternatively, one can also get pooled 

results by aggregating verification statistics over each sample point.  
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Scores that Treats the Sample as a Whole can be Skewed by Outliers 

The problem with treating the sample of actual-forecasts pairs as a whole to obtain a statistical measure, 

e.g. correlation, is that it can be skewed by the presence of outlier. This is illustrated in Figure 3-a where 

the scatter plots were plotted using exactly the same set of data except for one point. The correlation for the 

first sample (the scatter plot on the left hand side) is 0.13. The presence of an outlier moved the correlation 

to 0.65, as can be seen from the upward trending line in the scatter plot on the right hand side. 
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Figure 3-a: Illustration of the Impact of Outlier had on Correlation 

 

Averaging Individual Score Not Affected by Outliers 

Suppose we are able to generate a score between 0 and 1 for each of the actual-forecast pairs, and obtained 

the score for the sample by averaging the score of each point, we are able to by-pass the problem of 

outliers. For illustration, let’s assume we have a 60-pair sample, each with a score of 0 or 1. The average 

score of the sample increases linearly with the number of perfect scores present in the sample: 
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Figure 3-b: Illustration of Number of Points with Perfect Score had on Average Score  

 

Observations 

From the above, we see that for a scoring measure to be less susceptible to the presence of outliers, it would 

be necessary for the scoring measure to be able to treat each sample individually. To obtain an aggregate 

for a set of samples, the best way is to get a simple average of individual sample’s score. 

 

3.1.3 Properties of an Ideal Scoring Measure 

The ideal scoring measure that quantifies the quality of a forecasting model should have the following 

properties: 

• Single score that is range bound between 0 and 1. 

• Model with a higher accuracy in forecasting direction, that is has a higher hit rate, should have a 

higher score. 

• If two models have the same hit rate, higher score will be given to the model with more accurate 

forecasts, that is the deviation from actual value observed is smaller. 

• Able to score each pair of forecast/ observed values. 
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• The model’s score is not susceptible to the presence of outlier in the sample. 

 

Based on the above, we identified three evaluation criteria for our scoring measure: 

• P1. Measures directional accuracy of relative returns forecasts. 

• P2. Uses magnitude of forecast only if directional accuracy of direction is not sufficient in 

distinguishing the quality of the two models 

• P3. Has an aggregated score that it is not susceptible to outlier 

 

This set of criteria will be used for us to evaluate the suitability of each candidate of the scoring measure. 

Ideally, we would want to have the scoring measure to be able to incorporate the above properties into a 

single score.  

 

3.2 Review of Currently Available Scoring Measures 
Now that we have identified the properties of an ideal scoring measure, we can start our search for potential 

candidates. Forecasting is a common tool used in many areas, and there are different measures used for 

measuring the forecast quality. The most common measure in the financial industry is the Information 

Coefficient, which is the correlation between the actual and forecast series. We also looked beyond 

financial industry and we found possible candidates such as Theil’s Forecast Accuracy Coefficient (sales & 

marketing research) and Anomaly Correlation (climatology).  In subsequent sections, we state the 

definition of these measures and briefly describe their strengths and weaknesses.  

 

Notation 

if  = Forecast for thi sample 



 54

ia  = Actual observed value for thi sample.  

Φ  = A collection of actual-forecasts over the test period, ( ) ( ) ( ){ }TT fafafa ,,...,,,, 2211  

T = Size of the data sample, or number of ( )ii fa ,  pairs.  

 

For simplicity, we will drop the subscript i if it is not necessary, that is, we will use ( )fa,  instead of 

( )ii fa , . 

 

3.2.1 R2 

Alexander (2001) points out that statistical-based measure tends to favor models that are more stable and 

have less wild fluctuations. However, more stable predictions usually mean more rational forecasts to the 

investors and this helps to make them feel more confident. For this reason, we included a candidate from 

this family of measures in our study as a means for comparison even Alexander (2001) cautions that using 

it as the sole evaluation criteria in unlikely to distinguish the winning model. 

 

Since regression is used to estimate the coefficient of our forecasting models, we have selected the 

goodness-of-fit measure, R2, as one of the candidates. It is commonly used in regression analysis and it has 

a range of 0 and 1, which matches that of the confidence score which we are looking for. Thus we can set 

the score to the value of R2: 

Score = R2 

 

3.2.2 Hit Rate 

Hit Rate is simply the ratio of right “hits” to the total number of predictions made. In our context, it 

measures the accuracy of a model’s ability to forecast the direction of the relative returns. This is the most 

important criteria and certainly it meets property P1 of our ideal scoring measure. There are some other 
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fancy names given to Hit Rate, such as Fraction Same Sign (Wolberg 2000), Hit Rate (Huang et al 2005) 

and Directional Symmetry (Tay and Cao 2001). Throughout this paper, we will use the term “Hit Rate”.  

 

Recalled that we have defined SignTest as follows: 

SignTest (x, y) = 
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Since Hit Rate is already ranges between 0 and 1, thus we can set the confidence score to be the Hit Rate 

itself: 

Score = Hit Rate 

  

While Hit Rate measures the correct direction, it completely ignores the differences between the 

magnitudes of forecast and actual values. This means that it does not measure the quality of the model in 

terms of the size of the directional bet, that is, it does not satisfy property P2. Wolberg (2000) also 

highlighted this weakness of Hit Rate and points out the fact that Hit Rate treats values that are close to 

zeros the same way as it treats those that are far from the zeros may undermine the usefulness of Hit Rate 

for non-dichotomous variables. 

 

Refenes (1995) shares the same concerns and observes that it is relatively easy to obtain a high value in a 

trending market, thus suggested that this statistics should be used with care, or normalize it with its 

standard deviation over at least 30 test runs with different cross-validation sets and/ or initial conditions.  
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3.2.3 Information Coefficient (IC) 

Information Coefficient (IC) is the most commonly used metric in assessing the forecast quality of financial 

models and managers’ performance. For example, Guerard (2006) applies IC and regression on consensus 

analysts forecast and revisions in selecting stocks in Japan and US. Kung and Pohlman (2004) 

recommended using IC to assess managers’ abilities when it comes to exploring alpha opportunities. Qian 

(2003) termed the correlation coefficient between the differences of two forecasts and the difference of two 

actual returns as Pair-wise Information Coefficient. This is consistent with our definition hence we will 

simply use the term “Information Coefficient” in this thesis. 

 

IC is defined as the correlation between the observed values and the forecast.  

IC = 
( )( )
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Where ( ) Φ∈ii fa , . 

 

Because correlation coefficient ranges from -1 to 1, we need to normalize IC to range between 0 and 1 

using the following transformation:  

Score = (IC + 1) ÷ 2 

 

Despite the fact that IC is commonly cited in financial modeling application, Wolberg (2000) points out 

that high degree of correlation may not necessary imply the predicted values are useful. This is particularly 

critical in the pair-wise framework where directional accuracy is the main driver for portfolio performance 

and yet not being catered for in IC. In addition, we have also seen that IC can be skewed when there is 

outlier, as illustrated in Figure 3-a. 
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3.2.4 Un-centered Information Coefficient (UIC) 

One possible improvement to the IC-based score is to use un-centered correlation. UIC is defined as the un-

centered correlation between the observed values and the forecast.  

UIC = 
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Where ( ) Φ∈ii fa , . 

 

With the denominator always greater than zero, the sign of each pair is solely determined by the numerator. 

This means that pairs with forecast and actual are of the same sign will contribute positively to the score 

while those with different signs will subtract from it, this satisfies property P1.  

 

To convert UIC to a score that ranges between 0 and 1: 

Score = (UIC + 1) ÷ 2 

 

3.2.5 Anomaly Information Coefficient (AC) 

The anomaly correlation coefficient has been widely used to verify model predictions in numerical weather 

forecasting models in meteorological centers (e.g. Miyakoda et al 1986; Tracton et al. 1989; Palmer et al. 

1990). The anomaly correlation coefficient is defined as 
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Where c represent the climatological values for the points of a grid at a given time (Radok and Brown 

1993) and ( ) Φ∈ii fa , . 

 

To apply AC in our context, we set c = 0. The resulting formula is similar to the Un-centered Information 

Coefficient. We define Anomaly Information Coefficient as follows: 
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Wolberg (2000) called this special case the Coefficient through the Origin (CCO). 

 

Like IC, AC also ranges from -1 to 1. Hence we apply the same conversion approach:  

Score = (AC + 1) ÷ 2 

 

3.2.6 Theil’s Forecast Accuracy Coefficient (UI) 

Forecasting plays an important role in the area of sales and marketing research, and one measure that is 

commonly used to assess the quality in marketing forecasts is the Theil’s Forecast Accuracy Coefficient. It 

was proposed by Theil in the Economic Policy and Forecast: 
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In case of perfect forecast, ia  = if , for all i, UI = 0. In the event of “maximum inequality” or “worst 

forecast”, we have UI = 1. To map UI to our confidence score, we reverse UI so that we get a “1” for 

perfect forecast and a “0” for anything worse than “maximum inequality”: 

Score = 1 – UI 

 

The main problem with Theil’s Forecast Accuracy Coefficient is the same as with that of Information 

Coefficient (IC) – it does not take into consideration the directional accuracy of the forecasts. 

 

3.2.7 Who is the Winner?  

Recalled that our evaluation criteria tell us that a scoring measure is considered better than another if it 

• P1. Measures directional accuracy of relative returns forecasts. 

• P2. Uses magnitude of forecast only if directional accuracy of direction is not sufficient in 

distinguishing the quality of the two models 

• P3. Has an aggregated score that it is not susceptible to outlier 

 

We mapped the characteristics of various measures against the desired properties that we have specified for 

an ideal scoring measure but we see that there is no one measure that satisfies all three properties:  

Scoring Measure Range of Original 
Definition Scaling P1 P2 P3 

R2 0 to 1 Score = R2 N N N 
Hit Rate 0 to 1 Score = Hit Rate Y N Y 

IC -1 to 1 Score = (IC + 1)/2 N N N 
UIC -1 to 1 Score = (UIC + 1)/2 Y N N 
AC -1 to 1 Score = (AC + 1)/2 Y N N 
UI 1 to 0 Score = 1 – UI N N N 

Table 3-a: Summary of Characteristics of Alternative Scoring Measures 
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At this point, Hit Rate is the most promising candidate with UIC and AC come in close as well. However, 

we see that there is not a single measure that is able to consider the direction as the first criteria and only 

uses magnitude as a tie-breaker (this latter is property P2 of our ideal scoring measure). 

 

What we are going to propose in the next section, we termed it as Similarity Ratio. The Similarity Ratio 

naturally combines both the direction and magnitude of each pair of ia  and if  by taking two orthogonal 

projections. We will see that the Similarity Ratio satisfies all the three properties of an ideal scoring 

measure.  

 

3.3 Definition and Derivation of Similarity Ratio 

3.3.1 The Worst Forecast and Maximum Inequality 

We considered the “worst forecast” as the forecast that has not only predicted the direction of the relative 

returns wrongly, but also has a magnitude that is significantly different from the actual value observed.  

 

To quantify the correctness of the direction is easy as one can simply compare the signs of the two values. 

The tougher question remains on how much we should deem the forecast is significantly different from the 

actual value. The “tolerance level” or threshold should be relative to the actual value. That is, if the actual 

value is large, then it is natural to have a higher tolerance to the forecasted value. On the other hand, if the 

value is small, the threshold should be small.  

 

Like Theil did in Economic Policy and Forecast, who specifies the idea of “maximum inequality”, we have 

limited the error to be one-time the magnitude of the actual value, but with an opposite sign. For example, 

if the actual value is 3%, any forecast that is less than or equal to -3% is considered as worse than the 

maximum inequality and should not be receiving any score. 
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3.3.2 Similarity Ratio for a Point Forecast 

Suppose we have a forecast with the value of f, and when the actual value became available, we observed 

that the value is a. By comparing the values of f and a, it gives an indication of the quality of the forecast. 

Similarity Ratio for a point is a measure that compares the pair of values: 

Similarity Ratio ( )fa,  =
afaf

af
−++

+
  

 

We also wanted to give a score of “0” to any forecast that is worse than the Worst Forecast or Maximum 

Inequality: 

 

If a > 0 and f < 0, and af −≤  , then Similarity Ratio ( )fa,  = 0 

 

If a < 0 and f > 0, and af −≥  , then Similarity Ratio ( )fa,  = 0 

 

The two sets of inequalities can be combined into one as follows: 

If a > 0 and f < 0, and af −≤  , then 022 ≤+⇒−≤ aafaaf  

If a < 0 and f > 0, and af −≥  , then 2aaf −≤  since a < 0, thus we have 02 ≤+ aaf  

 

Thus we can define Similarity Ratio for the point ( )fa, as follows: 
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afaif 02 ≤+
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Similarity Ratio ( )fa,  measures how “similar” is the forecast to the actual value. Naturally, a good 

forecast should have a higher “similarity” to the actual value observed as compared to a bad forecast. The 

perfect score of 1 occurred only if a = f. 

 

3.3.3 Similarity Ratio for a Collection of Point Forecasts 

We can compute the Similarity Ratio for each actual-forecast pair to obtain a score that is ranged between 0 

and 1. To obtain the score for the whole sample, we average the Similarity Ratio for each sample point: 

 Score = ( ) ]1,0[,1
1

∈∑
=

T

i
ii faRatioSimilarity

T
 

 

Where ( ) Φ∈ii fa , . 

 

3.4 Characteristics of Similarity Ratio 
To illustrate the characteristics of the Similarity Ratio and show how the score varies with different quality 

of forecasts to an observed value, let’s assumed the actual value be a positive number and plot the 

Similarity Ratio of a range of forecasted values. The similar plot for a negative actual value will be a mirror 

image along the vertical axis hence we shall not include it in our report. 
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Figure 3-c: Distribution of Similarity Ratio Scores with Different Forecast Values 

 

The graph shown in Figure 3-c displays a few important characteristics: 

• If two forecasts both predicted the sign of the actual value correctly, the forecast that is closer to 

the actual value has a higher Similarity Ratio 

• If a forecast correctly predicted the direction of the actual value, the Similarity Ratio is at least 0.5 

• If a forecast correctly predicted the direction of the actual value, but over estimated the actual 

value, its Similarity Ratio approaches 0.5 as it deviates further 

• Any forecast that is at “maximum inequality” or worse, the score is zero. 

 

These characteristics show that Similarity Ratio satisfies all the three properties of an ideal scoring 

measure: 



 64

• P1. Forecast with correct direction is always higher than that of forecast that got the direction 

wrong. 

• P2. The score converges to “1” as the forecast gets closer to the actual value means that magnitude 

of forecast is used in the scoring 

• P3. Since we average the score of individual actual-forecast pairs to obtain the score of the sample, 

the aggregated score is not susceptible to outliers. 

 

Asymmetric Nature of Similarity Ratio 

The Similarity Ratio is asymmetric; this means that forecasts that are of equal deviation from the actual 

value will get different scores. The Similarity Ratio is biased towards deviation that is on the right side of 

the forecast. That is, if the actual is positive, the forecasts that are larger than the actual will have higher 

scores as compared to those forecasts that are smaller than the actual, but with equal deviation from the 

actual values. The opposite is true for actual values that are negative.  

 

The intuition of this asymmetric property arises from the fact that if a forecast approaches the actual value 

from the wrong side, there is still a possibility that the model being incorrect in the directional forecast. 

However, if it approaches from the right side, it is at least sure of getting the direction correct in the 

forecast. As directional accuracy is the emphasis in our forecasting framework, we have designed 

Similarity Ratio to give more weights to directional accuracy of the forecasting models and penalized 

wrong directional forecast or more likely to make a wrong directional forecast. 

 

The asymmetric property of Similarity Ratio can be proved mathematically; Supposed we have an actual 

value, a, and two forecasted values, ( )fa Δ−  and ( )fa Δ+ , where fΔ  is some small positive deviation. If 

a is positive, we should expect Similarity Ratio for ( )faa Δ+,  to be higher. 
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Similarity Ratio ( )
ffa

fa
faafaa

faa
faa

Δ+Δ+
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,  
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2
2

,  

The difference between the two Similarity Ratios =  

Similarity Ratio ( )faa Δ+,  - Similarity Ratio ( )faa Δ−, = 

because fafa Δ−>Δ+ 22 , we have  

ffa
fa

ffa
fa

ffa
fa

ffa
fa
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−
Δ+Δ−
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>
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Since 0,0 >Δ> fa , we have 022 >Δ−−Δ+ fafa , thus  

0
2

22
>

Δ+Δ+
Δ−−Δ+

ffa
fafa

 

This follows that the difference between the two Similarity Ratios is greater than zero. 

 

3.5 Derivation of Similarity Ratio 
If we plot the forecast and actual values on a Cartesian plane, with the vertical axis representing the range 

for forecast and the horizontal axis representing the actual values observed, we get a point on the plane with 

the coefficient ( )fa, . The Similarity Ratio is derived by comparing the distances of orthogonal projections 

of the point ( )fa,  onto two lines: the Good and the Bad lines. 

 

3.5.1 Definition of the Good and Bad Lines 

Notation 

We shall use the following notation: 
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• Let ( )yx,  be a point on the X-Y Cartesian plane,  

Then we let ( ) ( )xfyyx =|,  denotes the minimum distance between the point (x, y) and the line 

denoted by the equation ( )xfy = . That is, the length of the orthogonal projection from the point 

to the line.  

 

The two special cases that we considered in the derivation of Similarity Ratio are the orthogonal 

projections to the lines y = x and y = -x.  

 

Figure 3-d: Orthogonal Projections to the Good and Bad Lines 

 

With the application of Pythagoras Theorem, we have 

( ) ( ) ( ) ( )
22

|,
22 afafaf

fa xy

−
=

−+−
==  

and 

( ) ( ) ( ) ( )
22

|,
22 afafaf

fa xy

+
=

+++
=−=  

 

The fundamental idea of the Similarity Ratio is the orthogonal projections onto the Good and Bad Lines.  
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Points that are on the line xy = would mean the forecasted values matched the observed actual values 

exactly. From a financial forecasting model perspective, this is the best scenario and hence the xy = line is 

termed the Good line. Similarly, points that are on the xy −= line would mean that the observed values are 

exactly opposite to the predictions, which can be disastrous if investment decisions were made based on the 

forecast, as such, we termed the xy −= as the Bad line. 

 

Using our notation, we say that the distance of the orthogonal projection from a point (a, f) to the Good line 

and the Bad line are ( ) xyfa =|, and ( ) xyfa −=|, respectively. 

 

3.5.2 Orthogonal Projection to the Bad Line 

On the Good line, the forecasts matched the actual values exactly thus the projections to the Good line 

measure how close the forecasts are to the actual observed values. While it is intuitive to see why we 

wanted to have a projection to the Good line, it is less clear why we need to have an orthogonal projection 

to the Bad line. However, it is this second orthogonal projection that makes Similarity Ratio different from 

other scoring measures. To illustrate the point on why just the projection to the Good line alone is not good 

enough, let’s consider three sets of actual-forecasts which we plotted on the Cartesian plane:  

 

Figure 3-e: Points with Same Distance from the Good Line but Different Distances from the Bad Line 
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All these points have the same distance from the Good line but clearly we are not going to assign the same 

score for all the three points. The case for ( )11, fa  is clear as the forecast and the actual value are of 

different signs but the argument for other two points are less obvious. With the three points having the 

same distance from the Good line, the magnitude of the difference between the actual values and forecasts 

is the same. Thus if the forecasted value is large, this difference in magnitude is smaller relative to the 

forecast. This represents an increasing forecast-to-observation ratio that approaches 1: 
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Figure 3-f: Points with Same Distance from the Good Line have Different Forecast-to-Observation Ratios 

 

Forecast-to-observation ratio is a measure of “closeness” of the forecast to the observed value. Clearly we 

would like the forecasts that are larger to receive a higher score under this circumstance. To incorporate 

this in our scoring measure, we can make use of the points’ distances of their orthogonal projection to the 

Bad line. The intuition is that if the points are further away from the Bad line, it is better. We will see the 

proof for this under proposition 3 in next section. 

 



 69

3.5.3 Propositions Implied in Similarity Ratio 

This section reiterates the propositions of Similarity Ratio and provides the relevant proofs. The proofs will 

be presented assuming the case of a > 0. The case where a < 0 can be proven using similar approach, hence 

the proofs will not be repeated in this thesis.  

 

Proposition 1: If a forecasts f1 correctly predicted the direction of the actual value a, the Similarity 

Ratio is at least 0.5. 

Similarity Ratio for (a, f1) is 
( )

( ) ( ) a
f

a
fa

fafa
fa

22
1

2
11

11

1 +=
+

=
−++

+
 

 

Since f1 > 0 and a > 0 then 0
2

1 >
a
f

. Thus Similarity Ratio for (a, f1) is greater than 0.5 

 

Proposition 2: If a forecast, f1 correctly predicted the direction of the actual value a, the forecast f1  

over-estimated the value of a, its Similarity Ratio approaches 0.5 as it deviates further. 

Because af >1 , hence affa −=− 11 , hence 

Similarity Ratio for (a, f1) is 
( )

( ) ( ) 2
1

22 11

1

11

1 +=
+

=
−++

+
f

a
f
fa

fafa
fa

 

 

As f1 deviates away from a, we have 

2
1

2
1

2
lim

11

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∞→ f
a

f
 

 

Thus we have proved that if a forecast correctly predicted the direction but the magnitude of the forecast is 

wildly off, it can only get a score of 0.5. 
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Proposition 3: If forecasts have the same distance from the Good line, the one that is furthest from 

the Bad line has the higher Similarity Ratio. 

 

Figure 3-g: Points with Same Distance from the Good Line but Different Distances from the Bad Line 

 

Since (a1, f1) has got the wrong direction in the forecast, Proposition 1 tells us that its score will be less than 

0.5, which will be less than the other two sets of forecast-actual. Thus we just have to prove the case 

involving (a2, f2) and (a3, f3).  

 

Since the two points are of the same distance to the Good line, we have the following equation: 

( ) ( ) xyxy fafa == = |,|, 3322  

3322
3322

22
afaf

afaf
−=−⇒

−
=

−
  

 

Also, since (a3, f3) is further from the Bad line as compared to (a2, f2), we have: 

( ) ( ) xyxy fafa −=−= > |,|, 2233  

2233
2233

22
fafa

fafa
+>+⇒

+
>

+
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The difference between the two Similarity Ratios,  

Similarity Ratio ( )33 , fa  - Similarity Ratio ( )22 , fa = 

2222

22
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fafa
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fafa
fa

−++
+

−
−++

+
 

because 3322 fafa +=+ , the above can be re-written as 
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Hence we proved that the difference between the two Similarity Ratios is always greater than zero. 

 

The above proof shows that for points which have the same distance to the Good line, those points that are 

further away from the Bad line will have a higher score. 

 

Now does this proposition make economic sense? Let’s assumed the pair of assets in which relative returns 

that we are forecasting is asset A and B, that is, if a forecast is positive, it indicates that asset A will out-

perform asset B. Now consider the simple investment decision involving the two assets. Since f3 is larger 

than f2, it implies that asset A’s relative performance to asset B is higher than that implied by f2. This should 

result in a bigger bet being placed on asset A in the expense of asset B because the optimization process is 

usually set to maximize a portfolio’s risk-adjusted returns. 
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With the outcomes of a3 larger than a2, and all else being equal, the investment decision implied by forecast 

f3 will result in a higher profit, thus it merits to distinguish the two forecasts and that a good scoring 

mechanism should recognize that forecast f3 is more superior that forecast f2. 

 

3.5.4 Similarity Ratio and Canberra Metric 

Even we had derived the Similarity Ratio from the first principles, we continued to research into various 

distance related metrics to see if there is any measure that is similar to Similarity Ratio, or have taken a 

similar approach. To the best of our knowledge, there is no literature found on any distance related 

measures being derived from the orthogonal projections, and nothing that is the same as the Similarity 

Ratio.  

 

The closest we can find is a relatively unknown distance measure, called Canberra Metric or Canberra 

Distance. A few variations in its definition were found in literature: 

 

Wolfram (2007), Scheidat et al (2005): 

Canberra Metric Variation 1 = ∑
= +

−T

i ii

ii

fa
fa

1

 

 

Johnson and Wichern (1998), Emran and Ye (2001), Rieck et al (2006): 

Canberra Metric Variation 2 = ( )∑
= +

−T

i ii

ii

fa
fa

1

 

 

Androutsost et al (1998): 

Canberra Metric Variation 3 = ∑
= +

−T

i ii

ii

fa
fa

1
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Ignoring the summation, one would notice some similarities between Similarity Ratio and Canberra Metric. 

In fact, if we re-write the variation (3) of Canberra Metric using our notation, we see that it indeed includes 

the distances of the two orthogonal projections we have described:  

Canberra Metric Variation 3 = 
( )
( )∑

= −=

=
T

i XYii

XYii

fa
fa

1 |,
|,

 

 

It is unclear whether were orthogonal projections considered when Canberra Metric was first derived. We 

found that there is relatively little literature on the subject and in general, few research on the derivation of 

various distance measures and which one to use when performing individualized analyses. However, 

considering there are three variations found on Canberra Metric, it is hard to believe that it had originated 

from orthogonal projections’ distances because the projection distance component certainly did not show 

up in the other two variations. In fact, most who adopted Canberra Metric cautioned that it should only be 

applied to non-negative xi and yi values, for example, Johnson and Wichern (1998) and Androutsost et al 

(1998).  

 

Interestingly, Androutsost et al (1998) use variation (3) of the Canberra Metric and if they do have the idea 

of orthogonal projections in mind, comments that the Canberra Metric is only applicable to non-negative xi 

and yi would seem unnecessary. 

 

Thus we have every reason to believe that the idea of using two orthogonal projections to derive Similarity 

Ratio is innovative and intuitive in our context, so is the application of Similarity Ratio in creating a 

scoring measure for financial forecasting. 
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3.6 Similarity Ratio as the Scoring Measure for Pair-wise 

Framework 
The choice of scoring measure is critical to the success of the pair-wise framework as it is the indication of 

the confidence of the forecasts for relative returns for all the possible pair-wise combinations in the 

investment universe. These scores will be used to sieve out the best set of pair-wise forecasts to be used in 

the portfolio construction stage.  

 

In this chapter, we have surveyed six currently available scoring measures. The result of the initial 

qualitative assessment is that none of these measures exhibits all the characteristics of an ideal scoring 

measure. We went on to present Similarity Ratio and propose it to be used together with the pair-wise 

framework.  

 

We see from the propositions implied in Similarity Ratio that the measure does exhibit all the important 

characteristics of an ideal scoring measure.  While we claim this innovative scoring measure is ideal for our 

pair-wise framework, we will need to support with empirical evidences. The next few chapters will go into 

the details on how the empirical tests to be carried out and the results will be presented.  



 75

4 Testing the Framework and Similarity Ratio 

We describe the pair-wise framework in the previous chapter and propose to use Similarity Ratio to be the 

scoring measure to select pairs. We need to provide the empirical evidences that support our proposal. As 

the framework aims to help construct country allocation portfolios in a systematic and objective manner, 

the best approach to test the framework would be to evaluate the performances of the portfolios constructed 

using the framework.  

 

The output of the framework is a set of pair-wise forecasts that represents the views of the market. We find 

that Black-Litterman asset allocation model is the most appropriate and natural way for us to implement 

this set of views. The fact that Black-Litterman framework is able to incorporate views on asset returns or 

relative returns makes it a perfect choice for us to implement our pair-wise forecasts. In addition, the 

starting point of the Black-Litterman model is the market equilibrium returns, and this means that if the 

pair-wise framework does not generate any forecast that meets the minimum confidence level, we are still 

able to obtain an expected returns vector for use in the optimizer. 

  

Since the objectives of our empirical studies are to test the feasibilities of the pair-wise model and 

Similarity Ratio, we will not elaborate the technicalities of the Black-Litterman framework in this report. 

Instead, we will focus on the key ideas and emphasize only those details that are required for our 

implementation of the Black-Litterman framework.  

 

4.1 Black-Litterman Framework 
The Black-Litterman framework was introduced in Black and Litterman (1990), and expanded in Black and 

Litterman (1991, 1992). It has been well received and well documented, for example, Bevan and 

Winkelmann (1998), He and Litterman (1999). The Black-Litterman asset allocation model is a 
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sophisticated portfolio construction method that accounts for the uncertainty associated with the inputs and 

overcomes the problem of unintuitive and highly-concentrated portfolios caused by the use of optimizers.  

 

The Black-Litterman model uses a Bayesian approach to combine the subjective views that an investor has 

on the expected returns of one or more assets with the market equilibrium vector of expected returns (the 

prior distribution). The resulting new vector of expected returns (the posterior distribution) leads to 

intuitive portfolios with sensible portfolios weights.  

 

4.1.1 Market Implied Expected Returns 

The use of the market implied equilibrium expected returns allows one to avoid the need to estimate the 

expected returns of the assets in which the investor has no view on. The Black-Litterman framework uses 

the set of expected returns that clears the market as a neutral starting point. This set of returns, termed 

Equilibrium Returns, will be augmented with the investor’s subjective views to produce the expected 

returns vector for the optimizer. Intuitively speaking, the equilibrium returns in the Black-Litterman model 

are used to “center” the optimal portfolio on the market portfolio.  

 

Reversed Optimization 

The equilibrium expected returns, denoted byΠ , is derived using the reversed optimization process in 

which the vector of excess equilibrium returns is implied by the current market weights of the assets. The 

formula 

( ) μλ 1−Σ=w           (4a) 

is the solution of the unconstrained quadratic maximization problem: 

⎟
⎠
⎞

⎜
⎝
⎛ Σ

−
2
''max www

w

λμ          (4b) 

Where  

w = weight vector 
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Σ = covariance matrix of excess returns 

λ = risk aversion coefficient  

μ = vector of expected excess returns 

 

Equation (4a) suggests that with vector of excess returns implied by the market weights ( mktw ) can hence 

be computed as follows:  

( ) mktwΣ=Π λ           (4c) 

 

Where  

mktw = current market weight vector 

 

Risk Aversion Coefficient 

The risk aversion coefficient (λ ) characterized the expected return tradeoffs – it is the rate at which an 

investor will forego expected returns for each unit of risk undertaken. In the reverse optimization process 

described above, λ acts as a scaling factor for the reverse optimization process to estimate the excess 

returns. That is, the larger λ is, the higher is the resulting expected returns vector, Π . 

 

4.1.2 Views Matrices 

The Black-Litterman model allows subjective views to be expressed in either absolute returns or relative 

returns. That is, an investor is allowed to make a prediction on the amount of an asset returns, alternatively, 

he can also forecast how much one asset will out-perform another asset. 

 

Supposed there are K views being constructed for a universe of N assets, the set of matrices used in the 

Black-Litterman framework to represent the views are as follows:  
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• P = NK × matrix that identifies the assets involved in the views. 

• Q = 1×K vector that contains the returns (absolute or relative) of each view. 

• Ω = KK × diagonal matrix that represents the uncertainty of each view.  

 

Each row in matrix P  corresponds to one view. The entries in each row identify the list of assets associated 

with that view. Each asset in the universe corresponds to a column in matrix P  so a non-zero value in 

column ith indicates that asset i is represented in the view. In absolute view, the asset identified will have 

“1” in the corresponding column. In a relative view that involves only two assets, the asset that is over-

weight will have a value of “1” while the other will have a value of “-1”. 

 

For example, supposed there are five assets (A, B, C, D and E) in the universe (N = 5), and we have two 

views (K = 2): Asset A out-performed asset C by 1.18%, and asset D out-performs asset A by 2.12%. 

Assuming column 1 is for asset A, column 2 is for asset B and so on, we can map the five assets into the 

five columns in matrix  P  , in the order of A, B, C, D and E. Matrices P  and Q  can be represented as 

follows: 

P  = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
0
0

1
0

0
1

0
0

1
1

   Q  = ⎥
⎦

⎤
⎢
⎣

⎡
− %12.2

%18.1
 

 

If the relative views involved more than two assets, e.g. Asset A out-performs asset B and asset C, and then 

there are a few approaches one can choose to set up matrix P .  Idzorek (2004) proposes a market 

capitalization weighting scheme, Satchell and Scowcroft (2000) suggest an equally weighting scheme, and 

Litterman (2003) prefers to assign a percentage value.  

 

While each of these approaches handle multiple-assets differently, their representation for a relative view 

containing only two assets are the same. In our pair-wise model, we construct views with a pair of assets 
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each time. This means that our relative views are always involving only two assets; this allows us to by-

pass the issue of having to choose one of the three approaches to handle multiple-asset relative views.  

 

4.1.3 Black-Litterman Formula 

From the implied market equilibrium returns (Π ) and the views expressed as Ω and ,QP , a new combined 

return vector can be constructed:  

( )[ ] ( )[ ]QPPPRE 11111 ''][ −−−−− Ω+ΠΣΩ+Σ= ττ      (4d) 

Where 

][RE = the new combined return vector 

τ = a scalar 

w = weight vector 

Σ = covariance matrix of excess returns 

λ = risk aversion coefficient  

μ = vector of expected excess returns 

P = matrix that identifies the assets involved in the views. 

Q = vector that contains the returns (absolute or relative) of each view. 

Ω = diagonal matrix that represents the uncertainty of each view.  

Π = equilibrium expected returns  

 

τ is a scalar that was to be used in the fine-tuning process after the new combined return vector is being 

computed. This parameter is ambiguous and difficult to estimate. However, with the proposed modification 

suggested by Idzorek (2004), which we will be implementing, the need to specify a value for τ is removed. 
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4.1.4 Uncertainty in Views 

The diagonal elements of Ω  represent the uncertainties of the views. This makes Ω  the most abstract 

mathematical parameter of the Black-Litterman model. However, this is one common question without a 

“universal answer”, as noted by Idzorek (2004). Herold (2003) adds that the major difficulty of the Black-

Litterman model is that it forces the user to specify a probability density function for each view, which 

makes the model only suitable for quantitative managers.  

 

Idzorek (2004) proposes a method to construct the error matrix using implied confidence levels in the 

views, which can be coupled with an intuitive user-specified confidence level (ranges from 0% to 100%). 

The user-specified confidence levels are used to determine the values of Ω  and in the process of doing so 

eliminates the need of specifying the value for the scalarτ . 

 

The details of the algorithm were presented in Idzorek (2004) hence we only provide an outline of the 

process. The process described below is applied on a view-by-view basis, thus the whole process has to be 

repeated K times, where K = the total number of views: 

• Assume 100% confidence in the view 

• Calculate the new combined return vector based on perfect confidence in view 

• Using equation (4a), obtain the weight vector corresponds to the perfect confidence combined 

return vector 

• Obtained the deviations of the weight vector from the market weights 

• Scaled the deviations by the user-specified confident levels 

• Calculate the adjusted weights by adding the scaled deviations to the market weights 
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• Find the diagonal value of Ω  that corresponds to the view such that this value minimizes the 

squared difference between the adjusted weights and the weights that we obtained from the perfect 

confidence combined return vector. 

 

Similarity Ratio as the Confidence Level of Views 

For the above procedure to work, one would need to define a confidence level for each view. The 

confidence we have on each view is associated with the scoring measure we used to select the pair-wise 

forecasts to form the views. Thus the Similarity Ratio can be used as a proxy to the confidence we have in 

each forecast. It will be used to construct the error covariance matrix that is a critical input to the Black-

Litterman framework. 

 

4.2 Portfolio Construction with Black-Litterman Model 
For our empirical study, we apply the Black-Litterman model with Similarity Ratios as the confidence level 

for all the relative returns forecasts to generate the expected returns vector. Using the return vector, we can 

run the mean-variance optimizer to generate the optimal country mix that meets the investment constraints 

we have set, e.g. holdings weights constraints. 

 

4.2.1 Optimize to Maximize Risk Adjusted Returns 

The unconstrained solution to the Black-Litterman model is stated in equation (4a). When there are 

constraints are to be imposed, Idzorek (2004) states that mean-variance optimization (MVO) can be used to 

find the optimal solution to the following objective function stated in equation (4b): 

⎟
⎠
⎞

⎜
⎝
⎛ Σ

−
2
''max www

w

λμ  

 



 82

We aim to find the optimal portfolio that maximizes risk-adjusted returns so we will also use the optimizer 

to construct our optimal portfolio that satisfies the objective function. In our implementation, we have 

included additional controls such as checking if the optimization process converged to a solution. If there is 

no convergence for any period, we will avoid taking any active position and will rebalance our test 

portfolio to be the market portfolio. 

 

4.2.2 Problems with Mean-Variance Optimal Portfolios 

Optimal portfolios obtained from the mean-variance optimization are often accused of being unintuitive 

and highly-concentrated. They are sensitive to inputs and tend to maximize the error in expected returns 

forecasts. For example, a large over-forecast of an asset’s expected returns will result in the optimal 

portfolio to have a large over-weight of the asset, which is maximizing the error embedded in the over-

forecast of the asset’s expected returns. These issues are confirmed by extensive empirical studies and are 

well documented, for example, Idzorek (2004), Green and Hollifield (1992) and Best and Grauer (1992).  

 

Furthermore, to use MVO one would need to provide an expected return vector, which consists of the 

expected returns of all the securities in the investment universe that an optimal weight will be computed. 

This forces users of MVO to estimate the expected returns of those securities that they did not have a view 

on. This simply translates to more erroneous estimates going into the portfolio construction process. 

 

4.2.3 Dealing with the Problems of MVO 

MVO portfolios were also reported to be out-performed by simple allocation strategies such as the equally-

weighted portfolio (Jobsen and Korkie 1981) or the global minimum variance portfolio (Jorion 1991). 

Fabozzi et al (2006) noted that despite all the observed problems of MVO portfolios, these are not signs 

that the MVO does not work; rather it is the sensitivity of the modern portfolio theory framework to 

accuracy of the inputs that is causing the problems. This is the result of the optimizers’ assumptions that the 
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inputs are deterministic and are known with certainty. In reality, this is rarely the case as the inputs are 

statistical estimates and are uncertain.  

 

Fabozzi et al (2006) suggested that if the estimation errors can be taken into account in applying MVO, 

there can be further improvements to the results of MVO portfolios. Three broad approaches were 

suggested to reduce the impact of estimation errors in the MVO portfolios: 

1. Robust estimation framework e.g. shrinkage estimators, Bayesian estimators 

2. Incorporate estimation errors directly into optimization process 

3. Implement portfolio weights constraints in optimization process 

 

The first two approaches aim to account for the estimation errors in the portfolio construction process while 

the third approach is an attempt to manage the risk of having over-concentrated portfolio which may bring 

about unnecessary ex-post risk.  

 

The Black-Litterman model is an implementation that uses the first approach. In addition, we will also 

impose weights constraints to the optimization process as an additional means to ensure sufficient 

diversification in the portfolio 

  

4.2.4 Long-only and Other Weights Constraints 

Grinblatt and Moskowitz (2004) find that a large part of the gains associated with momentum-based 

strategies are due to the short positions in small and illiquid stocks, which may result in higher transaction 

costs and in some cases, impossible to implement as there may not be stocks available for shorting. To 

avoid the situation where the empirical results skewed by short positions, we will implement a long-only 

constraints in our empirical tests.  
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When short-selling is prohibited, we will need to add a constraint to make sure that the asset weights are 

always greater than or equal to zero. This is a commonly implemented constraint as many institutional 

active managers are not allowed to short due to restriction in clients’ mandates. Griffin et al (2005) find that 

much returns of the momentum-based portfolios come from long-positions thus suggest such strategies will 

still be profitable without having to short any assets.  

 

Upon consulting experts from the Compliance Risk area, we have set the active weights constraints of 3%, 

5% and 10%, for our implementation. The allocation of limits will depend on the market capitalization of 

the assets: 

Market Capitalization Active Weights 
Constraints 

Less than 10% ±3% 
Between 10% and 30% ±5% 
More than 30% ±10% 

Table 4-a: Weights Constraints Implemented for Optimization 

 

For example, for an asset with a market capitalization of 13% will be allowed to have an asset weight of 

that ranges from 8% to 18% (i.e. 13±5%). However, the long-only constraint will have the over-riding 

power in setting the lower bound, this means that the lower bound of active weight should be greater than 

or equal to zero. For example, if the asset weight is 2%, then the optimal asset weight should be from 0% to 

5% instead of a range from -1% to 5%. 
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4.2.5 Implementation Software 

The empirical tests were conducted in MATLAB1 environment. MATLAB R2006a was used for the 

development with the following toolboxes: Statistics Toolbox, Neural Network Toolbox, Optimization 

Toolbox and Bioinformatics Toolbox 

 

We store the data and results in a MATLAB workspace (MAT) file to allow fast retrieval and batch 

processing. This allows us to conduct the empirical tests in batches. Some of the MATLAB codes used can 

be found in the appendix. 

 

4.3 Portfolio Implementation 
The output of the optimizer is an optimal country allocation mix that will give the best risk-adjusted 

performance based on the pair-wise forecasts we have generated, bounded by the investment constraints we 

have put in. Since we only aim to see if the country mix obtained using the pair-wise framework is indeed 

able to generate value-added, hence we assume that the portfolio is implemented using index derivatives or 

ETFs without slippages. That is, index derivatives or ETFs track the performance of the underlying index 

perfectly. We then evaluate the performance of the country allocation portfolio based on the criteria 

detailed in the next chapter. 

 

 

 

                                                      
1 MATLAB is a high-level language and interactive environment that is able to perform computationally intensive 

tasks faster than with traditional programming languages such as C, C++, and FORTRAN. For more information, see 

www.mathworks.com 



 86

5 Evaluation of Portfolios Performances 

The primary objective of financial modeling and forecasting is financial rewards – either in earning a profit 

or avoiding a financial loss. Hence in evaluating the success of our pair-wise model and Similarity Ratio, it 

is inevitable to test the effectiveness and profitability in out-of-sample trading. However, having a 

profitable portfolio in out-of-sample empirical results is not the only criteria when one evaluates the 

feasibility of the process. There are other evaluation criteria that are worth considering: 

• Does the amount of returns justify the risk taken? 

• Are there excessive transactions that make the portfolio too costly to implement? 

• Can the strategy withstand different market cycles and continue to perform? 

• Is the profit coming from one or a few lucky trades? 

 

These are practical considerations in evaluating the portfolios; we proposed a set of performance indicators 

to be used to evaluate our country allocation portfolios. Some of these indicators are commonly use in the 

asset management industry. The same set of indicators will also be used to compare different test 

portfolios. Generally, we consider a portfolio is more superior if it has: 

• Higher value-added contribution 

• Higher Information Ratio 

• Higher percentage of the number of out-performing quarters during the test period 

• Lower average portfolio turnover  

• Lower correlation of its value-added to the benchmark returns 
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• Lower contribution of each trade to the total portfolio returns 

• Higher trading edge or expected value-added  

 

5.1 Contribution of Asset Allocation Decision to Portfolio 

Value-added 

5.1.1 Portfolio Return and Value-added 

Active managers are engaged to out-perform a specific benchmark, thus their performance is measured by 

how well they performance relative to the benchmark. The difference between the portfolio returns ( R ) 

and the benchmark returns ( R ) is called excess returns or value-added: 

Value-added, RRVA −=  

 

Waring and Siegel (2003) highlight the importance of evaluating portfolio performance using value-added 

as opposed to portfolio returns. They point out that portfolio return may be a result of the market delivering 

good returns and hence one may not get the value-added (pure alpha) that the active managers are paid for. 

By not separating the performance of benchmark return from the portfolio return will also result in 

incorrect apportioning of credit and blame. Portfolio manager should not take the blame for poor absolute 

return when the manager’s asset class delivers a poor policy return. His performance should be determined 

by the value-added he had achieved. 
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5.1.2 Top-down and Bottom-up Approach to Generate Value-added 

In equity investment, the investment universe can be partitioned into sub-groups, for example, a US 

portfolio can be partitioned into sectors1, while a portfolio with a global mandate can be partitioned into 

regions or countries. These sub-groups represent groups of securities in the investment universe that are 

exposed to similar business or macroeconomic risks. Portfolios can be constructed by a top-down or 

bottom-up approach.  

 

In a top-down approach, the investment process involves the explicit segmentation of bottom-up and top-

down decisions. The investment manager first determined the allocation to the sub-groups and pick stocks 

from each sub-group to fulfill the target allocation mix. Since there are active bets in both asset allocation 

and stock selection, value-added can be generated from both sets of decision. At the same time, it also 

means that there is also a risk that poor stock selection may offset the value-added generated by the asset 

allocation resulting in an under-performance for the portfolio, or vice versa. 

 

In a bottom-up approach, stocks are picked based on their attractiveness relative to each other. There is no 

explicit consideration or preference on the desired top-down allocation mix. The top-down allocation is a 

by-product of the stock selection. In such an approach, the value-added is generated purely from the results 

of the stock selection. 

 

Top-down approach may seem to be riskier as there are additional risk factors that affect the sub-groups 

that the portfolio managers had to grapple with. For a given level of risk, the larger number of stock picks 

in a bottom-up approach facilitates diversification and improves the probability of out-performance. 

                                                      
1 The commonly accepted classification is the Global Industry Classification Standard (GICS) as defined by MSCI 

Barra. The GICS methodology has been widely accepted as an industry analysis framework for investment research, 

portfolio management and asset allocation. The GICS structure consists of 10 sectors, 24 industry groups, 67 

industries and 147 sub-industries. 
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However, many empirical studies have found that a top-down approach generates better results. For 

example, Fanelli and Urias (2002) conclude their study by claiming that “resources permitting, the 

challenge and importance of top-down asset allocation suggests that a dedicated top-down effort is 

warranted”, and that the allocation mix should not be a by-product of bottom-up stock selection.”  

 

5.1.3 Brinson Performance Attribution 

Brinson et al (1986) propose a way to assess the skill sets of the active managers by attributing the value-

added into top-down asset allocation, bottom-up stock selection and interaction effect: 

 

Value-added = Asset Allocation effect + Stock Selection effect + Interaction effect 

Where  

Asset Allocation effect = ( )( )∑ −
i

iii rww      (5a) 

Stock Selection effect = ( )( )∑ −
i

iii rrw  

Interaction effect = ( )( )∑ −−
i

iiii rrww  

and 

iw = portfolio weight for “asset” i 

iw = benchmark weight for “asset” i 

ir = portfolio return for “asset” i 

ir = benchmark return for “asset” i 

 

This form of attribution is often called “decision-based performance attribution” because it attributes the 

value-added to the decisions made by the manager. The word “asset” here means a sub-group (e.g. country) 

or an attribute where the stocks can be grouped together (e.g. trade currency).  
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Positive contribution to a portfolio’s value-added by asset allocation can come from the following: 

• Over-weight a sub-group and the sub-group out-performed the overall portfolio’s benchmark, and 

• Under-weight a sub-group and the sub-group under-performed the benchmark. 

 

The “stock selection” effect measures the out-performance generated due selecting the right stocks in each 

country. Here, a right stock would be the one that out-performed the weighted average returns of all other 

stocks in the same country.  

 

This leaves us with an “interaction” effect between stock selection and asset allocation. This is harder to 

explain than the other two effects. Briefly, the Brinson model produces a positive interaction effect when 

the manager over-weights countries that beat the benchmark, or under-weights countries that under-perform 

his benchmark. This is due to the fact that the holdings of the stocks are affected by both allocation to the 

country and the manager’s preference for the stock that results in the stock being selected to fulfill the 

country allocation. Thus to understand the interaction effect, one needs to look at the results country by 

country. For more details, one can refer to Laker (2000). 

 

5.1.4 Modified Brinson Performance Attribution 

Combining Stock Selection Effect with Interaction Effect 

Due to the un-intuitiveness of the interaction effect, and that asset allocation is usually implemented as an 

overlay portfolio on top of a bottom-up stock selection portfolio; it is an acceptable practice to combine 

interaction with the stock selection effect. The combined effect can still be broadly termed as stock 

selection effect: 

Stock Selection effect = ( )∑ −
i

iii rrw  
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It can be interpreted that if the stocks that the manager picked had out-performed those benchmark stocks 

with the same attribute, then these stocks’ contribution to the portfolio value-added is scaled by the amount 

the manager owned.  

 

Making the Asset Allocation Effect more Intuitive 

To make the asset allocation effect more intuitive, we can re-write equation (5a) in the following manner: 

Asset Allocation effect = ( )( )∑ −−
i

iii Rrww  

Where R = Benchmark return for the portfolio 

 

The new form of the asset allocation effect is made up with of two terms: 

• ( )ii ww −  = Portfolio weights of assets that has the attribute i relative to the proportion in the 

benchmark 

• ( )Rri −  = Performance of benchmark assets with attribute i relative to the benchmark 

 

Thus there is a positive contribution when the manager over-weighted the assets that out-performed the 

portfolio benchmark returns, or under-weighted those that under-performed.  

 

With the two proposed modifications, the decision-based performance attribution formula can be re-written 

as follows: 

Value-added = Asset Allocation effect + Stock Selection effect 

Where  

Asset Allocation effect = ( )( )∑ −−
i

iii Rrww  

Stock Selection effect = ( )∑ −
i

iii rrw  
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5.1.5 Performance Measure to be used 

To measure the performance of our country allocation portfolio, we have selected to use the Asset 

Allocation effect. The reason behind the selection is that there may be different ways to implement the 

country allocation portfolios, for example, full replication of benchmark stocks, index futures, or exchange-

traded funds (ETFs). The choice of instruments and the corresponding operational efficiency will distort the 

portfolio performance which may skew our conclusion drawn from our empirical study. We want to see the 

real impact of our pair-wise model in constructing country allocation portfolios and this is best done by 

analyzing the value-added contributed by the asset allocation effect. For the rest of this thesis, the term 

value-added will refer to the Asset Allocation effect, unless otherwise stated. 

 

5.2 Information Ratio – Risk-adjusted Performance 

5.2.1 Tracking Error 

Waring and Siegel (2003) suggest that clearly defined the value-added and active risk targets will avoid any 

confusion and unfairness in performance evaluation caused by mixing benchmark returns and true alphas. 

Since the objective of an active manager is to out-perform the benchmark returns, one good risk measure is 

to measure the degree of which the portfolio returns deviate from those of the benchmark. This deviation is 

termed Tracking Error or Active Risk. In other words, tracking error measures the consistency or volatility 

of excess return. 

 

Mathematically, (ex-post) tracking error is the annualized standard deviation of the value-added. Thus a 

manager with a lower tracking error signifies that the portfolio “tracks” the benchmark index more closely 

than a portfolio manager with a higher tracking error. Tracking error computed using historical value-added 

series is called the ex-post tracking error. 
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5.2.2 Information Ratio 

With value-added and tracking error, we can now compare the performances of two managers on common 

ground by looking at the returns of the portfolio in perspective with the amount of risk taken, that is, the 

returns per unit of risk taken. The Sharpe Ratio is commonly used to compare the absolute performances of 

portfolios. In the active management world, the equivalent is the Information Ratio: 

Information Ratio = Annualized VA ÷ Annualized ex-post Tracking Error 

 

As Information Ratio measures the reward for each unit of active risk taken, a portfolio with higher 

Information Ratio is preferred to one that has a lower Information Ratio. As Siegel (2003) correctly pointed 

out, active managers should seek to maximize their information ratio and that the delivery of Information 

Ratio is the only reason why the active managers should be paid an active fee. 

 

The following table shows the Information Ratio of median and top quartile fund managers who were given 

MSCI World as their benchmark as at end 2006. As one can see, it is more difficult to achieve a high 

Information Ratio over a longer time period, for example, the top quartile managers only delivered an 

Information Ratio of 0.6 over a ten-year period while for a shorter period of three years, the Information 

Ratio is 1.05: 

Period 3-Year 5-Year 10-Year 

Median IR 0.36 0.47 0.32 
Top Quartile IR 1.05 0.99 0.6 
Number of Managers 192 155 80 
Source: Mercer Global Investment Manager Database (GIMD)1 

                                                      
1 GIMD is a global database on investment managers for institutional investors. The information in this database 

supports Mercer’s global research on investment managers and the manager searches that Mercer performs for their 

clients. Mercer has over 610 full-time consultants advising over 2,700 clients with assets in excess of $3.5 trillion. For 

more information, see www.mercer.com 
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Table 5-a: Information Ratios of Median and Top Quartile Managers with Global Mandates 

 

This statistics serves as a good comparison for us to measure our country allocation portfolio. We will 

compute the Information Ratio for our model portfolio to see if we are able to out-perform the top quartile 

managers. 

 

5.3 Proportion of Out-performing Quarters 
While it is important to look at the portfolio cumulative performance over a long time period, it is as 

important to have the portfolio out-performs the benchmark on a regular basis. Thus knowing the number 

of periods the portfolio out-performed is an important.  

 

In our study, the portfolios are rebalanced on a quarterly basis. With the seven-year sample period, we have 

constructed 28 portfolios. A good measure for the success of the portfolio construction process is that out 

of the 28 portfolios, how many quarters did the portfolio generated positive value-added. We will express 

the number of quarters that out-performed as a percentage of the total number of quarters. 

 

5.4 Turnover 
As excessive transactions typically translate to high costs and hurt the profits of the investment strategies, a 

portfolio with lower transaction costs would be preferred to one with a higher transaction costs, assuming 

all other performance statistics are the same for the two portfolios. Turnover is an indication on the amount 

of transactions and hence the lower the turnover, the lower the expected transaction cost. 

 

We define turnover as the average sum of the absolute value of the rebalancing trades across the N  

available assets and over the MT −  trading quarters: 
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Where tjw ,  is the portfolio weight in asset j chosen at time t before rebalancing at 1+t , and 1, +tjw the 

portfolio weight for asset j at time 1+t . This definition is commonly used in similar empirical studies 

including DeMiguel et al (2005), Balvers and Wu (2005).  

 

5.5 Correlation of Performance with Market’s Performance 
Active managers are expected to out-perform their benchmark regardless of the market conditions. This can 

be measured by the correlation between the portfolio performances to the market returns. Having a low 

correlation between the value-added and benchmark return is an indication of a good portfolio construction 

process. Thus when evaluating the portfolios, we will compare only the magnitude of the correlation 

values.  

 

5.6 Cumulative Contribution Curve 
One key challenge in portfolio performance analysis is to determine if an out-performance was a result of 

superior skills and process or the manager’s luck. Quantification of luck is difficult and it is often inferred 

from other performance indicators. In fact, the performance indicators that we have presented so far attempt 

to dissect the portfolio performance to give some indication whether luck is the main driver. 

 

In attempt to quantify the element of luck, Refenes (1995) proposes using the ratio of the profit from the 

largest profitable trade to the overall profit, and termed this ratio as the Luck Coefficient (l). Intuitively, a 

large value of l signals the portfolio’s dependency on a single and probably non-recurring trade. Refenes 
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(1995) suggests that the idea can be extended to consider profit contributed by k largest profit-making 

trades to overall profits.  

 

Brabaxon and O’Neil (2006) suggest that it is useful to have a visual examination of how the portfolio 

returns are being generated to give a different perspective than just inspect the risk-adjusted profits. 

Drawing inspiration from this comment, together with Refenes’ Luck Coefficient, we designed the 

Cumulative Contribution Curve. This curve has a convex shape and is constructed using all the data instead 

of just the k largest points. With the curve, one can see how each trade period (e.g. quarter) contributes to 

the overall performance. The curve is constructed as follows: 

1. Calculate percentage contribution to the portfolio value-added of each trade period 

2. Sort the periods by the percentage contribution in descending order 

3. Calculate the cumulative contribution for each period 

4. Plot the cumulative contribution 

 

5.6.1 Interpreting the Cumulative Contribution Curve 

Cumulative Contribution Curves provide a visual comparison for portfolios out-performances. To draw a 

conclusion from the curves, we compare the curvatures (the flatness), the starting points and the turning 

points. 

 

The Flatter, the Better 

The curvature of the curve indicates the marginal contribution of each trade period. A flat curve indicates 

low marginal contribution of each trade period hence implies the performance is less volatile. Thus when 
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comparing the Cumulative Contribution Curves of two portfolios, the one that is flatter is considered to be 

less dependent on luck.  

 

The Lower the Starting Point, the Better 

The starting point (the y-intercept point) of the Cumulative Contribution Curve is analogous to the Luck 

Coefficient as defined by Refenes (1995). When comparing the starting points of two Cumulative 

Contribution Curves, the one having a lower starting point is considered better as the profit from the best 

performing quarter is contributing less to the overall profit. 

 

The Further the Turning Point, the Better 

The curve is constructed by cumulating the performance one period at a time in a descending order of 

performance, thus the curve will continue to rise as long as the trade registers a positive contribution. So 

when the curve reaches the maximum point and starts to turn downwards, the losing quarters start to be 

included. Hence we would want the curve maximum point to curve after the half-way point, and the further 

the better. 

 

Illustration on Interpreting Cumulative Contribution Curve 

In the figure below, we put the Cumulative Contribution Curves of two portfolios together:  

 

Figure 5-a: Illustration on Interpreting the Cumulative Contribution Curve 
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We say that portfolio B is considered to be more superior compared to portfolio A because: 

• B has a flatter Cumulative Contribution Curve 

• B has a lower starting point (indicated by the y-intercept of the curves) 

• B’s maximum point is further than that of A 

 

5.7 Trading Edge or Expected Value-added 
Covel (2007) points out that in trading, the hit rate or probability of positive profit counts for nothing if the 

magnitude of under-performance is large compared to the amount of out-performance. Covel (2007) 

proposes using expected performance as a measure for evaluating investment strategies. This expected 

performance is termed as Trading Edge, or simply Edge. Adapting it to our context, we defined Edge as 

follows: 

Trading Edge or Edge = ( )( ) ( )( )−+ −− VAPVAP ww 1  

 

where 

wP  = Probability of out-performing 

+VA  = Average amount of positive value-added 

−VA  = Average amount of negative value-added 

 

We will use the percentage of out-performing quarters as a proxy for the probability of out-performing. 

Since the trading edge measures the expected value-added for the strategies for each quarter, a portfolio 

with a higher trading edge is preferred over one with a lower edge. 
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5.8 Summary of Portfolio Performance Evaluation 
We have identified a set of comprehensive indicators that covers various dimensions for performance 

evaluation. The following table summarizes the performance indicators that we have described and their 

interpretations for a good portfolio performance.  

Performance Indicator Interpretation of Good Performance 

PI1 – Asset Allocation Value-added Higher  
PI2 – Information Ratio Higher 
PI3 – Proportion of Out-performing Quarters Higher 
PI4 – Turnover Lower 
PI5 – Correlation with Market Lower 

PI6 – Cumulative Contribution Curve 

Graphical Interpretation: 
• Flat Curve 
• Low Starting Point 
• Far Turning Point 

PI7 – Trading Edge Higher 

Table 5-b: List of Performance Evaluation Criteria and Interpretation 

 

We will use this set of performance indicators in our empirical studies to evaluate the performances of our 

test portfolios. 
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6 Empirical Results 

We tested the pair-wise framework in constructing country allocation portfolios for the following 

benchmarks: MSCI World, MSCI Europe, MSCI Emerging Asia and MSCI Europe ex-UK. Correspond to 

these benchmarks, the four country-allocation model portfolios created are:  

• Global (World developed equities) 

• Europe (Developed Market) 

• Asia (Emerging Market)  

• Europe Excluding UK (Developed Market) 

 

These portfolios were constructed using the approach detailed in chapter 4 and they are evaluated against 

the set of performance indicators listed in the previous chapter. This chapter presents our empirical 

findings.  

 

6.1 Empirical Test Design 

6.1.1 Test Objectives 

The objectives of our empirical tests are to confirm the following hypotheses: 

• Portfolios constructed by relative returns forecasts (pair-wise models) performed better than those 

based on individual asset returns forecasts (individual model) 

• Portfolios constructed by using Similarity Ratio as the scoring measure in pair-selection performed 

better 
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The first objective is the test for “Choice of Relative Returns Forecast or Individual Asset Returns 

Forecast” while the second is a test for “Choice of Scoring Measure”. To isolate the impact of choice of 

models and choice of scoring measure, we kept other parts of the portfolio construction process the same in 

each test. For example, in constructing the test portfolios using different scoring measures, the portfolio 

construction process is the same with only the scoring measure being different and only step 3 of the five-

step process stated in Error! Reference source not found. was replaced. 

 

6.1.2 Data set 

Our empirical study uses 17-year (from 1990 to 2006) of monthly country index values in USD that we 

obtained from FactSet. We used data from 1990 to 1999 to construct the five-year indicators’ returns series 

from 1995 to 1999 (the first data point for the 60-month returns time series starts in 1995). The 

performance of the constructed portfolios will be tested using data from 2000 to 2006. This gives us a five-

year in-sample period and a seven-year out-of-sample period.  

 

The constructed portfolios were held for one quarter (three months) before being rebalanced. US-dollar 

returns were used as we have assumed the portfolio to be currency hedge. By doing so, we have leave out 

the impact of currency in our analysis to isolate the impact of the pair-wise model on country allocation.  

 

6.1.3 Empirical Results Presentation 

We will present the detailed results of our model global country allocation portfolio. We will evaluate its 

performance based on the set of performance indicators we have identified earlier. Although model 

portfolios in other markets were also constructed, we will present only the detailed results for the global 

portfolio and show only the summary results for other model portfolios as and when necessary 

 

Notation 
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To aid easy reading, when a table is used to present data for comparison, the best result will be shown in 

blue-colored bold font. For example, the table below that compares portfolios Port 1 and Port 2 using three 

performance indicators (PI1, PI2 and PI3). For performance indicator PI1, Port 1 is the better than Port 2, 

hence the 3.40% is highlighted in a blue-colored bold font. Similarly, the highlighted fonts in the second 

column suggest that Port 2 performed better than Port 1 for PI2 and PI3.  

 

This is to help reader quickly identify the best performers when reading a table. 

 

6.2 Performance of Global Model Portfolio 

6.2.1 Assets Universe 

The 23 countries that make up the MSCI Developed World index are:  

• North America – Canada, United States of America 

• Europe – Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, 

Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom 

• Asia Pacific – Australia, Hong Kong, Japan, New Zealand, Singapore 

 

The following table shows the each country’s constituent weights in the MSCI World, as at end July 2007: 

Region Country Weight (%) 

USA 47.31 North America 
Canada 3.87 
United Kingdom 11.14 
France 4.96 
Germany 4.00 

Europe 

Switzerland 3.22 
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Region Country Weight (%) 

Spain 2.03 
Italy 1.85 
Netherlands 1.73 
Sweden 1.28 
Finland 0.82 
Belgium 0.59 
Norway 0.51 
Denmark 0.43 
Ireland 0.38 
Greece 0.34 
Austria 0.30 

 

Portugal 0.19 
Japan 10.47 
Australia 3.02 
Hong Kong 0.92 
Singapore 0.54 

Asia-Pacific 

New Zealand 0.08 
Source: FactSet 

Table 6-a: Country Constituents Weights in MSCI World (as at end July 2007) 

 

6.2.2 Summary of Portfolio Performance 

The table below summarizes the performance of the global portfolio over the seven-year period from 2000 

to 2006. The numbers (except for Hit Rate) were annualized: 

Performance Indicators Value 

PI1 – Asset Allocation Value-added (%) 1.61 
PI2 – Information Ratio 1.15 
PI3 – Proportion of Out-performing Quarters (%) 75.00 
PI4 – Average Turnover (%) 35.50 
PI5 – Correlation with Market 0.12 
PI7 – Trading Edge (bp) 40.26 

Table 6-b: Performances of Model Global Country Allocation Portfolio 

Annualized Value-added (VA) can be calculated using the formula: ( )[ ] 11
12

1 −+∏ =

TT

t tVA ,  

where tVA = value-added for tht month 
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6.2.3 PI1 – Asset Allocation Value-added 

The annualized MSCI World returns in US-dollar terms from 2000 to 2006 were -0.26% per annum. In 

contrast, our global model portfolio averaged 1.34% annually. This represents an out-performance or value-

added of 1.61% annually.  

 

The following chart shows the cumulative value-added of the portfolio over the 28 quarters. Apart from the 

dip in early 2002, the performance had been fairly stable:  

Cumulative Value-added for Global Country Allocation Portfolio
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Figure 6-a: Cumulative Value-added for Model Global Portfolio 

 

6.2.4 PI2 – Information Ratio 

From the cumulative value-added chart above, we see that the value-added were accumulated steadily over 

the seven-year period and this is the reason why tracking error is low which resulting in a high Information 
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Ratio. The annual tracking error for our global asset allocation portfolio is 1.40%, with an annual value-

added of 1.61%; the Information Ratio is an impressive 1.15. 

 

According to Mercer GIMD database, we see that the top quartile managers who have a global mandate 

delivered an Information Ratio of 0.99 and 0.6 for the five-year and ten-year periods respectively. 

Comparing our global model portfolio against the managers in Mercer database, we see that its Information 

Ratio of 1.15 clearly ranks among the top managers.  

 

The following table shows the median and top quartile information ratio of fund managers who were given 

global mandates over different periods as at end 2006: 

Period 3-Year 5-Year 10-Year 

Median IR 0.36 0.47 0.32 
Top Quartile IR 1.05 0.99 0.6 
Number of Managers 192 155 80 
Source: Mercer Global Investment Manager Database 

Table 6-c: Information Ratios for Median and Top Quartile Managers with Global Mandate 

 

6.2.5 PI3 – Proportion of Out-performing Quarters 

Out of the 28 quarters, our portfolio registered positive value-added in 21 quarters. This means that the 

proportion of out-performing quarters to the whole period is 75%. This statistics means that our portfolio is 

able to out-perform the benchmark regularly, theoretically, 75% of the times. 

 

6.2.6 PI4 – Average Turnover 

The portfolio also has a fairly low turnover of 35.5% compared to the turnover numbers we found in some 

research publications that constructed similar portfolios. In DeMiguel et al (2005), various asset allocation 

methodologies were used to construct a nine-country world portfolio. The quarterly turnover for the 
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portfolios constructed using mean-variance and Bayes-Stein Shrinkage, both with constraints, are 63.6% 

(21.2% per month) and 53.7% (17.9% per month) respectively. Balvers and Wu (2005) constructed world 

portfolios using momentum and reversal strategies and noted that the average monthly turnover is 14.8%, 

which is about 59% per quarter. 

 

Comparing these results with the turnover generated by our global portfolio, it showed that our portfolio’s 

performance was generated without exceptionally high turnover. 

 

6.2.7 PI5 – Correlation with Market 

The period from 2000 to 2006 was very volatile as far as the equity market is concerned. The first three 

years saw MSCI world index dropped more than 50% and the next four years rebounded strongly. A sound 

portfolio construction process would not be affected too much from market volatility or fluctuations. To see 

if our portfolio performances were affected by the market ups and downs, we plotted the quarterly 

benchmark returns (an indication of the market’s performance) against the value-added of our global 

portfolio. We see that the out-performance were quite evenly distributed out and looked independent of the 

benchmark returns. We then compute the correlation and found that it is only of 0.12. 

 

Figure 6-b: Scatter Plot of Model Global Portfolio Benchmark Returns Against Value-added 
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From the table below we see that for the seven years, regardless the market performance, the global 

portfolio is able to out-perform the market from 0.57% to 3.34%: 

Year Value-added (%) Index Return (%) 

2000 2.44 -10.77 
2001 1.54 -15.25 
2002 0.57 -25.20 
2003 0.58 22.75 
2004 1.25 9.49 
2005 1.58 13.74 
2006 3.34 13.52 

Table 6-d: Yearly Value-added of Model Global Portfolio 

 

6.2.8 PI7 – Trading Edge 

The global country allocation portfolio has an average positive value-added of 65.37bp; this means that 

when the portfolio out-performed, its returns is 65.37bp above the benchmark returns. The average negative 

value-added is -35.06bp, which is about half of the amount of its average positive value-added.  

 

Using the hit rate as the probability of out-performance, the trading edge of our global country allocation 

portfolios is 40.26bp. This means that we expect the portfolio to generate about 40bp more than the 

benchmark returns every quarter. This further illustrates the stability of out-performance of the pair-wise 

framework.  
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6.3 Model Portfolios in Other Markets 

6.3.1 Markets Considered 

We have shown empirically pair-wise portfolios constructed using Similarity Ratio as the filtering criteria 

works in the global country allocation portfolio. The other three model portfolios that we had constructed 

were:  

• Developed Europe country allocation portfolio – Aim to out-perform MSCI Europe Index, which is 

a sub-set of the MSCI World Index with 16 countries in Europe region: Austria, Belgium, 

Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Norway, Portugal, Spain, 

Sweden, Switzerland, and United Kingdom. 

• Emerging Asia country allocation portfolio – Aim to out-perform MSCI Emerging Asia Index. 

MSCI classified five countries in Asia as developed countries: Hong Kong, Australia, New 

Zealand, Singapore and Japan. The rest of the Asia is considered as emerging countries. Among 

them, ten were selected to be included in MSCI Emerging Asia Index: China, India, Indonesia, 

Korea, Malaysia, Pakistan, Philippines, Sri Lanka, Taiwan, and Thailand. 

• Developed Europe ex-UK country allocation portfolio – Aim to out-perform the MSCI Europe ex-

UK Index. United Kingdom is a large constituent country (around 30%) of MSCI Europe hence it 

is common that portfolios are measured against a European index that is excluding UK in order to 

give more beta exposure to continental Europe. 

 

The set was chosen based on data availability. We needed country index values of at least 10-year of 

returns series history. We also required at least five-year of country constituents weights that made up the 

benchmarks.  
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We would like to test the pair-wise framework in other markets such emerging non-Asia (such as Latin 

America, Africa, Eastern Europe, etc) but there is no good source of index values and constituents’ data for 

these countries. Using data with poor quality or insufficient history may not be meaningful and may run the 

risk of getting wrong conclusion.  

 

Data Availability for Emerging Asia Country Index 

As this is a relatively new index, we are only able to get the country weights data from 2002. Thus the 

analysis involved emerging Asia portfolios was done based on five-year data instead of the seven-year 

period we did for our global and European portfolios. 

 

6.3.2 Summary of Portfolios Performance 

Table 6-e summarizes the performances of the three model portfolios:  

Performance Indicators Europe EM Asia1 Europe ex UK 

PI1 – Value-added (%) 0.75 2.75 0.66 
PI2 – Information Ratio 0.61 1.27 0.58 
PI3 – Proportion of Out-performing Quarters (%) 67.90 72.73 71.43 
PI4 – Average Turnover (%) 32.65 17.62 30.53 
PI5 – Correlation with Market -0.04 0.55 -0.03 
PI7 – Trading Edge (bp) 18.85 68.64 16.51 

Table 6-e: Performances of Model Portfolios in Europe, EM Asia and Europe ex-UK 

 

From the table, we are convinced that the pair-wise framework also worked well in other markets. These 

model portfolios generated positive value-added with Information Ratio well above 0.5. The proportions of 

out-performing quarters are almost 70%.  

 

The yearly value-added for the three model portfolios are plotted in the chart below. We see that the 

portfolios constructed using the pair-wise framework and Similarity Ratio out-performed their respective 

                                                      
1 For emerging Asia, data is only available from 2002 hence only five years of portfolio performance 
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benchmarks for all the years except in the year 2002, our Europe ex-UK portfolio marginally under-

performed the benchmark. This is a clear indication that the pair-wise framework and Similarity Ratio work 

in different markets and time periods. 

Value-added For Country Allocation Portfolios in Different Markets
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Figure 6-c: Yearly Value-added of Model Portfolios in Europe, EM Asia and Europe ex-UK 

 

6.3.3 Comparison of Information Ratio with Other Managers 

We compared the performance of the model portfolios with other managers using data obtained from 

Mercer GIMD. We are only able to get the performance data for European managers and global emerging 

markets managers hence the comparison were made using these data. 

 

Europe 

The following table shows the Information Ratios of the median and top quartile managers with the 

mandate of out-performing MSCI Europe: 
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Period 3-Year 5-Year 10-Year 

Median IR -0.01 0.16 0.17 
Top Quartile IR 0.79 0.69 0.45 
Number of Managers 102 83 43 
Source: Mercer Global Investment Manager Database 

Table 6-f: Information Ratios of Median and Top Quartile Managers with European Mandate 

 

Our Europe and Europe ex-UK model portfolios delivered Information Ratios of 0.61 and 0.58 

respectively. Although the model portfolios’ Information Ratios were not as high as the top quartile 

managers over the five-year period, their performances were certainly ranked among the top. The model 

portfolios however did deliver higher Information Ratios than the top quartile managers over the ten-year 

period. 

 

Emerging Asia 

There is no data available for Emerging Asia thus we can only compare against the global emerging 

markets, which more than half of the market capitalization is from Emerging Asia: 

Period 3-Year 5-Year 10-Year 

Median IR 0.48 0.55 0.46 
Top Quartile IR 0.95 0.95 0.6 
Number of Managers 87 81 49 
Source: Mercer Global Investment Manager Database 

Table 6-g: Information Ratios of Median and Top Quartile Managers with Global Emerging Markets Mandate 

 

Our model portfolio generated an information ratio of 1.27, which clearly out-performed even the top 

quartile managers. 
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6.4 Performances Comparison: Individual vs. Pair-wise Model 
To test the hypothesis that modeling assets in pairs is better than treating them individually, we constructed 

a global country allocation portfolio using the individual model. The portfolio was also constructed using 

robust regression as the means to estimate the factor loadings, and used Similarity Ratio as the scoring 

measure. As a result, the difference in performance of this portfolio from our global model portfolio is 

solely due to whether the assets are being modeled individually or in pairs. This section compares the 

performances of this portfolio with our global model portfolio.  

 

6.4.1 Comparison of Performance 

Comparison of Portfolio Performance for Individual Model and Pair-wise Model
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Figure 6-d: Comparison of Yearly Value-added for Individual and Pair-wise Models 

 

Figure 6-d compares the yearly value-added of the two portfolios; the pair-wise model out-performed the 

individual model for six out of seven years. Even in year 2004 where the pair-wise model delivered a lower 
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value-added than the individual model, the pair-wise model still out-performed the benchmark return by 

1.25%.  

 

The following table compares the performance of the two global country allocation portfolios. The pair-

wise model had delivered a higher value-added and Information Ratio. In addition, the proportion of out-

performing quarters is also higher for the pair-wise model portfolio. All these performances were obtained 

with a lower turnover and less correlated with the market’s performance as compared to those of individual 

model. It is clear that pair-wise model generates better results for all the performance indicators we used. 

 

Performance Indicators Individual Model Pair-wise Model 

PI1 – Asset Allocation Value-added (%) 0.33 1.61 
PI2 – Information Ratio 0.66 1.15 
PI3 – Proportion of Out-performing Quarters (%) 53.57 75.00 
PI4 –Turnover (%) 13.47 35.50 
PI5 – Correlation with Market -0.18 0.12 
PI7 – Trading Edge (bp) 8.45 40.26 

Table 6-h: Comparison of Performances of Individual and Pair-wise Models 

 

PI6 – Cumulative Contribution Curve 

From the Cumulative Contribution Curves, we see that the Pair-wise model has a lower starting point; this 

indicates that the best trade in that portfolio is contributing less than that from the Individual model 

portfolio.  
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Cumulative Percentage Contribution By Quarters (Descending Order)
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Figure 6-e: Cumulative Contribution Curves for Individual and Pair-wise Models 

 

The curve for the Pair-wise model is flatter and is always below the curve of Individual model. This means 

that the profit and loss from each quarter was less volatile and had less impact on overall performance 

individually. This suggests that the portfolio construction process is able to generate portfolio with less 

fluctuating returns.  

 

Lastly, we see that the Cumulative Contribution Curve of the individual model portfolio starts to taper off 

about half way point while the curve from the Pair-wise model continues to rise. This is a graphical 

representation of the proportion of out-performing quarters and again the Pair-wise model came up on top 

of the Individual model. 

 



 115

The analysis from the Cumulative Contribution Curves supports our claims that the using Pair-wise asset 

modeling in the yields better results that using the Individual asset modeling. 

 

6.4.2 Verdict 

The two global country portfolios were constructed in exactly the same manner except that in one portfolio, 

we model the relative returns of asset pairs (pair-wise model); and in the other, to forecast the asset return 

of each asset individually (individual model). Our empirical results showed pair-wise model yielded better 

results than individual model. With the choice of pair-wise or individual model being the only difference, it 

is clear the results support our claim that the pair-wise modeling works. It is clear to see that the results 

reveal two things: 

 

6.5 Performances Comparison: Different Scoring Methods 
To test if Similarity Ratio is indeed a better scoring measure than those available, we constructed global 

country allocation portfolios using different scoring measures to screen the pair-wise forecasts.  

 

6.5.1 Scoring Method and Expected Portfolio Performances 

Recalled that we have earlier suggested that we should look at three properties when assessing the scoring 

measures:  

• P1. Measures directional accuracy of relative returns forecasts. 

• P2. Uses magnitude of forecast only if directional accuracy of direction is not sufficient in 

distinguishing the quality of the two models 

• P3. Has an aggregated score that it is not susceptible to outlier 
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We tabulated the candidates that we have short-listed in our study and assess their suitability based on the 

three properties and found that none of the six alternative scoring measures has all the three properties: 

Scoring Measure Range of Original 
Definition Scaling P1 P2 P3 

R2 0 to 1 Score = R2 N N N 
Hit Rate 0 to 1 Score = Hit Rate Y N Y 

IC -1 to 1 Score = (IC + 1)/2 N N N 
UIC -1 to 1 Score = (UIC + 1)/2 Y N N 
AC -1 to 1 Score = (AC + 1)/2 Y N N 
UI 1 to 0 Score = 1 – UI N N N 

Similarity Ratio 0 to 1 Score = Similarity Ratio Y Y Y 

Table 6-i: Summary of Characteristics of Alternative Scoring Measures 

 

Based on the characteristics of the scoring measures, our initial assessment is that we expect Similarity 

Ratio to be the best measure since it meets all the three properties of a good scoring measure. Of the three 

properties, P1 (directional accuracy) is the most important, this suggests that Hit Rate, Un-centered 

Information Coefficient and Anomaly Correlation are expected to deliver reasonably good results. We 

should also expect to see portfolios constructed using R2 and Theil’s Accuracy Coefficient (UI) to perform 

poorly as they did not meet any of the three properties. 

 

6.5.2 Comparison of Portfolios Performances 

Figure 6-f shows the cumulative value-added of all the test portfolios constructed using different scoring 

measure. The portfolio that used Similarity Ratio to screen the pair-wise forecasts clearly out-performed the 

rest. 
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Cumulative Value-added (USD) for Portfolios Constructed Using Different Scoring 
Methods
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Figure 6-f: Cumulative Value-added for Global Portfolios Constructed Using Different Scoring Measures 

 

The table below summarizes the performances of the global portfolios constructed using different scoring 

methods. With the winner in each category being highlighted in blue: 

Performance 
Indicators R2 Hit Rate 

Info 
Coeff 
(IC) 

Un-
centered 

IC 

Anomaly 
Corr 

Theil 
Forecast 
Accuracy 

Similarity 
Ratio 

PI1 1.12 1.48 1.28 1.09 1.31 0.66 1.61 
PI2 0.73 0.98 0.90 0.93 0.91 0.74 1.15 
PI3 67.86 71.43 67.86 71.42 64.29 57.14 75.00 
PI4 37.45 35.46 33.81 36.41 35.59 17.43 35.49 
PI5 0.20 0.29 -0.08 -0.27 0.09 0.14 0.12 
PI7 28.26 37.05 31.98 32.44 32.90 16.61 40.26 

Table 6-j: Performances of Global Portfolios Constructed Using Different Scoring Measures 

 

From the above table, we see that the value-added delivered by the portfolios using Hit Rate and Anomaly 

Correlation as scoring measures were among the highest. This matches our initial assessment of the scoring 

measures using the three properties of ideal scoring measure.  
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Average Ranking 

We ranked the portfolios of each scoring measure based on each performance indicator, with “1” being the 

best and “7” for the worst: 

Performance 
Indicators R2 Hit Rate 

Info 
Coeff 
(IC) 

Un-
centered 

IC 

Anomaly 
Corr 

Theil 
Forecast 
Accuracy 

Similarity 
Ratio 

PI1 (%) 5 2 4 6 3 7 1 
PI2 7 2 5 3 4 6 1 
PI3 (%) 4 2 4 3 6 7 1 
PI4 (%) 7 3 2 6 5 1 4 
PI5 5 7 1 6 2 4 3 
PI7 (bp) 6 2 5 4 3 7 1 

Table 6-k: Rankings of Global Portfolios Constructed Using Different Scoring Measures 

 

With the rankings, we then calculate each portfolio’s average ranking (“1” for the best and “7” for the 

worst) which are shown in the table below: 

Scoring Method Average Ranking 

Similarity Ratio 1.8 
Hit Rate 3.0 
Information Coefficient 3.5 
Anomaly Correlation 3.8 
Un-centered IC 4.6 
Theil Forecast Accuracy 5.3 
R2 5.7 

Table 6-l: Average Ranking of Global Portfolios Constructed Using Different Scoring Measures 

 

Again the results matched our initial assessment based on the three properties (P1 to P3) of an ideal scoring 

measure. We correctly predicted Similarity Ratio to be the best while R2 and Theil’s Accuracy Coefficient 

to be among the worst measures. This also suggests that the list of properties of an ideal scoring measure is 

well constructed and is a set of fair evaluation criterion to use in deciding the scoring measure. 
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Similarity Ratio portfolio performed the best as its overall ranking score is 1.8. The only in-sample based 

measure we have, R2, had performed poorly as we had expected; its score of 5.7 is the worst among all the 

scoring measure. We did not have to weight the score based on the importance of different performance 

indicators because this will only skew the score towards Similarity Ratio since it ranked first in the most 

important indicators: value-added and information ratio. Using a weighted average ranking will not change 

the fact that Similarity Ratio ranked first, in fact, it would only increase its winning margin.  

 

PI6 – Cumulative Contribution Curves 
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Figure 6-g: Cumulative Contribution Curves of Global Portfolios Constructed Using Different Scoring 
Measures 

 

The chart plots the Cumulative Contribution Curves for the portfolios constructed using different scoring 

methods. We see that the Similarity Ratio’s curve has the lowest starting point, and that it is the lowest (i.e. 

most flat). Thus from the Cumulative Contribution Curves, we see that the portfolio constructed using the 
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Similarity Ratio as the filtering criteria generated better performance than those portfolios using other 

scoring methods. 

 

6.5.3 Verdict 

Table 6-l shows the average ranking of each global portfolio constructed using different scoring measures. 

We see that the portfolio that used Similarity Ratio as the means to screen the pair-wise forecasts had the 

best ranking of 1.8. The next best scoring measure had a score of 3.0, which is relatively poor as compared 

to the ranking obtained by our model portfolio. From the Cumulative Contribution Curves, we also 

concluded that portfolio constructed using Similarity Ratio is more superior than those portfolios 

constructed using other scoring methods. 

 

6.5.4 Pair-wise Model Out-performed Individual Model – even without 

Similarity Ratio 

The results also added more evidences that the pair-wise model works better than modeling each asset 

individually. Almost all portfolios constructed using the pair-wise framework generated a value-added of 

more than 1%. Even the worst portfolio, the one that used Theil Forecast Accuracy as the scoring measure, 

delivered a value-added much higher than the 0.33% generated by the individual model. In fact, the 

individual model portfolio also has the lowest Information Ratio, proportion of out-performing quarters, 

and trading edge. Thus these results provide another indication that using pair-wise model generates better 

results, even if the scoring measure used was not Similarity Ratio. 

 

6.6 Performances Comparison: Hit Rate vs. Similarity Ratio 
Among the alternative scoring measures, Hit Rate is the closest competitor to the Similarity Ratio; Hit Rate 

has the next highest average ranking and its Cumulative Contribution Curve is closest to that of the 
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Similarity Ratio. To find out if Similarity Ratio is indeed a better scoring measure than Hit Rate, we 

extended the empirical tests for these two measures. We constructed test portfolios with other benchmarks: 

MSCI Europe, MSCI Emerging Asia, and MSCI Europe ex-UK.  

 

6.6.1 Comparison of Performances 

PI1 – Asset-allocation Value-added 

Portfolios constructed using Similarity Ratio out-performed those constructed using Hit Rate for all the 

three other markets. As we can see from the chart below, the Similarity Ratio portfolios registered positive 

value-added in all three markets whereas while the Hit Rate portfolio even under-performed in the 

continental Europe portfolio: 
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Figure 6-h: Value-added of Portfolios Constructed Using Hit Rate and Similarity Ratio 

 

PI2 – Information Ratio 
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Figure 6-i: Information Ratios of Portfolios Constructed Using Hit Rate and Similarity Ratio 

 

Not only did the Similarity Ratio portfolios generated higher value-added, they did it without taking 

excessive risk. This is evident from the higher Information Ratios that our Similarity Ratio portfolios 

generated. The Information Ratios of the portfolios constructed using Similarity Ratio were higher than that 

of portfolios constructed using Hit Rate. 

 

PI3 – Proportion of Out-performing Quarters 

From the Similarity Ratio portfolios’ higher proportion of out-performing quarters than that of the Hit Rate 

portfolios, we see that the higher value-added of the Similarity Ratio portfolios were generated over more 

quarters than that of the Hit Rate portfolios. 
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Figure 6-j: Percentage of Out-performing Quarters of Portfolios Constructed Using Hit Rate and Similarity 
Ratio 

 

PI4 – Average Turnover 

The average turnover for the European portfolios were very close for two sets of portfolios hence there is 

no clear indication that which set is considered better. However, for the Emerging Asia market, the 

Similarity Ratio portfolio’s average turnover is clearly lower than that of the Hit Rate portfolio: 
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Figure 6-k: Average Turnover of Portfolios Constructed Using Hit Rate and Similarity Ratio 

 

PI5 – Correlation with Market Performance 

Both Hit Rate and Similarity Ratio portfolios have very high correlation with the market returns in the 

Emerging Asia market. This may be true due to the positive returns of the Asia markets in the past few 
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years. However, over a longer period of seven years, we see that the Similarity Ratio portfolios have 

relatively lower correlation with the European market returns, as compared to the Hit Rate portfolios: 
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Figure 6-l: Correlation of Value-added with Market Returns of Portfolios Constructed Using Hit Rate and 
Similarity Ratio 

 

PI7 – Trading Edge 

The expected performances for the European portfolios constructed using Similarity Ratio were higher than 

those that used Hit Rate as the scoring measure. However, the hit rate based Emerging Asia portfolio has a 

marginally higher expected value-added that the Similarity Ratio based portfolio. However, with the 

trading edge for both at a high of almost 70bp, it should not matter much. On the whole, comparing the two 

sets of portfolios using trading edge only marginally favors those portfolios which were constructed using 

Similarity Ratio as the scoring measure. 
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Figure 6-m: Trading Edge of Portfolios Constructed Using Hit Rate and Similarity Ratio 

 

6.6.2 Verdict 

Summarizing the findings in the following table, we see that the Similarity Ratio portfolios out-performed 

the Hit Rate portfolios in almost all the performance indicators except for the average turnover where both 

sets of portfolios are very close. 

Europe Country Emerging Asia Country Europe Country ex-UK 
Performance 

Indicators Hit Rate Similarity 
Ratio Hit Rate Similarity 

Ratio Hit Rate Similarity 
Ratio 

PI1 (%) 0.22 0.75 2.18 2.75 -0.22 0.66 
PI2 0.22 0.61 0.91 1.27 -0.20 0.58 
PI3 (%) 53.57 67.86 68.18 72.73 50.00 71.43 
PI4 (%) 32.24 32.65 20.33 17.62 29.90 30.53 
PI5 0.08 -0.04 0.56 0.55 0.12 -0.03 
PI7 (bp) 12.59 18.85 69.54 68.64 14.40 16.51 

Table 6-m: Summary of Performances of Portfolios Constructed Using Hit Rate and Similarity Ratio 

 

Thus we conclude that portfolios constructed using Similarity Ratio clearly out-performs those that were 

constructed using Hit Rate.  
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6.7 Conclusion from Empirical Results 
Our empirical tests were designed to test the following hypotheses: 

• Portfolios constructed using relative returns forecasts (pair-wise models) performed better than 

those based on individual asset returns forecasts (individual model) 

• Portfolios constructed by using Similarity Ratio as the scoring measure in pair-selection performed 

better than those based on other scoring measures. 

 

Comparing the results of the individual model portfolio with the pair-wise portfolios constructed using 

different scoring measures, we see from the portfolios performances that regardless of the scoring measure 

used in pair-selection, portfolios constructed using relative returns forecasts performed better than the 

portfolio that was constructed using individual asset returns forecasts. For example, the pair-wise portfolio 

with the worst Information Ratio (IR) is the one that used R2 as the scoring measure. However, its IR of 

0.73 is still higher than individual model’s 0.66. The pair-wise portfolio with the worst value-added is the 

one that used Theil Forecast Accuracy as the scoring measure. Again, its value-added of 0.66% is double of 

the individual model value-added of 0.33%. 

 

Among the pair-wise portfolios, the portfolio that used Similarity Ratio as the scoring measure performed 

that best. The portfolio’s IR of 1.15 and value-added of 1.61% out-performed all other pair-wise portfolios. 

In addition, 75% of the times the portfolio out-performed the benchmark and this is the highest among the 

seven portfolios. 

 

The results have provided strong empirical evidences to support our proposal of pair-wise framework and 

the use of Similarity Ratio as the scoring measure for pair-selection. 
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7 Generating Views with Classification Models 

In our empirical studies, we had used momentum robust regression to estimate the factor loadings of the 

linear model for each asset pair. Regression is a common approach in building linear factor model and the 

empirical studies had showed positive results using robust regression in a pair-wise framework. 

 

We extended our research to use classification techniques in generating sign-forecasts for the pair-wise 

relative returns so that we can test if pair-wise modeling works with different forecasting models. In 

addition, the results will also provide invaluable empirical evidences to show that forecasting models 

constructed with robust regression out-performed those constructed using classification techniques.  

 

We review various representative classification techniques and how can they be applied in our pair-wise 

framework. The second part of the chapter shows the implementation details and presents the empirical 

results.  

 

7.1 Classification Models 

7.1.1 The Classification Problem in Returns Forecasting 

We can formulate three possible out-comes for the relative performance of an asset pair:  

1. First asset out-performed the second asset, 

2. both assets performed the same thus no one asset performed better than the other, and 

3. first asset under-performed the second asset. 
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With this formulation, we are able to introduce classification techniques into our pair-wise framework. 

Instead of using robust regression to estimate the factor loadings of the momentum indicators in each pair-

wise model, we provide sample data to train the classifiers to explore the relationship between the 

indicators’ values and the direction of relative returns. At decision time, the trained classifiers will then be 

used to forecast the direction of the relative returns with the latest set of indicator values. 

 

7.1.2 Classification Techniques  

The construction of a classification procedure from a set of data for which the true classes are sometimes 

known as pattern recognition, discrimination, or supervised learning (in order to distinguish it from 

unsupervised learning or clustering in which the classes are inferred from the data).  

 

We consider here methods for supervised classification, meaning that the construction of a classification 

procedure based on a set of sample data with known classes. A classification method uses a set of features 

or parameters (predictors) to characterize each object. The supervised classification programs will map the 

training input data to the training output data to find the relationships that best classify the output data into 

different classes.  

 

There are two phases to constructing a classifier. In the training phase, the training set is used to decide 

how the parameters ought to be weighted and combined in order to separate the various classes of objects. 

In the application phase, the weights determined in the training set are applied to a set of objects that do not 

have known classes in order to determine what their classes are likely to be.  

 

Michie et al (1994) group the classification techniques into three categories: 

• Statistical 

• Machine Learning 
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• Neural Networks 

 

Statistical Approaches 

Two main periods of work on classification can be identified within the statistical community. The first, 

“classical” period, concentrates on derivatives of Fisher’s early work on linear discrimination, e.g. 

quadratic discrimination and logistic discrimination. The second, “modern” period, exploits more flexible 

classes of models, e.g. k-nearest Neighborhood. 

 

Machine Learning 

Machine Learning attempts to mimic human reasoning behavior sufficiently to provide insight into the 

decision-making process. It is generally taken to encompass automatic computing procedures based on 

logical or binary operations that learn a task from a series of examples (supervised learning). The key 

technique in this category has been Decision Tree, in which the classification process is a result from a 

sequence of logical steps. Other techniques under this category are Genetic Algorithms and Inductive Logic 

Procedures (ILP). GA is a mathematical optimization algorithm with global search potential. The 

methodology is inspired by a biological metaphor and applies a pseudo-Darwinian process to evolve the 

solutions iteratively. 

 

Neural Networks 

Neural networks combine the complexity of some of the statistical techniques with the machine learning 

objective of imitating human intelligence. A broad class of techniques can come under the umbrella of 

neural networks. Generally, neural networks consist of layers of interconnected nodes, each node producing 

a non-linear function of its input. The inputs to a node may come from other nodes or directly from the 

input data. More complex networks may have output nodes connected with earlier nodes to provide 

feedback into the network. These recurrent networks can be useful when modeling time-series data, Elman 

back-propagation network is one such network configuration. 
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7.1.3 Research on Application and Comparison of Classification Techniques 

Neural Network and Support Vector Machine are the Most Popular Candidates 

There have been plenty of research works being done on the application of classification techniques in the 

area of financial forecasting. Refenes (1993) and Steurer (1993) found that neural network forecasting 

models have outperformed both statistical and other machine learning models of financial time series, 

achieving forecast accuracy of up to 58%. A survey on the recent works revealed that back-propagation 

neural network is a popular choice of network architecture. Just to name a few, we have Roman and Jameel 

(1996), Yu (1999), Chen et al (2003) and Kohara (2003).  

 

The popularity of neural networks is also the reason why it is commonly treated as a competitor when other 

classification approaches are being proposed. For example, Tay and Cao (2001), Kim (2003), and Huang et 

al (2004) all recommended Support Vector Machine and all of them compared their results against the 

neural network models.  

 

Support Vector Machine (SVM), first proposed by Cortes and Vapnik (1995), is another popular 

classification technique. Support Vector Machine is favored because researchers found that it is resistant to 

the over-fitting problem, and hence likely to lead to a high generalization performance. Another important 

property of the Support Vector Machine is that training the classifier is equivalent to solving a linearly 

constrained quadratic programming problem; this means that the solution is always unique and globally 

optimal. In contrast, neural networks’ training process requires nonlinear optimization and often being 

accused of getting stuck at local minima. Some other works that recommended Support Vector Machine in 

financial modeling are Yang et al (2002), Yu et al (2005) and Chen et al (2006). 

  

Statistical and Regression Techniques are Less Popular 
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We found that the less popular choices in the published research on the application of classification 

techniques in financial modeling are what Michie et al (1994) call classical statistical techniques. 

Regression is one such technique that is not commonly seen in research works. Perhaps these techniques 

have existed for a long time and are well established. Thus their roles in the research studies are often been 

that of alternative classifiers. They are used to compare the results when a more advanced technique, such 

as Support Vector Machine and Neural Network, is being proposed. For example, Huang et al (2004) 

compare Support Vector Machine against Discriminant Analysis (Linear and Quadratic). Poddig, T. (1995) 

compares the performance of Discriminant Analysis against Neural Network (Multi-layer perceptron and 

learning vector quantiser) in the area of bankruptcy prediction. Kim (2003) includes k-nearest neighbor 

algorithm as an alternative when he proposes applying Support Vector Machine in forecasting daily Korea 

Composite stock price index. 

 

Baestaens and Bergh (1995) compare regression against neural networks in tracking the Amsterdam Stock 

Index while Refenes et al (1994) examine the use of neural networks as an alternative to regression. 

Zapranis et al (1996) also compare regression to neural network in the construction of a cash-equities 

portfolio. As many of the research works were to introduce more advanced classification techniques, it is 

not surprising that most empirical evidences supported the claims that regression technique is inferior when 

compared to classifier based on Neural Networks or Support Vector Machine. 

 

7.1.4 Observations of Empirical Tests Setup of Research Publications 

We reviewed a large collection of research articles on classification techniques; some with applications in 

financial modeling and many in other areas. We studied those works that applied classification techniques 

to stock indices forecasting and made some observations:  

• Short out-of-sample period – Out-of-sample size can be as short as 20-day (Yang et al 2002) to 

three-year (Zapranis et al 1996). However, most conclusions were made based on empirical results 
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using one-year out-of-sample data. For example, Huang et al (2004) use 36-week out-of-sample 

data for their empirical tests. 

• High frequency (daily) data – This may limit the robustness and stability of the models over a 

longer history, say three years and above, which is common in active asset management. For 

example, Tay and Cao (2001), Kim (2003), Roman and Jameel (1996) conduct their tests using 

high frequency data.  

• Over-emphasis on forecasting accuracy – Many of the works drew their conclusion based on 

forecasting accuracy, for example, Yang et al (2002), Tay and Cao (2001). By doing so, one has 

assumed that forecasting accuracy implies profitable portfolio, which is not necessary the case as 

the implementation of trades may result in high tracking error and transaction costs. There is no 

empirical result shown on how can one use classification techniques in actual portfolio 

construction. 

• Focus on absolute returns – None of the publication work we found compares the performance of 

the classification technique with the benchmark returns. The high absolute returns generated by the 

trades may be due to the market component (beta) and there may be little alpha being added. There 

is no finding if an index funds would result in a higher profit. 

• Assumed the same set of factors – There is no mention of a framework that explains the selection 

of best predictors in each decision time. A static set of predictors is used for the entire empirical 

study. Thus questions on how these predictors are to be selected at decision-time remain un-

answered. 

• Modeling of single-asset with the aim of trading that asset – Most works attempt to model the 

returns of an asset with the objective of making short-term trading gains. This does not suggest that 

the results are also applicable when the objective is to construct a portfolio that aims to out-perform 

a benchmark. Even when Roman and Jameel (1996) consider a basket of countries in their 
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modeling, their aim is just to pick the best country to invest rather than constructing an optimal 

country allocation. 

• Empirical tests are mainly restricted to a single market or a small set of markets – Most 

empirical results are confined to a single market, for example, Japan (Yu 1999, Kohara 2003), 

Taiwan (Chen et al 2003), Korea (Kim 2003) and Holland (Baestaens and Bergh 1995). Whether 

what they have proposed work for different markets remained unclear. Though Tay and Cao (2001) 

apply their model to different asset classes, such as US government bond, Germany government 

bond, US and France stock markets; they found that only the US stock market performance had a 

hit rate of more than 50%.  

 

Comparing what we have observed so far, we see there are many differences in the way we had carried out 

the empirical studies of the pair-wise framework: 

• We have a long out-of-sample period of seven years 

• We use monthly data to forecast construct quarterly-rebalanced portfolio which means more stable 

and robust results 

• We evaluate the portfolios using a full spectrum of performance indicators – from profitability to 

risk to correlation to market   

• We attribute the performance appropriately to avoid drawing conclusion skewed by market returns. 

• We adopt a contextual process that is repeatable as not test data specific 

• We construct a basket of assets for long term performance instead of gaining from short-term 

trading 

• We construct global and regional portfolios and not confined to a single market 
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We believe that our empirical framework is more comprehensive and extensive. Using this framework we 

will be able to give the various classification techniques a fair comparison with robust regression. 

 

7.1.5 Implementation of Classification Techniques 

Selecting the Classification Techniques 

We selected a representative set of classification techniques to compare against robust regression. These 

techniques were selected either they had been tested in related research works (e.g. Support Vector 

Machine) or had exhibit characteristics that may potentially suit our needs (e.g. Decision Tree, Elman 

Network).   

 

There are different variations of neural networks and it is not possible to test all networks configurations. 

We have chosen Probabilistic Neural Network (PNN) and Elman Network (ELM) because we find that 

they are the most suitable in our context. These network architectures work well in the area outside 

financial forecasting, for example, Comes (2003) uses PNN to classify micro-array data, Goh et al (2000) 

applies ELM to construct an intelligent system for time series prediction in product development, Tan and 

Silva (2003) make use of ELM in the study of human activity recognition by head movement. PNN is 

efficient to train and is less susceptible to outliers; it has been working well in classification problem. 

Elman Network takes into the consideration the sequences of events by having feedbacks to the contextual 

units; this suggests that it is suitable for time series modeling.  

 

The final list of classification techniques selected for our empirical tests are: 

• Linear Discriminant Analysis 

• Quadratic Discriminant Analysis 
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• Logistic Regression 

• k-nearest neighbors 

• Decision Tree 

• Support Vector Machine 

• Probabilistic Neural Network (PNN)  

• Elman Network (ELM) 

 

Choosing the Model Variation and Setting the Parameters’ Values 

Each classification technique has a different set of parameters and each requires specific settings for the 

technique to be effective, for example, the choice of k in k-nearest neighbor and the number of neurons in 

Elman Network. In order to maintain objectivity of our empirical tests and to prevent data snooping, we 

first surveyed past research to see if there is any recommended parameter values or specific variation of the 

classification model that we should use. For example, in our implementation of SVM, we adopted the 

Gaussian RDF as the kernel function with bandwidth set to 10 as these were used in many research 

publications.  

 

In situations that we do not find any recommended settings, or that the settings are too different from each 

other, we will apply cross validation with some qualitative assessments. For example, the number of 

neurons used in Elman Network can range from a handful to hundreds. This leads us to use cross validation 

and make a decision based on some qualitative analysis of the results. 

 

Defining the Classes 

Chen et al (2003)’s results showed that having a multiple threshold-triggering yields the best results. 

However, as to not to make the model too complex, we limit the classes to just three. Other than a class 
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each for “out-performance” and “under-performance”, we include one where the relative performance is 

too small to be considered. In our implementation, we choose to ignore any forecast of relative returns 

within a ±1% range. Hence when designing classes for each asset pair, supposed asset A and asset B, we 

consider having a threshold of 1% in setting three possible outcomes in our empirical study, and coded 

them into +1, 0 and –1: 

• +1: Asset A out-performs asset B by 1% 

• 0: Asset A and asset B have a relative performance of between –1% to +1%. 

• –1: Asset A under-performs asset B by 1% i.e. Asset B out-performs asset A by 1%  

 

Forecasting the Expected Returns from the Classification Results 

To use the results from the classification models in our pair-wise framework, we need more than just a 

forecast of direction of the relative returns. We need the magnitude of relative returns in order to form the 

view that can be used to generate the vector of expected returns, which is necessary in mean-variance 

optimization.  

 

We considered two ways of doing so. First, we can use the relative direction obtained from the 

classification model to construct a ranking for each asset. For example, supposed we know asset A out-

performs asset B, and Asset B out-performs asset C; we can infer that asset A is the best of the three, 

followed by asset B and then asset C. With this, we can then apply sort-based or rank-based optimization. 

 

This approach, however, has a few problems: 

• Asset with no view – We are unable to infer the performance of these assets and thus we will not 

be able to obtain a ranking for them 
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• Unrelated pair-wise views – For example, if asset A out-performs asset B, and asset C out-performs 

asset D, we will not know if asset A out-performs Asset C or vice versa. In this case, these two 

views are unrelated and thus we are not able to rank asset A and asset C. 

 

In the second approach, we assumed past average performance would be a good estimate for future returns. 

Hence when we obtained the forecast of the sign of relative returns, we couple it with the average 

magnitude of the past performance of that sign: 

Output from Classifier Expected Returns 

+ Average positive returns 
0 0 
- Average negative returns 

Table 7-a – Three Possible Outputs of Classifier 

 

For example, if the output of the classification is a “+”, we will use the average positive returns as the 

forecast of the expected relative returns. 

 

7.2 Description and Implementation Consideration of the 

Classification Models Tested 

7.2.1 Linear and Quadratic Discriminant Analysis (LDA and QDA) 

Discriminant Analysis (DA) is a multivariate statistical technique commonly used to build a predictive/ 

descriptive model of group “discrimination”. Linear Discriminant Analysis (LDA) can handle the case in 

which the frequencies within the classes are unequal by assuming the covariance of each class is constant. 

This method maximizes the ratio of between-class variance to the within-class variance in any particular 

data set, thereby guaranteeing maximal distinction. Quadratic Discriminant Analysis (QDA) is similar to 

LDA, only dropping the assumption of equal covariance matrices. Therefore the boundary between two 
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discrimination regions is allowed to be a quadratic surface (for example, ellipsoid, hyperboloid, etc) in the 

maximum likelihood argument with normal distributions.  

 

Huang et al (2005) compared the performances of the two methods in forecasting the direction of weekly 

Nikkei 225 returns and found that QDA out-performs LDA in term of hit rate. They also compare the 

covariance matrices of the input variables and found that they are not equal as assumed by LDA, thus 

attributing the out-performance of the QDA to the relaxation of the equal covariance assumption. 

 

7.2.2 Logistic Regression (Logit) 

Logistic Regression is used to find the hyper-plane that best separates the classes. Logistic models belong 

to the class of generalized linear models (GLM) which generalizes the use of linear regression models to 

deal with non-normal random variables, and in particular binomial variables. In the context of 

classification, the binomial variable is an indicator that counts whether an example is in a class or not. 

 

7.2.3 K-nearest Neighbor (KNN) 

The earliest nonparametric classification method was the nearest neighbor rule of Fix and Hodges (1951), 

also known as the k-nearest neighbor (KNN) rule. The procedure is conceptually simple; we compute the 

distance from an observation ix  to all other points jx  using a distance function, typically the Euclidean 

Distance. 

 

To classify ix  into one of the two groups (supposed 1G  and G2), the k points nearest to ix  are examined, 

and if the majority of the k points belong to group 1G , then assign ix  to 1G ; otherwise assign ix  to the 

other group 2G .  If we denote the number of points from 1G  as 1k , with the remaining 2k  points from 

2G , where 21 kkk += , then the rule can be expressed as: Assign ix  to 1G  if  
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21 kk >  

and to 2G  otherwise. If the sample sizes 1n  and 2n  differ, the proportions should be used in place of 

counts: Assign ix  to 1G  if  

2
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1
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k

n
k

>  

 

Determining k 

The best choice of k depends upon the data; generally, larger values of k reduce the effect of noise on the 

classification but make boundaries between classes less distinct.  

 

Loftsgaarden and Quesenberry (1965) suggest using in , where in  is the size of a typical sub-sample, as 

the estimated value of k. The ambiguity arises is the definition of “typical”, which can be subjective. Given 

that that higher k is preferred, we used the largest sample size to determine the value of k in our 

implementation: 

( )⎣ ⎦snnnk ,...,,max 21=  

where  

s = number of sub-samples/ classes 

 

Choosing the distance measure and tie-break rule 

The popular choice is the Euclidean norm, for example, Kim (2003) uses Euclidean Distance when 

comparing against Support Vector Machine in forecasting daily KOSPI index values. However, when 

dealing with financial time series, the magnitude of the correlation coefficient between each input and the 

output in the training set is useful when determining the weight of each input when computing the distance 

measure for a new example. This idea was also implemented by Levitt and Vale (1995) in the trading of 

foreign exchange.  
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As such, we will use the following distance measure: 

Distance = 1 – (sample correlation between points) 

 

In the event of a tie, we assign the sample point to the class which the majority of the k nearest neighbors is 

from.  

 

7.2.4 Decision Tree (Tree) 

One method of representing a decision sequences is through a decision tree. The tree represents the 

decision-making process or a classification process as a series of nested choices or questions. At each step 

(end of a tree branch) in the process, a single binary or multinomial question is posed (each question is 

another branch out of the original branch), and the answer determines the next set of choices to be made. In 

a classification context, this method is sometimes referred to as recursive partitioning.  

 

When the full tree is being generated, it can be pruned to reduce large size and over-fitting the data. This is 

done by turning some branch nodes into leaf nodes, and removing the leaf nodes under the original tree 

(Bolakova, 2002). The trees are pruned based on an optimal pruning scheme that the branches giving less 

improvement in error cost were the first to be pruned. 

 

7.2.5 Support Vector Machine (SVM) 

A Support Vector Machine (SVM) is a supervised learning technique from the field of machine learning 

applicable to classification. In Cortes and Vapnik (1995) own words: 

“The support vector network is a new learning machine for two-group 

classification problems. The machine conceptually implements the following 
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idea: input vectors are non-linearly mapped to a very high dimensional feature 

space. In this feature space a linear decision surface is constructed.” 

  

SVMs are based on the principle of Structural Risk Minimization, which searches to minimize an upper 

bound of generalization error. This induction principle is based on the fact that the generalization error is 

bounded by the sum of the training error and a confidence interval term that depends on the Vapnik-

Chervonenkis (VC) dimension. This makes SVM less susceptible to over-fitting problem as compared to 

most neural networks. Neural networks implement the Empirical Risk Minimization principle, that is, 

minimizes the training error. 

 

Choosing the kernel function and parameters 

Xian (2005) uses a large number of samples to compare the accuracy rates of three kinds of kernel 

functions of SVM, the results indicate that Gaussian kernel is more accurate than polynomial kernel and 

multilayer perceptron (MLP) kernel. Gaussian kernel was commonly used when SVM is applied to 

financial modeling, for example, Kim (2003) and Tay and Cao (2001) both used the Gaussian kernel.  

 

Chang (2005) notes that the results of using Gaussian kernel in support vector classification are sensitive to 

the size of the kernel width. Small kernel width may cause over-fitting, while a large width may result in 

under-fitting. The so-called optimal kernel width is selected based on the tradeoff between under-fitting 

loss and over-fitting loss. Kim (2003) varies the parameter values in various tests and observes hit rates 

varying between 50.4303% and 57.315% for out-of-sample period ending December 1998. Based on Kim’s 

study, we set the kernel bandwidth to 10, a setting that was also coincides with the kernel width used in Tay 

and Cao (2001). 

 

Handling more than two-group classification 
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SVM works for a two-group classification problem. In our case, we have to partition our output universe 

into three groups ( 1G , 2G  and 3G ). To handle the limitation in SVM, we first transform our sample set 

into two groups, the first belong to 1G  and the rest. We then applied SVM classification to identify all data 

points that belong to group 1G . We then partition the rest of the unclassified data into two groups: 2G  and 

3G . SVM classification is then applied to the second set of sample to create the classification for 2G  and 

3G . 

 

7.2.6 Probabilistic Neural Network (PNN) 

The PNN, proposed by Specht (1988), is a classifier that is built on the Bayesian method of classification, 

hence is also called Bayesian network. PNN is a type of neural network that uses kernel-based 

approximation to form estimates of the probability density functions of classes in a classification problem. 

It is able to deduce the class, with the maximum probability of success, of a given input vector after the 

training process is completed. As suggested by Chen et al (2003), PNN is appealing because: 

• It is fast to train PNN thus suits the frequent update that is required in our contextual model 

• The logic of PNN is less susceptible to outliers and questionable data points and thereby reduces 

extra effort on scrutinizing training data 

• PNN provides the Bayesian probability of the class affiliation 

 

7.2.7 Elman Network (ELM) 

Elman (1990) proposes a partially recurrent neural network. The network topology contains mainly feed-

forward nodes but also includes a set of carefully chosen feedback connections that let the network 

remembers cues from the recent past. The input layer is divided into the true input units and the context 

units. The context units hold a copy of the activations of the hidden units from the previous time step, thus 
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allow the network activation produces by past inputs can be feedback to provide additional information for 

the processing of future inputs. This feedback feature makes ELM an ideal candidate for the financial time 

series forecasting, as remarked by Brabazon and O’Neill (2006). 

 

Choosing the Number of Neurons and Number of Epochs 

The number of hidden neurons varies from implementation to implementation. For example, Wang et al 

(2006) use 10 neurons while Yu (1999) uses only 6. In more complex settings, the number of neurons can 

exceed 100 (e.g. Goh et al 2000, Tan and Silva 2003). With the large differences in the number of neurons 

used, we used in-sample data to decide on the parameter values to be used in our empirical tests. We 

recorded the hit rates with different combinations of number of neurons and number of epochs. The number 

of neurons starts from 5 to 50, with a step-size of 5. For the number of epochs, we used a step-size of 100 

for the range 100 to 800. The following tables show the hit rates from the two pairs, the USA-Japan pair 

and Austria-Belgium pair. Our cross-validation analysis suggests that Elman Network containing 25 hidden 

neurons with a maximum training 500 epochs is the most stable settings. Hence we used these settings in 

our implementation of the Elman Network.  

 

 Number of Epochs 
 100 200 300 400 500 600 700 800 

5 66.7 75.0 81.7 76.7 80.0 76.7 76.7 76.7 
10 75.0 76.7 75.0 76.7 76.7 76.7 76.7 81.7 
15 76.7 78.3 76.7 76.7 76.7 83.3 75.0 76.7 
20 73.3 75.0 76.7 75.0 81.7 75.0 73.3 75.0 
25 71.7 75.0 80.0 76.7 76.7 80.0 75.0 75.0 
30 73.3 73.3 76.7 76.7 75.0 75.0 76.7 76.7 
35 76.7 75.0 76.7 75.0 76.7 76.7 80.0 78.3 
40 73.3 73.3 76.7 73.3 80.0 75.0 75.0 76.7 
45 75.0 78.3 75.0 76.7 73.3 75.0 78.3 76.7 
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50 73.3 75.0 76.7 75.0 75.0 76.7 73.3 75.0 

Table 7-b: Elman Network Hit Rates for USA-Japan Pair with Different Number of Neurons and Epochs 

 

 Number of Epochs 
 100 200 300 400 500 600 700 800 

N
um

b

er
of

5 71.7 71.7 71.7 70.0 70.0 75.0 80.0 76.7 
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10 71.7 73.3 70.0 75.0 75.0 75.0 73.3 76.7 
15 70.0 71.7 70.0 71.7 78.3 71.7 73.3 73.3 
20 66.7 71.7 71.7 71.7 76.7 73.3 71.7 73.3 
25 73.3 73.3 76.7 70.0 70.0 76.7 78.3 73.3 
30 75.0 71.7 81.7 71.7 71.7 71.7 75.0 73.3 
35 70.0 73.3 71.7 71.7 73.3 80.0 71.7 76.7 
40 71.7 75.0 70.0 71.7 73.3 76.7 71.7 81.7 
45 71.7 73.3 73.3 71.7 73.3 76.7 71.7 78.3 

 

50 73.3 71.7 70.0 75.0 78.3 76.7 73.3 76.7 

Table 7-c: Elman Network Hit Rates for Austria-Belgium Pair with Different Number of Neurons and Epochs 

 

7.3 Empirical Results 
To compare the performances of various classification models, including that of regression model, we did 

two empirical studies. The first, with data from 1995 to 1999, is to apply the classification models to study 

the hit rates of various classification techniques in forecasting the direction of the three-month ahead 

relative returns for the six MSCI regional pairs. This is the same preliminary empirical study that we used 

to review the performance of various momentum and reversal indicators, which we documented in the 

appendix. 

 

In the second set of empirical tests, we replaced robust regression in our pair-wise framework and apply the 

classification techniques to construct the forecasting models. All other aspects on how the empirical studies 

were carried out remained the same to isolate the impact of the different model construction approaches. 

That is, Similarity Ratio was used to evaluate the pair-wise forecasts, used the same optimizer with the 

same set of constraints, etc. We then compare the performances of the portfolios constructed using different 

classification methods with our model portfolios. 

 

7.3.1 Preliminary Hit Rate Analysis 

Table 7-d shows the hit rates of different classifiers (including robust regression) from 1995 to 1999 in 

forecasting the direction of the relative returns of the six pairs of regional assets: 
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Regional 
Pair QDA LDA Logit KNN Tree SVM PNN ELM Regression

EU-AP 57.4 54.1 67.2 41.0 57.4 41.0 52.5 65.6 59.0 
EU-JP 65.6 67.2 67.2 52.5 52.5 59.0 59.0 60.7 67.2 
JP-AP 49.2 50.8 44.3 47.5 52.5 44.3 44.3 49.2 55.7 

NA-AP 49.2 57.4 62.3 45.9 60.7 42.6 59.0 63.9 52.5 
NA-EU 55.7 57.4 50.8 52.5 52.5 47.5 59.0 50.8 57.4 
NA-JP 67.2 63.9 70.5 54.1 57.4 60.7 68.9 67.2 62.3 

Table 7-d: Hit Rates of Different Classifiers in Predicting the Directions of Regional Pair-wise Relative Returns 

 

From the table, we see that only three models generate at least 50% hit rate for all the asset pairs: Linear 

Discriminant Analysis, Decision Tree and Regression. Among the three, the difference between the 

maximum and minimum Hit Rate is the smallest for the Decision Tree, followed by the Regression model. 

This seems to suggest that these models do offer some stability in their forecasts.  

 QDA LDA Logit KNN Tree SVM PNN ELM Regression
Minimum 49.2 50.8 44.3 41 52.5 41 44.3 49.2 52.5 
Maximum 67.2 67.2 70.5 54.1 60.7 60.7 68.9 67.2 67.2 
Range 18 16.4 26.2 13.1 8.2 19.7 24.6 18 14.7 
Average 57.4 58.5 60.4 48.9 55.5 49.2 57.1 59.6 59.0 

Table 7-e: Summary of Hit Rates of Different Classifiers in Predicting the Directions of Regional Pair-wise 
Relative Returns 

We summarize the statistics of the hit rates in Table 7-e, we see that Decision Tree and Regression are the 

classifiers with good performances. They have a minimum hit rate that is above 50%, with smaller 

differences between the maximum and minimum hit rates then the rest. In addition, the average hit rates are 

above 50% with maximum hit rates above 60%. Other notable classifiers are LDA and logistic regression. 

 

7.3.2 Performances of Global Country Allocation Portfolios 

We shall now look at the performances of the portfolios constructed using these classification techniques. 

The following table shows the performances of the global country allocation portfolios: 

 LDA QDA Logit KNN Tree SVM PNN ELM Regress 

PI1 (%) 0.51 0.58 0.74 0.75 1.64 0.95 0.98 0.51 1.61 
PI2 0.29 0.42 0.43 0.39 1.03 0.66 0.75 0.34 1.15 
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 LDA QDA Logit KNN Tree SVM PNN ELM Regress 

PI3 (%) 57.14 50.00 53.57 57.14 75.00 57.14 64.29 60.71 75.00 
PI4 (%) 30.01 35.45 39.74 37.16 45.02 42.57 41.47 42.90 35.49 
PI5 0.07 0.09 0.1 0.35 0.07 0.44 0.21 0.25 0.12 
PI7 (bp) 13.04 14.69 18.70 19.15 41.06 14.01 24.55 12.90 40.26 

Table 7-f: Performances of Global Portfolios Constructed Using Different Classification Techniques 

 

The empirical results show that Decision Tree has the highest annual value-added, 3bp higher than that of 

the robust regression model. However, due to a higher tracking error, its Information Ratio is relatively 

smaller than the regression model. Its average turnover is 4% higher than that of the regression model. Both 

have a higher hit rate of 75%. Comparing the performance on the pre-sample hit rate and actual empirical 

performance, robust regression presents the most stable model construction techniques. 

 

Ranking each model with 1 being the best and 5 for the worst, we have the following: 

 LDA QDA Logit KNN Tree SVM PNN ELM Regress 

PI1 (%) 8 7 6 5 1 4 3 8 2 
PI2 9 6 5 7 2 4 3 8 1 
PI3 (%) 5 9 8 5 1 5 3 4 1 
PI4 (%) 1 2 5 4 9 7 6 8 3 
PI5 1 3 4 8 2 9 6 7 5 
PI7 (bp) 8 6 5 4 1 7 3 9 2 

Table 7-g: Rankings of Global Portfolios Constructed Using Different Classification Techniques 

 

And the average ranking clearly suggests that the regression model is the best approach in constructing the 

forecasting models in our pair-wise framework:  

Classification Method Average 
Ranking 

Robust Regression 2.3 
Decision Tree 2.7 
Probabilistic Neural Network (PNN) 4.0 
Linear Discriminant Analysis (LDA) 5.3 
Quadratic Discriminant Analysis (QDA) 5.5 
Logistic Regression 5.5 

K-nearest Neighbors (KNN) 5.5 
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Classification Method Average 
Ranking 

Support Vector Machine (SVM) 6.0 
Elman Neural Network (ELM) 7.3 

Table 7-h: Average Ranking of Global Portfolios Constructed Using Different Classification Techniques 

 

Out of the three classification techniques that performed well during our Hit Rate studies (LDA, Logistic 

Regression, Decision Tree and Robust Regression), only Robust Regression and Decision Tree performed 

well in terms of portfolio performances.  

 

Cumulative Contribution Curves 

From the Cumulative Contribution Curves, we see that indeed the portfolio constructed based on Decision 

Tree offered the closest competition to the portfolio constructed using Robust Regression: 

Cumulative Percentage Contribution By Quarters
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Figure 7-a: Cumulative Contribution Curves of Global Portfolios Constructed Using Different Classification 
Techniques 
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7.4 Comparing Decision Tree and Robust Regression in Other 

Markets 
We have seen that the global country allocation portfolio constructed using the Decision Tree is 

comparable to that of Robust Regression. To confirm if Robust Regression indeed the better model 

construction technique in our framework, we shall compare these two models in different markets. 

 

7.4.1 Performance Indicators 

PI1 – Asset-allocation Value-added 

Regression model generated positive value-added in all three markets. It out-performed the Decision Tree 

model in the two European portfolios but not the emerging Asia portfolio. However, both registered very 

high value-added in Asia thus the slight under-performance of Regression model should not be seen as a 

poor result. 

Value-added (USD)
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Figure 7-b: Value-added of Portfolios Constructed Using Decision Tree and Robust Regression 

 

PI2 – Information Ratio 

The higher value-added in Asia generated by Decision Tree model was achieved with a higher tracking 

error thus resulting it had a lower information ratio that the Regression model. In terms of Information 

Ratio, the Regression model clearly done better than the Decision Tree model.  
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Information Ratio
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Figure 7-c: Information Ratio of Portfolios Constructed Using Decision Tree and Robust Regression 

 

PI3 – Proportion of Out-performing Quarters 

Again the Decision Tree models marginally out-performed in Asia but the Regression model Asia portfolio 

also managed a high of 77%. In contrast, the Regression model portfolios performed very well in Europe. 

Generally, the Regression model deliver stable performance overall. 
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Figure 7-d: Percentage of Out-performing Quarters of Portfolios Constructed Using Decision Tree and Robust 
Regression 

 

PI4 – Average Turnover 

Portfolios constructed with the Regression models generated lower turnover than those portfolios 

constructed from the Decision Tree models. The differences range from 5% to 10%. 
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Figure 7-e: Average Turnover of Portfolios Constructed Using Decision Tree and Robust Regression 

 

PI5 – Correlation with Market Performance 

We see that the portfolios constructed using the Robust Regression technique have lower correlation with 

the market performance: 
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Figure 7-f: Correlation of Value-added with Market Returns of Portfolios Constructed Using Decision Tree 
and Robust Regression 

 

PI7 – Trading Edge 

We see that the portfolios constructed using the Robust Regression technique have positive expected value-

added for all three markets. Hence even if the edge is slightly lower than the portfolio constructed using 

Decision Tree, we conclude that based on Trading Edge, Robust Regression out-performed Decision Tree.  
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Figure 7-g: Trading Edge of Portfolios Constructed Using Decision Tree and Robust Regression 

 

7.4.2 Verdict 

Despite the slight under-performance in Asia, Regression models appear to be more stable and able to 

obtain overall better results in different markets. The outcome of this empirical study has shown that 

Regression model is the preferred model in our pair-wise framework. Table 7-i summarizes the 

performances of the test portfolios for different benchmarks. It is clear that portfolios constructed with 

Robust Regression clearly out-performed those constructed using Decision Tree: 

Europe Country Emerging Asia Country Europe Country ex-UK 
Performance 

Indicators Decision 
Tree 

Robust 
Regression 

Decision 
Tree 

Robust 
Regression 

Decision 
Tree 

Robust 
Regression 

PI1 (%) -0.45 0.75 2.87 2.75 -0.42 0.66 
PI2 -0.33 0.61 1.19 1.27 -0.28 0.58 
PI3 (%) 53.57 67.86 77.27 72.73 64.29 71.43 
PI4 (%) 38.27 32.65 28.02 17.62 38.46 30.53 
PI5 0.21 -0.04 0.65 0.55 0.05 -0.03 
PI7 (bp) -11.12 18.85 71.7 68.64 -10.21 16.51 

Table 7-i: Summary of Performances of Portfolios Constructed Using Decision Tree and Robust Regression 
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7.5 Ensemble Method or Panel of Experts  

7.5.1 Combining Opinions of Different Experts 

An ensemble of classifiers is a set of classifiers whose individual decisions are combined in some way 

(typically by weighted or un-weighted voting) to classify new examples. The goal of ensemble methods is 

to generate an overall system that performs better than any individual classifier.  

 

A great deal of research, including Dietterich (2000), has shown that ensembles are in practice often more 

accurate than the best of the classifiers they are composed of. Huang et al (2005) tested QDA, LDA, ELM 

and SVM on forecasting the weekly returns of Nikkei 225 index and compared the results against a 

combined model comprising of the four models. The weighted average is computed with weights are 

computed from the in-sample fitting. Using 36-week data in 1992, they found that this weighted results out-

performs all individual models. 

 

Qian and Rasheed (2007) tested different combinations with a set of building block models that consist of 

neural network, k-nearest neighbor and decision tree. They concluded that combining three models yields 

the lowest error rate.  

 

We have seen that our regression model performed well against individual classification models. We will 

now compare the results of our regression model against the combined opinion of all the classification 

models.  

 

Hansen and Salamon (1990) found that in order for an ensemble of classifiers to be more accurate than any 

of its classifiers, the classifiers must be accurate and diverse. Here accurate means better than random 

guessing and diverse means the classifiers make uncorrelated errors. As such, when we poll the models for 

their views on the asset pairs relative performance, we only include those “experts” that are at least 50% 
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confidence in their views. That is, those “experts” that have a track record that surpass the 50% of random 

guessing. 

 

We consider two ways of combining the outputs of the classifiers: 

 

• Equally weighted i.e. one vote each – In this scheme, we will give each model an equal vote. The 

final result will be the outcome with the highest vote. 

 

• Weighted-voting using Similarity Ratio – In this scheme, each model’s vote is weighted based on 

the confidence score, that is, if the score is higher, the model will receive higher weights for its 

vote. 

 

7.5.2 Empirical Results and Concluding Remarks 

The performance of the portfolios constructed using the two ensemble schemes are tabulated as follows. 

For comparison, we have also included the results we obtained from the regression model: 

Performance Indicators Equal-
Weighted 

Score-
Weighted 

Robust 
Regression 

PI1 – Value-added (%) -0.43 1.18 1.61 
PI2 – Information Ratio -0.33 1.55 1.15 
PI3 – Proportion of Out-performing Quarters (%) 46.43 67.86 75.00 
PI4 – Average Turnover (%) 40.04 36.86 35.50 
PI5 – Correlation with Market -0.02 0.18 0.12 
PI7 – Trading Edge (bp) -10.66 29.77 40.26 

Table 7-j: Performances of Global Portfolios Constructed Using Different Ensemble Schemes 

 

A few conclusions can be drawn from the above results: 

(a) Robust regression model performed the best as compared to both ensemble schemes 
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(b) Among the two schemes, using Similarity Ratio as the weights generates better results than an 

equally-weighted ensemble scheme. 

(c) The ensemble approach that uses Similarity Ratio as the means to weigh the votes out-performed 

most of the classification techniques except for the Decision Tree approach. The fact that the 

performance is much closer to the Decision Tree than the rest suggests that Similarity Ratio for the 

Decision Tree model is likely to be higher than the rest thus getting more weights for its votes. 

 

Based on the empirical results, there is no evidence to suggest that there is a better approach in estimating 

factor loadings than Robust Regression. This may or may not be true in all contexts but certainly in our 

proposed pair-wise framework, Robust Regression has performed outstandingly and will be the estimation 

method that we would recommend in our framework. 
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8 Conclusion 

8.1 Contributions of this Research 
Against the backdrop of a lack of application of pair-wise strategies in active portfolio management, our 

works provide:  

• a generic framework to implement pair-wise strategies and extensive empirical evidences to 

support the framework 

• an innovative scoring measure that emphasizes on directional accuracy of relative returns forecasts 

• a comparison of regression-based model to other classification techniques in predicting direction of 

relative returns. 

 

We emphasize that the pair-wise framework does not depend on the type of forecasting models used to 

predict relative returns or the way in which the forecasts are transformed into a portfolio. What is important 

is that forecasting model should be built to predict relative returns, and Similarity Ratio is used as a scoring 

measure. By doing so, we allow investment firms to retain their respective competitive advantage in 

generating forecasts and portfolio construction while incorporating the pair-wise framework that we 

propose. 

 

8.1.1 A Framework to Implement Pair-wise Strategies 

The framework consists of two stages. In the contextual modeling stage, a contextual model for each asset 

pair is used to forecast the relative returns of the pair, together with a confidence score. The full set of 

forecasts then goes through the selection stage in which the set of forecasts to be used in the portfolio 

construction process is sieved out. As the confidence score is used in the selection process, it is critical that 

the score reflects as accurately as possible the forecasting model’s ability in relative returns prediction.  We 

propose Similarity Ratio as the ideal scoring measure to be used.  
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8.1.2 Innovative Scoring Measure that Emphasizes on Directional Accuracy 

We designed Similarity Ratio to quantify the forecasting quality of a model. The scoring mechanism 

embedded in Similarity Ratio uses directional accuracy as the main consideration when assigning a score, 

and supplements with the magnitude of forecast.  

 

For an actual-forecast pair ( )fa, , Similarity Ratio is defined as: 

Similarity Ratio ( )fa,  =

⎪
⎪
⎪

⎩

⎪⎪
⎪
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−++
+

afaf
af

0
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afaif 02 ≤+
 

 

Similarity Ratio for a model will be the average Similarity Ratio for every out-of-sample actual-forecast 

pair generated from the model.  

 

The intuition of Similarity Ratio can be seen geometrically; the measure is derived from the distances of 

orthogonal projections of each actual-forecast pair to BOTH the Good ( xy = ) and Bad ( xy −=  ) 

lines. 

 

Not only did the portfolios constructed using Similarity Ratio out-performed other scoring measures 

empirically, Similarity Ratio also exhibits important characteristics of an ideal scoring measure: 

• Model with a higher accuracy in forecasting the direction of relative returns (hit rate) has a higher 

score. 
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• If there are two models having the same hit rate, higher score will be given to the model with more 

accurate forecasts, that is the deviations from actual values observed is smaller. 

• The model’s score is not susceptible to the presence of outlier in the sample. 

 

8.1.3 Comparison of Regression Model with Classification Techniques 

We conducted extensive empirical study to find evidences to support that regression approach still works in 

the pair-wise framework. The empirical results provide invaluable evidences to show that the portfolios 

constructed using regression-based forecasting models out-performed those constructed using classification 

techniques such as Neural Network, Discriminant Analysis, etc.  In addition, this study also shows that it is 

possible to incorporate different forecasting models into the framework and this supports our claim that the 

framework is model-independent.  

 

8.2 Empirical Evidences for the Pair-wise Framework 
The global country allocation portfolio benchmarked against MSCI World was constructed using the pair-

wise framework that we had proposed. The portfolio delivered an annual value-added of 1.61% over its 

benchmark returns from 2000 to 2006. This was achieved with a low tracking error and led to a high 

Information Ratio of 1.15.  

 

Based on the statistics that we have obtained from Mercer, we see that the top quartile managers with a 

MSCI World mandate have an Information Ratio of 0.99 and 0.6 for the five-year and ten-year period 

respectively. Comparing the Information Ratio alone, our country allocation portfolio clearly ranked among 

the top quartile performers, whom their Information Ratios are listed in the following table: 

Period 3-Year 5-Year 10-Year 

Median IR 0.36 0.47 0.32 
Top Quartile IR 1.05 0.99 0.6 
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Number of Managers 192 155 80 
Source: Mercer Global Investment Manager Database 

Table 8-a: Information Ratios of Median and Top Quartile Managers with Global Mandates 

 

8.2.1 Pair-wise Model Yields Better Results Than Individual Model 

Our empirical results shows that modeling the relative returns of asset pairs (pair-wise model) yields better 

results than modeling each asset returns separately (individual model). The following table compares the 

performance of the two global country allocation portfolios constructed using pair-wise model and the 

individual model, and the pair-wise model clearly out-performed the individual model in all aspects: 

Performance Indicators Individual Model Pair-wise Model 

PI1 – Asset Allocation Value-added (%) 0.33 1.61 
PI2 – Information Ratio 0.66 1.15 
PI3 – Proportion of Out-performing Quarters (%) 53.57 75.00 
PI4 –Turnover (%) 13.47 35.50 
PI5 – Correlation with Market -0.18 0.12 
PI7 – Trading Edge (bp) 8.45 40.26 

Table 8-b: Performances of Global Portfolios Constructed Using Individual and Pair-wise Models 

 

Pair-wise Model Out-performed Regardless of Scoring Measure 

When pair-wise model is used, the portfolios constructed out-performed the individual model, regardless of 

which scoring measure we used. This is supported by the empirical results obtained from comparing 

different pair-wise portfolios constructed using different scoring measures. Table 8-d compares the 

performances of all the pair-wise global country allocation portfolios constructed using different scoring 

measures and the portfolio constructed using the individual model with Similarity Ratio. 

 

Almost all portfolios constructed under the pair-wise framework generated a value-added of more than 1%, 

with the exception of the portfolio that used Theil Forecast Accuracy as the scoring measure. These results 

were much higher than the 0.33% value-added generated by modeling each asset’s returns individually, 
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even the portfolio that used Theil Forecast Accuracy delivers a value-added that is twice that of the 

individual model portfolio. In fact, the individual model portfolio also has the lowest Information Ratio, 

proportion of out-performing quarters, and trading edge. Thus these results provide another indication that 

using pair-wise model generates better results, even if the scoring measure used was not Similarity Ratio. 

 

Pair-wise Model Out-performed Regardless Model Construction Approaches 

When we replaced robust regression with different classification techniques in the pair-wise framework, the 

performances of the global country allocation portfolios yield different results but all of them out-

performed against the portfolio constructed using individual model: 

 

These results are presented in Table 8-e: and they provide more empirical evidences to support our 

proposition that modeling assets in pairs yield better results, regardless the choice of model construction 

methods used to implement the framework. 

 

Pair-wise Model Out-performed When Perfect Forecasts Were Used as Inputs 

When actual relative returns were used as the views in the pair-wise framework, the portfolios constructed 

out-performed those that used actual assets’ returns. This suggests that better quality relative forecasts 

yields better results than absolute forecasts of the same quality. The performances of the global portfolios 

constructed using the pair-wise and individual models are presented below: 

Performance Indicators Individual Model Pair-wise Model 

PI1 – Asset Allocation Value-added (%) 5.11 7.75 
PI2 – Information Ratio 2.43 4.83 
PI3 – Proportion of Out-performing Quarters (%) 89.29 100.00 
PI4 –Turnover (%) 33.15 49.54 
PI5 – Correlation with Market -0.3362 0.0058 
PI7 – Trading Edge (bp) 126 189 

Table 8-c: Performances of Global Portfolios Constructed with Perfect Forecasts 
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Individual 
Model Pair-wise Models 

Performance 
Indicators 

 Similarity 
Ratio R2 Hit Rate Info Coeff 

(IC) 

Un-
centered 

IC 

Anomaly 
Corr 

Theil 
Forecast 
Accuracy 

Similarity 
Ratio 

PI1 (%) 0.33 1.12 1.48 1.28 1.09 1.31 0.66 1.61 
PI2 0.66 0.73 0.98 0.90 0.93 0.91 0.74 1.15 
PI3 (%) 53.57 67.86 71.43 67.86 71.42 64.29 57.14 75.00 
PI4 (%) 13.47 37.45 35.46 33.81 36.41 35.59 17.43 35.49 
PI5 -0.18 0.20 0.29 -0.08 -0.27 0.09 0.14 0.12 
PI7 (bp) 8.45 28.26 37.05 31.98 32.44 32.90 16.61 40.26 

Table 8-d: Performances of Individual Model Against Pair-wise Model with Different Scoring Measures 

 

Individual 
Model Pair-wise Models 

Performance 
Indicators 

Regress LDA QDA Logit KNN Tree SVM PNN ELM Regress 

PI1 (%) 0.33 0.51 0.58 0.74 0.75 1.64 0.95 0.98 0.51 1.61 
PI2 0.66 0.29 0.42 0.43 0.39 1.03 0.66 0.75 0.34 1.15 
PI3 (%) 53.57 57.14 50.00 53.57 57.14 75.00 57.14 64.29 60.71 75.00 
PI4 (%) 13.47 30.01 35.45 39.74 37.16 45.02 42.57 41.47 42.90 35.49 
PI5 -0.18 0.07 0.09 0.1 0.35 0.07 0.44 0.21 0.25 0.12 
PI7 (bp) 8.45 13.04 14.69 18.70 19.15 41.06 14.01 24.55 12.90 40.26 

Table 8-e: Performances of Individual Model Against Pair-wise Model with Different Classification Techniques 
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8.2.2 Similarity Ratio as a Scoring Measure Picks Better Forecasts to Use 

Other than Similarity Ratio, we also tested six different scoring measures in constructing global country 

allocation portfolios. For each performance indicator, we assigned “1” for the model that performed best 

and “7” for the worst. Table 8-f shows the average ranking for all the seven candidates and clearly 

Similarity Ratio came in top: 

Scoring Method Average Ranking 

Similarity Ratio 1.8 
Hit Rate 3.0 
Information Coefficient 3.5 
Anomaly Correlation 3.8 
Un-centered IC 4.6 
Theil Forecast Accuracy 5.3 
R2 5.7 

Table 8-f: Average Ranking of Global Portfolios Constructed Using Different Scoring Measures 

 

To confirm that Similarity Ratio is indeed a better scoring model to use, we also constructed country 

portfolios in Europe and Emerging Asia using Similarity Ratio and its closest “rival”, the Hit Rate. Once 

again, the various performance indicators have indicated that the portfolios constructed using Similarity 

Ratio out-performed those that were constructed based on Hit Rate: 

Europe Country Emerging Asia Country Europe Country ex-UK 
Performance 

Indicators Hit Rate Similarity 
Ratio Hit Rate Similarity 

Ratio Hit Rate Similarity 
Ratio 

PI1 (%) 0.22 0.75 2.18 2.75 -0.22 0.66 
PI2 0.22 0.61 0.91 1.27 -0.20 0.58 
PI3 (%) 53.57 67.86 68.18 72.73 50.00 71.43 
PI4 (%) 32.24 32.65 20.33 17.62 29.90 30.53 
PI5 0.08 -0.04 0.56 0.55 0.12 -0.03 
PI7 (bp) 12.59 18.85 69.54 68.64 14.40 16.51 

Table 8-g: Summary of Performances of Portfolios Constructed Using Hit Rate and Similarity Ratio 
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8.2.3 Empirical Results Support Our Propositions 

Based on the comprehensive set of evaluation criteria to compare the performances of test portfolios, our 

empirical results support our claims that: 

• Portfolios that are constructed using relative returns of asset pairs (pair-wise model) yield better 

results than those based on returns forecasts of individual asset (individual model).  

• Portfolios constructed using Similarity Ratio as the scoring measure to rank relative returns 

forecasts out-performed those that used other scoring measures. 

 

As these are the pillars of the pair-wise framework, hence the empirical results also show that the pair-wise 

framework works in constructing country allocation portfolios. 

 

8.3 Comparison with Classification Techniques 
In the implementation of our pair-wise framework, we proposed to use robust regression to estimate the 

factor loadings of our forecasting model. As the framework is generic, different model construction 

approaches can be used in paced of robust regression. We explored the possibilities of using classification 

techniques to model the direction of each asset pair’s relative returns. We considered a total of eight 

different classification models, from statistical-based (e.g. Discriminant Analysis) to neural networks (e.g. 

Elman Network).  

 

We constructed eight global country portfolios using the pair-wise framework by replacing robust 

regression with these classification models. The empirical results showed that the portfolio constructed 

using robust regression as the model estimation method performs best for the set of performance indicators 

we have selected.  
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For each performance indicator, we ranked the various models with “1” being the best and “9” for the 

worst. The average rankings for each classification model are as follows: 

Classification Method Average 
Ranking 

Robust Regression 2.3 
Decision Tree 2.7 
Probabilistic Neural Network (PNN) 4.0 
Linear Discriminant Analysis (LDA) 5.3 
Quadratic Discriminant Analysis (QDA) 5.5 
Logistic Regression 5.5 
K-nearest Neighbors (KNN) 5.5 
Support Vector Machine (SVM) 6.0 
Elman Neural Network (ELM) 7.3 

Table 8-h: Average Ranking of Global Portfolios Constructed Using Different Classification Techniques 

 

We see that robust regression model came in first with an average ranking of 2.3 out of 9, with Decision 

Tree model came in a distant second of 2.7 out of 9. Further comparison of the two models in different 

markets (Europe and Emerging Asia) showed that robust regression model portfolios out-performed those 

based on Decision Tree.  

Europe Country Emerging Asia Country Europe Country ex-UK 
Performance 

Indicators Decision 
Tree 

Robust 
Regression 

Decision 
Tree 

Robust 
Regression 

Decision 
Tree 

Robust 
Regression 

PI1 (%) -0.45 0.75 2.87 2.75 -0.42 0.66 
PI2 -0.33 0.61 1.19 1.27 -0.28 0.58 
PI3 (%) 53.57 67.86 77.27 72.73 64.29 71.43 
PI4 (%) 38.27 32.65 28.02 17.62 38.46 30.53 
PI5 0.21 -0.04 0.65 0.55 0.05 -0.03 
PI7 (bp) -11.12 18.85 71.7 68.64 -10.21 16.51 

Table 8-i: Summary of Performances of Portfolios Constructed Using Decision Tree and Robust Regression 

 

It may not be fair to say that robust regression is the most powerful in all context, and the result need not 

necessary suggest that various classification techniques will never outperform the regression model. 

Perhaps classification techniques require more data for training, more inputs to learn the results, and those 
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different types of models work for different markets. However, at this stage, we have seen enough to 

continue to use robust regression in our portfolio construction framework. 

 

8.4 Conclusion 
The pair-wise framework is based on the finding that the performance of asset allocation portfolio is mainly 

driven by the directional accuracy of pair-wise relative returns forecasts. The framework recommends that 

forecasting models are to be “customized” (i.e. contextual model) to predict the relative returns of each 

possible pair-wise combination of assets.  

 

MSCI World consists of 23 countries; this means we need only a maximum of 22 pair-wise forecasts out of 

the possible 253 forecasts generated. This leaves us with less than 9% chance of success if the selection of 

pairs is done randomly. Similarity Ratio is a scoring measure that emphasizes on the directional accuracy of 

the forecasting models and we found it to be more superior to those alternative scoring measures that we 

have considered, including the popular Information Coefficient. Given the fact that the portfolios 

constructed based on Similarity Ratio have deliver good empirical performances, we believe that it is a 

scoring measure that is an effective measure in the pair-wise framework. 

 

Results from our empirical study provide evidences to support our propositions of using contextual pair-

wise modeling of relative returns and the use of Similarity Ratio as the scoring measure. Hence we believe 

that the pair-wise framework is ideal in constructing country allocation portfolio, that is: 

• Portfolios that are constructed using relative returns of asset pairs (pair-wise model) yield better 

results than those based on returns forecasts of individual asset (individual model).  

• Portfolios constructed using Similarity Ratio as the scoring measure to rank relative returns 

forecasts out-performed those that used other scoring measures. 
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Appendix 1: Review on Momentum and Reversal 

Indicators 

Straumann and Garidi (2007) categorize the equity factors commonly used in financial asset models into 

different types, some of these are useful in modeling country returns are as follows: 

• Macroeconomic factors derived from macroeconomic variables, interest rates, FX rates and 

commodity prices. The problem with macroeconomic variables is that they are mostly reported 

with a certain time lag so that their use in real time has its limitations. 

• Technical – constructed using historical price data, for example, momentum indicators 

• Statistical –factors are extracted from the historical returns and fundamentals factors via statistical 

techniques such as principal component analysis (PCA). 

 

As we can see there are many factors that one can choose as the inputs to the mathematical models for the 

quantitative portfolio construction. Given the almost infinitely large numbers of possible combinations of 

factors, one has to choose a set of factors that makes intuitive sense and support empirically with 

substantial back-testing. 

 

To test the pair-wise model and Similarity Ratio empirically, we used the momentum and reversal 

indicators as the factors for our analysis. Before we embark on the search for empirical support to our pair-

wise framework, we want to first establish the feasibilities of momentum and reversal indicators as the 

factors to use in our analysis. We reviewed the publications on these indicators, and followed by some hit 

rate analysis on the indicators in predicting the direction of relative returns. We concluded by constructing 

single-indicator models and test the directional accuracy of these models.  
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Research Works on Momentum and Reversal Indicators 
The basic idea of momentum strategy is to buy securities that have performed well and to sell securities 

that performed poorly. The underlying belief is that the same trend will continue in near future. Typically it 

is believed that the performance in the past six to twelve months will continue for another three to twelve 

months. Sufficient evidences, statistically and economically, have been published to support the feasibility 

and effectiveness of using price momentum in constructing portfolios.  

 

Among many research works on explaining the reason for the success of such indicators, Hong and Stein 

(1999) provide an intuitive analysis by creating a market model that consists of two groups of rational 

investors: "news-watchers" and "momentum traders". Each news-watcher observes some private 

information, but fails to extract other news-watchers' information from prices. If this privately held 

information diffuses gradually across the population, prices under-react in the short run. The under-reaction 

means that the momentum traders can profit by trend-chasing. However, if they can only implement simple 

(i.e., univariate) strategies, their attempts at arbitrage must inevitably lead to overreaction at long horizons 

and hence a reversal of price to the mean level. 

 

Though the robustness and pervasiveness of the momentum strategies are generally accepted, practitioners 

and researchers were unable to come to an agreement as in whether this is a result of market inefficiency or 

can indeed be explained by rational asset pricing. Nonetheless, the abundance of evidences suggests that 

the success of momentum and reversal indicators is unlikely due to luck or just pure coincidence.  

 

In Hong and Stein (1999), we see price momentum contributing in two ways – short term continuation and 

long term reversal. That is, assets (e.g. stocks) tend to continue their short-term trend but this trend 

continuation characteristic reversed for longer term. The short-term trend continuation is some times called 

positive momentum or simply momentum. The long-term trend reversal is also called negative momentum or 

reversal.  
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Publications on Momentum Indicators in Equity Markets 

Jegadeesh and Titman (1993) were the first to document the momentum phenomenon in academic 

literature. They noted that over a medium-term (three- to twelve-month) horizon, firms with higher past 

returns continue to out-perform firms with lower past returns over the same period. In fact, Jegadeesh and 

Titman paper was so well received that many of the subsequent works followed the definitions and 

notations used by them: J was used to represent the look-back period and K was used to represent the 

investment, or holding, period. For example, a momentum portfolio with J = 3 and K = 6 means that the 

portfolio is constructed by comparing the latest price against the price 3-period (e.g. 3-month) ago. This 

portfolio is then held for the next 6 months. 

 

One such paper that adopts the notations is by Griffin et al (2005); they study the global markets using J = 

6 and K = 6 on winner-minus-loser portfolios. In their studies of more than 30 countries, data up to the year 

2000 was used and they find that going long on those assets that exhibit positive price momentum and short 

those assets that exhibit negative price momentum yield positive returns. 

 

Rouwenhorst (1998) studied twelve stock markets in Europe and found new evidence to support the 

momentum strategy. He finds that in the European stock markets, momentum strategies work well, either 

on each individual country or cross-country basis. This was partly confirmed by the study of Rey and 

Schmid (2007), whom their results on large Swiss stocks shows that price momentum is an effective way to 

construct single-asset portfolios. 

 

As the leading financial center in the world and availability of large historical data, it is not surprising that 

US market is extensively studied and analyzed. For example, Chan et al (1996) included data from as early 

as 1977 to study price momentum strategies in selecting stocks from various US exchanges (NYSE, AMEX 
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and NASDAQ) while Chen and DeBondt (2004) studied the style momentum stocks in S&P 500. All of 

which merely add on to the long list of empirical evidences that supports price momentum based indicators. 

 

Publications on Reversal Indicators in Equities Markets 

While there are abundance of empirical studies on the efficacy of positive momentum in equity market, 

research works on price reversal studies are less common. We believed this is largely due to the rapid 

global expansion that resulting in generally upward trending stock markets performances in recent decades. 

The most commonly sited market that exhibits reversal in price momentum is Japan; some of the empirical 

results can be found in Liu and Lee (2001), Yoshihara (1990) and Chou et al (2007). 

 

Liu and Lee (2001) find that from the period 1975 to 1997, the price reversals were present in the stocks 

traded in Tokyo Stock Exchange. Yoshihara (1990) documented that a long term three- (five- to eight-year) 

return reversal in the Japanese stock markets. In a more general term, DeBondt and Thaler (1985, 1987) 

reported that long-term past losers (three- to five-year) out-performed long-term past winners over the 

subsequent three to five years. Chopra et al (1992) suggested that over periods from one to five years 

extreme stock market performance tends to reverse itself. 

 

Publications on Integrating Both Indicators 

Given the amount of evidence that appeared for either momentum or reversal strategies, it is natural to 

consider the effectiveness of combining the two apparently distinct strategies. Balvers and Wu (2005) 

explored the implications of an investment strategy that considers momentum and mean-reversion jointly. 

They applied these momentum-contrarians strategies to select among 18 developed equity markets on a 

monthly basis. They found that the combined strategies out-performed pure momentum or pure reversal 

strategies. Others who found some success when combining both mean-reversion and momentum among 

national equity markets are Cutler et al (1991) and Asness et al (1997).  
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To combine the two sets of indicators, there are some implementation issues to be answered. Supposed we 

wanted to construct a portfolio of assets with high returns in the previous 1-12 months period and low 

returns in the previous 3-5 years period. Should we hold the portfolio for one month or three years? How 

should we weigh the importance of momentum potential vis-à-vis mean reversion potential? These 

problems were also highlighted by Balvers and Wu (2005). 

 

Holding Period 

The answer to the question of holding period may not be solely dependent on the portfolio construction 

process but is determined by other factors such as futures contracts expiry dates, corporate rebalancing 

period, etc. As such, we shall leave this out for the moment. 

 

Balancing the Importance of Momentum Potential vis-à-vis Mean-Reversion Potential 

To strike the balance, Balvers and Wu (2005) adopted a parametric approach to build a linear model that 

comprises of both momentum and mean-reversion components. Regression was used to estimate the 

coefficients. Van der Hard et al (2002) combined using a scoring approach whereby stocks are ranked using 

multiple indicators. These indicators were normalized and standardized. The indicator values are then 

summed up to create a composite score for each stock.  

 

Observations 

In general, we found that the ex-post analysis of the publications confirmed that momentum and reversal 

strategies worked during the period of analysis, and in the markets where the analysis took place. 

Unfortunately many of the ex-ante aspects of the strategies were being left out. For example, how should 

one select the right indicators to include in the model? How the various parameters were set? And lastly, 

how frequently should the indicators be reviewed. Some other observations are as follows: 



 184

• Most publications work on stock selection and equally weighted portfolios. Most followed the 

standard process as described in Jegadeesh and Titman (1993) 

• A fixed set of indicators that work for the selected markets during the testing periods and there are 

no mentioned on how was the set of indicators being selected. 

• Typically short testing periods, especially out-of-sample testing period. 

• Most used high frequency data (e.g. daily) and short holding period 

• Allow shorting even to the small and illiquid stocks 

• Momentum and reversal are used to model absolute stock returns 

 

Empirical Hit Rate of Indicators 

List of Tests 

• To confirm that momentum and reversal indicators constructed using monthly price series also 

worked for low frequency data (e.g. monthly) with a long holding period (e.g. quarterly). 

• To study if there is a single set of indicators that work for all countries and regional indices. 

• To study if the set of indicators remains constant over time, that is, if a set of indicators work for a 

period, it continues to do so in subsequent periods. 

• To test the hypothesis that applying the momentum and reversal indicators on pair of indices (i.e. 

pair-wise) is better than applying them individually. 
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Data Set 

This study was carried out using monthly index values from the MSCI index series we obtained from 

FactSet1. We used the values of the four regional indices that made up the MSCI World index: North 

America (NA), Europe (EU), Japan (JP) and Asia Pacific (AP). We used data from 1986 to 1999 for this set 

of empirical tests. 

 

In this empirical study, we considered the investment universe of the four regional indices that made up 

MSCI World. This gives us six asset pairs for our analysis. Though we used all the pairs for our study, for 

the purpose of documentation, we only present the detailed results we obtained from the North America 

(NA), Japan (JP) and the NA-JP pair in this report. For the results we obtained from the other regions and 

regional pairs, we only document the summary results. 

 

Evidence of Momentum Signals for North America 

As a means of visual investigation, we plotted the three-month holding returns against the positive 

momentum indicators in scatter plots. The following figure shows two of such plots (Rt+3 against I1 and Rt+3 

against I2). As most of the points appear in the top left-hand quadrant, the charts suggest that relatively high 

hit rates for both indicators in predicting the direction of three-month holding returns.  

 

                                                      
1 FactSet is a leading provider of global financial and economic information, including fundamental financial data on 

tens of thousands of companies worldwide. Combining hundreds of databases into its own dedicated online service, 

FactSet also provides the tools to download, combine, and manipulate financial data for investment analysis. For more 

information, see www.factset.com 
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Figure A1-a: North America 1-mth and 2-mth Returns Against 3-mth Holding Returns (1995 – 1999) 

 

The Hit Rate for each momentum indicator is tabulated as follows:  

Indicator Hit Rate (%) 

I1 66.67 
I2 73.33 
I3 70.00 
I6 78.33 
I9 85.00 
I12 83.33 

Table A1-a: Hit Rate of Positive Momentum Indicators in Predicting Directions of North America 3-mth 
Holding Returns 

 

We see that regardless of which momentum indicators we used, one would be able to predict the direction 

for the three-month returns of North America. In fact, during 1995 to 1999, if one were to make quarterly 

predictions on the direction of the 3-month holding returns based on past 9-month and 12-month returns, 

one would be correct 80% of the times.  

 

Evidence of Reversal Signals for Japan 

We used Japan to illustrate the predictive strength of the reversal indicators (I-24, I-36, I-60). The scatter 

charts and the table show the hit rates of the reversal indicators: 
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Figure A1-b: Japan 36-mth and 60-mth Returns Against 3-mth Holding Returns (1995 – 1999) 

 

Indicator Hit Rate (%) 

I-24 46.67 
I-36 51.67 
I-60 66.67 

Table A1-b: Hit Rate of Reversal Indicators in Predicting Directions of Japan 3-mth Holding Returns  

 

Clearly the results were less striking as compared to what we had presented on momentum indicators. 

However, it does show that the reversal indicators do have a certain degree of predictive powers. Many 

studies, including Yoshihara (1990), had confirmed that I-60 is among the best indicators. 

  

Do we need both Momentum and Reversal Signals? 

We have seen that North America is a region that one would do well by heeding the signals from 

momentum indicators. On the other hand, investment opportunities in Japan can be uncovered by reversal 

indicators. Does this mean that we expect the markets to continue to behave in the same manner month 

after month, quarter after quarter? Any investor would have to sit through various investment/ economic 

cycles. For example, Liu and Lee (2001) note that though Japan stock market in general exhibits reversal 

trend, when they split the their studies into two periods, 1975 – 1989 and 1990 – 1997, they found mixed 
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results. Rey and Schmid (2007) also experience the different momentum strengths in Swiss Market Index 

from 1994 –1998 and 1998 – 2004. Further evidence was presented when Li (2005) tested the random walk 

hypothesis by examining the hazard ratio of runs. Li (2005) suggests that there may be two components of 

stocks returns. Longitudinally, stock return is cyclical and there is a reversal tendency; with the length of 

the run controlled, there is a positive autocorrelation in stock returns. This finding may explain why over 

different holding periods had impacts on the profitability of momentum trading and contrarians trading. 

Classifying a stock market by just a “momentum” or “reversal” may not be sufficient, at least not always 

the case, we need to answer the question of which component dominates the other.  

 

For example, while North America has been rising significantly over the five years in our study, and hence 

long term reversal indicators do not work so well in North America, as shown in Table A1-c 

Indicator Hit Rate (%) 

I-24 15.00 
I-36 15.00 
I-60 15.00 

Table A1-c: Hit Rate of Reversal Indicators in Predicting Directions of North America 3-mth Holding Returns 

 

Conversely, Japans market had been less exciting for a long period in the 90s and this probably explain 

why even though the momentum indicators work decently well (see Table A1-d), the long-term indicators 

perform even better. 

Indicator Hit Rate (%) 

I1 50.00 
I2 53.33 
I3 60.00 
I6 58.33 
I9 61.67 
I12 56.67 

Table A1-d: Hit Rate of Positive Momentum Indicators in Predicting Directions of Japan 3-mth Holding 
Returns 
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The best indicator for North America is I9 while the best for Japan is the I-60. Thus to build a framework 

that invest across different markets, we will need to include both momentum and reversal indicators in our 

models. 

 

Indicator’s Predictive Strength Varies over Time 

We have seen from our empirical tests that different indicators work in different markets but does the best 

indicator always stay the best? Will the predictive power of an indicator change over time? Intuitively 

speaking, the strength of each indicator would change with changing market conditions. 

 

To test the hypothesis that predictive strength does vary with time, we compute the hit rate for each 

indicator over a rolling five year period in a region. We then take note of the number of times each 

indicator came in top (i.e. being the indicator that has the highest hit rate in the region). The exercise was 

carried out for all the four regions and results tabulated as follows:  

Indicator North America Europe Japan Asia Pacific ex-
Japan 

I1 0 0 0 37.7 
I2 0 0 0 0 
I3 0 39.3 0 0 
I6 0 0 0 0 
I9 98.4 41.0 18.0 45.9 
I12 1.6 11.5 0 11.5 
I-24 0 0 1.6 3.3 
I-36 0 8.2 0 0 
I-60 0 0 80.4 0.6 

Table A1-e: Percentage of Times Each Indicator Recorded Highest Hit Rate in Predicting Regional Returns 
(1995 to 1999) 

 

While I9 has been a consistent winner in North America, the same cannot be said about other indicators. In 

particular Europe and Asia Pacific ex-Japan, where there is no one clear winner in the regions. This is an 

indication that the predictive strength of an indicator does change over time and what works on in a period 
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may not always work best in other times. This also suggests that single-indicator forecasting model may not 

be sufficient. 

 

Now that we see evidence of indicators’ predictive power do vary with time, do we know when would be a 

good time to review these indicators? Would arbitrarily select a review period be sufficient? 

 

Evidence of Indicators’ Predictive Power in Relative Returns 

The proposed pair-wise model based on the forecasting model to predict the relative returns of each asset 

pairs. Thus we also studied the predictive powers of the indicators in forecasting the direction of relative 

returns. The results have not been very impressive as compared to what we have earlier presented on the 

single-market model. However, we still see that it does have some predictive powers; if the right indicators 

were used, achieving a hit rate that exceeds 60% is possible: 

Indicator NA-EU NA-JP NA-AP EU-JP EU-AP JP-AP 

I1 48.33 58.33 53.33 56.67 56.67 56.67 
I2 51.67 61.67 50.00 66.67 61.67 48.33 
I3 56.67 76.67 56.67 70.00 61.67 46.67 
I6 60.00 78.33 70.00 73.33 65.00 51.67 
I9 53.33 78.33 73.33 71.67 61.67 60.00 
I12 56.67 75.00 76.67 68.33 46.67 61.67 
I-24 51.67 35.00 30.00 45.00 41.67 45.00 
I-36 53.33 41.67 30.00 50.00 36.67 58.33 
I-60 43.33 30.00 23.33 40.00 26.67 50.00 

Table A1-f: Hit Rate of Indicators in Prediction Regional Pair-wise Relative Returns (1995 to 1999) 

 

We repeat the above exercise, moving back one month at a time, to obtain the hit rate for each indicator in 

predicting the sign of the relative returns over a rolling five-year period. This exercise was repeated for a 

five-year period, generating 60 samples. For each of the sample (five-year period), we identify the indicator 

that has recorded the highest hit rate for each of the six regional pairs. Table A1-g shows the number of 

months, as a percentage of 60 months, that each indicator was identified as having the highest hit rate. Like 

the case in single-market model, we see that not one indicator came in top for the whole period: 
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Indicator NA-EU NA-JP NA-AP EU-JP EU-AP JP-AP 

I1 0.00 0.00 0.00 0.00 0.00 0.00 
I2 0.00 0.00 0.00 0.00 0.00 0.00 
I3 10.00 13.33 0.00 38.33 6.67 0.00 
I6 6.67 11.67 26.67 5.00 30.00 0.00 
I9 0.00 0.00 45.00 0.00 3.33 0.00 
I12 0.00 75.00 5.00 25.00 0.00 45.00 
I-24 0.00 0.00 21.67 31.67 60.00 0.00 
I-36 83.33 0.00 0.00 0.00 0.00 55.00 
I-60 0.00 0.00 1.67 0.00 0.00 0.00 

Table A1-g: Percentage of Times Each Indicator Recorded Highest Hit Rate in Predicting Regional Pair-wise 
Relative Returns (1995 to 1999) 

 

Take the EU-AP pair for example; we see from Table A1-f that I-24 was among the worst indicators for the 

sample period from 1995 to 1999, having a hit rate of only 41.67%. However, as we start to roll the sample 

window backwards at a monthly interval, we see from Table A1-g that it was the best indicator 60% of the 

times in predicting the direction of Europe’s returns relative to Asia Pacific ex-Japan. In contrast, we see 

from Table A1-f that I6 was the best indicator from 1995 to 1999 with a hit rate of 65%, but on a rolling 

five-year basis, it only came in top 30% of the times. The predictive powers to these two indicators clearly 

have changed during the sample period. 

 

The historical hit rates of each indicator in predicting the direction of the relative returns of the EU/ AP pair 

are plotted in Figure 2-a. We see that while the indicators generally stay relevant and effective for a certain 

period, the length of the periods vary from indicator to indicator. For example, we see that the predictive 

power of I-24 diminishes over time while I6 gets better in later part of the sample period. This suggests that 

having a fixed period to review the efficacy of the indicators may not be able to capture failing indicator, or 

include the more effective indicator in the forecasting model. This study supports the need to have a 

contextual model where the most appropriate indicators are used at the time when investment decision is to 

be made. 
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Historical Hit Rate for Different Indicators for EU_AP Pair
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Figure A1-c: Historical Hit Rates for Various Indicators for EU_AP Pairs 

 

Forecasting Model for Relative Returns 
To forecast the relative performance, we can do it in two ways: 

(1) Forecast the returns for both assets, tassetr ,1 and tassetr ,2 ,separately and use the difference as the 

forecast 

(2) Forecast the relative returns, tassetassetr ,21−  , directly 

 

To compare if modeling relative returns is indeed better than modeling the asset returns individually, we 

carried out some preliminary empirical tests. We compare the hit rates we obtained from using both 

approaches in predicting the relative performance of six regional pairs in MSCI World. We used one-

variable regression forecasting models in both approaches.  
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Constructing a Forecasting Model 

We defined pair-wise relative returns for an asset pair, say asset 1 and asset2, as the difference of their 

assets returns, which is consistent with Qian (2003): 

tassettassettassetasset rrr ,2,1,21 −=−  

 

By this definition, the indicator for an asset pair is the difference of the indicators of the two assets: 

)2()1()2,1( assetIassetIassetassetI mmm −=  

 

To test approach one, we will choose the single best indicator for each market: 

I9: North America (NA), Europe (EU), Asia Pacific ex-Japan (AP) 

I-60: Japan (JP) 

 

We next identified the best indicator for each of the asset pairs and use it to construct the linear model for 

each of the market. In our implementation, we have chosen hit rate as the evaluation criteria to select the 

indicators to use. 

 

The indicators chosen for the models are as follows: 

I3: EU-JP 

I9: NA-JP, NA-AP, EU-AP 

I-24: JP-AP 

I-36: NA-EU 
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Validating the Regression Models 

Among the models constructed for the six pairs, all have regression coefficients that are significantly 

different from zero except for the JP-AP pair. The residuals from the regression models were also tested for 

normality and independence with the following tests (all hypothesis tests were conducted at 95% 

confidence level): 

• Jarque-Bera test –normality 

• t-test – zero mean 

• Durbin Watson test – independence 

 

We see that the residuals from the JP-AP pair had violated our validation tests so it suggests that the results 

obtained from the model may not be stable. We still include its results for completeness sake.  

 
NA-EU NA-JP NA-AP EU-JP EU-AP JP-AP 

t-stats 2.7939 2.5512 3.3785 3.9469 3.9946 -0.8481 
p-value 0.0070 0.0134 0.0013 0.0002 0.0002 0.3999 
Residual Normal Yes Yes Yes Yes Yes No 
Residual zero mean Yes Yes Yes Yes Yes No 
Residual independence Yes Yes Yes Yes Yes No 

Table A1-h: Test Statistics for Regional Pair-wise Regression Models 

 

Out-of-sample Analysis 

The forecasting models were then used to forecast a 3-month ahead relative returns and the hit rates were 

recorded: 

Model NA-EU NA-JP NA-AP EU-JP EU-AP JP-AP 

Individual 49.18 65.57 52.46 49.18 44.26 49.18 
Pair-wise 57.37 62.30 52.46 67.21 59.02 55.74 

Table A1-i: Comparison of Hit Rate in Predicting Directions of Regional Pair-wise Relative Returns for 
Individual Model and Pair-wise Model 



 195

 

We see that pair-wise models generally performed better as compared to individual forecasts. The 

individual models did not even deliver 50% hit rate in four out of the six pairs. In the case of NA-EU pair 

where the individual model out-performed, the pair-wise model still managed to score a hit rate exceeding 

60% so pair-wise model did not fare too badly either. 
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Figure A1-d: Comparison of Hit Rate in Predicting Directions of Regional Pair-wise Relative Returns for 
Individual Model and Pair-wise Model 

 

Findings from Empirical Studies 
From the series of empirical tests we had conducted, our initial conclusions are: 

• Momentum and reversal indicators also worked for low frequency data (e.g. monthly) with a long 

holding period (e.g. quarterly). 
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• There is no single set of indicators that work for all countries and regional indices. 

• The predictive powers of the indicators vary over time. 

• Pair-wise forecasting models performed better in predicting direction of relative returns than those 

single-asset models.  

 

The two most important results that our empirical studies have revealed are: 

• Indicators’ predictive power vary over time 

• Pair-wise model translate to better signals in forecasting relative returns 

 

These results provide the sufficient evidences to support a contextual pair-wise model. In addition, it also 

supports the use of momentum and reversal indicators in the implementation of the generic pair-wise 

framework.  
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Appendix 2: Asset Allocation Portfolio Management 

Investment Goal and Three Parameters 

In portfolio management, the first step is to identify the investment goal. It is this goal that determines how 

the portfolio should be managed. Alford et al (2003) point out that the investment goal is specified by three 

parameters: 

1. Portfolio’s benchmark 

2. Risk-return target 

3. Investment Constraints 

 

Portfolio’s Benchmark 

Siegel (2003) defines benchmarks as “paper portfolios constructed for comparison with real portfolios to 

see whether the latter are being managed effectively”. The benchmark represents the client’s neutral 

position and the starting point for any active portfolio. It embodies the opportunity set of investments. For 

example, a portfolio that contains US stocks with large market capitalization can be benchmarked against 

S&P500 or MSCI US. 

 

Risk-return Target 

The fact that the existence of a benchmark is to see if an active portfolio is being managed effectively leads 

us to the second parameter of the investment goal – risk-return target. Indeed, not only does the benchmark 

portfolio serve as a reference portfolio to the active managers, it also serves as a performance target for the 

portfolios. When an active portfolio is benchmarked, then it must aim to deliver a higher return than the 

benchmark portfolio (or the passive portfolio). This excess return is often termed as active return or value-

added.  
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To prevent portfolio managers from deviating too much from the benchmark portfolio in search for better 

investment returns, the portfolio’s risk is usually measured relative to the benchmark, usually in the form of 

active risk or tracking error. (Ex-post) tracking error is calculated as the standard deviation of a portfolio’s 

value-added. To compare how well different active portfolios are being managed, one can look at the 

value-added generated for each unit of active risk taken. This quantity is called the Information Ratio and it 

offers a convenient way to compare the performances of active portfolios with different tracking error. The 

risk and return targets, or a target Information Ratio helped to ensure the portfolio manager to stay within 

the boundaries implied by the given benchmark and avoid unfair attribution of performance (or blame) 

caused by the asset class policy returns. 

 

Investment Constraints 

Several studies have also shown that adding constraints to the optimizer leads to better out-of-sample 

performance, for example, Frost and Savarino (1988).  Some considerations that went into the decision on 

setting the limits are market capitalization, mandates’ restriction, regulatory restriction, liquidity, etc. This 

also helps to avoid large concentration in one particular holding and thus helps to maintain a well-

diversified portfolio. 

 

Holdings constraints can also come in the form of active weights constraints. That is, instead of having a 

bound for the holdings, we fixed the permissible range for active positions. This form is useful if a portfolio 

is to be measured against a benchmark and that all measures (e.g. risk, performance, positions) are 

considered relative to the benchmark. 

 

Instruments Used to Implement Asset Allocation Portfolio 

Given an optimal country allocation mix, there are a few ways an investment manager can implement the 

portfolio: 
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1. Stocks 

2. Index derivatives e.g. futures and forward contracts 

3. Country Index funds e.g. Exchange Traded Funds1 (ETF) 

 

Construction using stocks involves high transaction costs and requires active management of the stocks in 

the portfolio, which will have an impact on the value-added. To mitigate risks associated with active stock 

selection, one can choose to select the stocks in proportion to the stocks’ benchmark weights in each 

country. However, this requires close monitoring and high operational setup to reduce slippages in tracking. 

The more cost effective and less operational effort ways are to use index derivatives or ETFs. 

 

Traditional and Quantitative Approach to Investment 

One major difference between the two groups of investment managers are the way the active positions are 

being determined. Quantitative managers often used an optimizer to find the optimal holdings that meet the 

risk-return target while staying within the investment constraints. This is rarely the case for traditional 

managers as the active positions are usually obtained via qualitative assessment and consciously stay within 

the boundaries caused by the investment constraints. Because the quantitative managers often used the 

optimizer, there is a need for them to generate a forecast of the expected returns for each asset that to be fed 

into the optimizer. This is often pointed out to be the weakness of a quantitative approach as rarely the case 

one can have a view of each and every asset. This is also the main reason why optimizer is seldom used by 

the traditional managers. Not only that they may not have view on every security, they have found it 

difficult to quantify their analysis of a company or stock into a single number called expected return. 

                                                      
1 Exchange-traded funds are exchange-listed, equity securities backed by a basket of stocks from which they derive 

their value. Unlike closed-end funds, the basket of securities can be expanded as demand for the product increases. 

ETFs are designed to track country, sector, industry, style and fixed income indexes.  
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The pair-wise framework that we had proposed is essentially a quantitative approach. Chincarini and Kim 

(2006) list numerous advantages of quantitative equity portfolios over the traditional qualitative oriented 

portfolios. The two most important advantages offered by a quantitative approach are objectivity and better 

risk control. In a quantitative approach, the outputs are driven by the mathematical models and this 

significantly lessens the impact of the manager’s biases on the portfolio. Risk control can also be 

implemented in the portfolio construction process and this helps the portfolio avoid large swings and keeps 

volatility low, giving rise to a more stable stream of portfolio performances over a long horizon  
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Appendix 3: Results of Portfolios Constructed Based on 

Perfect Forecast 

To further illustrate the feasibility of pair-wise modeling, we construct portfolios, assuming perfect 

foresight. We use perfect forecasts as the views to obtain expected returns vector. In the pair-wise case, we 

set up the view matrices using the actual relative returns as the “perfect relative views”. In the case of 

Individual model, we use the assets’ absolute returns as the views (i.e. “perfect absolute views”) into the 

Black-Litterman model. We then run the optimizer using the same objective function and same set of 

constraints to obtain the holdings weights. For the pair-wise model, the scores to the pairs were assigned 

randomly. 

 

Three sets of perfect forecasts were used: 

1. Perfect Forecasts – actual returns are used 

2. Perfect Direction Forecasts – assumed the forecasts correctly predicted the direction, a 

magnitude of 0.5 was used 

3. Perfect Magnitude Forecasts – assumed the forecast correctly predicted the magnitude, with the 

signs of the forecasts chosen randomly 

 

Performances of Portfolios Constructed Using Perfect Forecast 

The performances of the two global portfolios are tabulated below: 

Performance Indicators Individual Model Pair-wise Model 

PI1 – Asset Allocation Value-added (%) 5.11 7.75 
PI2 – Information Ratio 2.43 4.83 
PI3 – Proportion of Out-performing Quarters (%) 89.29 100.00 
PI4 –Turnover (%) 33.15 49.54 

PI5 – Correlation with Market -0.34 0.01 
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Performance Indicators Individual Model Pair-wise Model 

PI7 – Trading Edge (bp) 126 189 

Table A3-a: Performances of Global Portfolios Constructed with Perfect Forecasts 

 

 

The results clearly indicate that having perfect forecast for relative returns yield better results than having 

perfect forecast of assets’ absolute returns. This supports our claim to model asset pairs’ relative returns.  

 

Comparison of Portfolios Constructed Based on Perfect Direction Forecast 

We have also state that having the right direction is critical to the success of country allocation. To test the 

importance of direction in the pair-wise framework, we constructed test portfolios using the sign of the 

actual returns, and set a magnitude of the forecasts to the average of those historical relative returns that are 

of the same sign as our “prediction”: 

Performance Indicators Individual Model Pair-wise Model 

PI1 – Asset Allocation Value-added (%) 4.53 7.23 
PI2 – Information Ratio 2.25 4.41 
PI3 – Proportion of Out-performing Quarters (%) 85.71 100.00 
PI4 –Turnover (%) 36.03 49.16 
PI5 – Correlation with Market -0.36 0.06 
PI7 – Trading Edge (bp) 112 176 

Table A3-b: Performances of Global Portfolios Constructed with Perfect Direction Forecasts 

 

The results again support our claim of pair-wise modeling, in addition, we find that the performances of the 

portfolios constructed based on perfect direction forecasts are not too different to those that were 

constructed using perfect forecasts. This confirms the importance of direction forecasts in the pair-wise 

framework. 

 

Comparison of Portfolios Constructed Based on Perfect Magnitude Forecast 
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To complete the study, we also construct portfolios based on perfect magnitude forecasts, that is, we use 

the magnitude of the actual returns as inputs. The signs of the inputs are selected randomly. Not 

surprisingly, the pair-wise model once again out-performed the individual model: 

Performance Indicators Individual Model Pair-wise Model 

PI1 – Asset Allocation Value-added (%) 0.50 0.95 
PI2 – Information Ratio 0.33 0.58 
PI3 – Proportion of Out-performing Quarters (%) 57.14 61.71 
PI4 –Turnover (%) 51.18 50.59 
PI5 – Correlation with Market 0.27 -0.16 
PI7 – Trading Edge (bp) 13 24 

Table A3-c: Performances of Global Portfolios Constructed with Perfect Magnitude Forecasts 

 

The performances of the two portfolios are generally very poor as compared to those constructed using 

perfect direction forecasts. This provides more evidence that direction forecast accuracy is the most 

important aspect in the forecasting models within the pair-wise framework. 
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Appendix 4: MATLAB Code Segments 

Fitting the Regression Model 
function [WinnerX, WinnerScore, WinnerModel] = FitRegressionModel(X, Y, 

WeightFunction, ... 

    InSampleIndex, SemiOutOfSampleSize, SampleSize, InitialInSampleSize, ... 

    ScoreMethod, StepwiseOn) 

 

    k = size(X, 2); 

    if StepwiseOn ~= 1 

        N = 1; 

        C = ones(1, k); 

    else 

        N = 2^k-1; 

        C = zeros(N, k); 

        for m = 1:N 

            C(m, :) = bitget(uint8(m), k:-1:1); 

        end 

    end 

     

    StepScore = zeros(N, 1); 

    for OneStep = 1:N 

         

        StepX = X(:, strmatch(1, C(OneStep, :)')); 

         

        % Semi-out-of-sample Fit Model 

        % ---------------------------- 

        S = 0; 
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        a1 = zeros(SemiOutOfSampleSize, 1); 

        a2 = zeros(SemiOutOfSampleSize, 1); 

        NumberOfForecast = 0; 

        for i = 1:SemiOutOfSampleSize 

            InSampleX = StepX(InSampleIndex(SampleSize, i), :); 

            InSampleY = Y(InSampleIndex(SampleSize, i), :); 

            [b, s] = robustfit(InSampleX, InSampleY, WeightFunction); 

            X_ForSemiOutSampleForecast = StepX(InitialInSampleSize + i, :); 

            F = [1 X_ForSemiOutSampleForecast] * b; 

            a1(i) = F; 

            a2(i) = Y(InitialInSampleSize + i); 

            if abs(F) > 0.01 

                NumberOfForecast = NumberOfForecast + 1; 

                if sign(F) == sign(Y(InitialInSampleSize + i)) 

                    S = S + 1; 

                end 

            end 

        end 

 

        StepScore(OneStep) = ComputeConfidenceScore (a1, a2, ScoreMethod, 999); 

    end 

     

    % Find the winner 

    % --------------- 

    [Sorted, SortedIndex] = sort(StepScore, 'descend'); 

    if numel(SortedIndex)>0 

        WinnerCombination = C(SortedIndex(1), :); 

        WinnerModel = strmatch(1, WinnerCombination'); 

        WinnerX = X(:, WinnerModel); 
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        WinnerScore = StepScore(SortedIndex(1)); 

    else 

        WinnerModel = 1:k; 

        WinnerX = X; 

        WinnerScore = 0; 

    end 

end 

 

Compute Scoring Measures 
function [Score] = ComputeConfidenceScore (F, A, ScoreMethod, IgnoredValue) 

 

      SampleToUse = strmatch(1, (F ~= 999) .* (F ~= IgnoredValue)); 

      a1 = F(SampleToUse); 

      a2 = A(SampleToUse); 

      s1 = sqrt(sum(a1 .^ 2)/ (size(a1, 1) - 1)); 

      s2 = sqrt(sum(a2 .^ 2)/ (size(a2, 1) - 1)); 

       

      switch (ScoreMethod) 

         case {'HitRate'} 

            Score = sum(max(0, sign(a1 .* a2))) ./ size(a1, 1);       

 

         case {'AnomalyCoeff'} 

            Score = ((((a1' * a2)./(s1 * s2))./(size(a1, 1) - 1)) + 1)./ 2; 

 

         case {'UncenteredInfoCoeff'} 

      s1 = sqrt(sum((a1 – mean(a1)) .^ 2)/ (size(a1, 1) - 1)); 

      s2 = sqrt(sum((a2 – mean(a2)) .^ 2)/ (size(a2, 1) - 1)); 

            Score = ((((a1' * a2)./(s1 * s2))./(size(a1, 1) - 1)) + 1)./ 2; 
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         case {'SimilarityRatio'} 

            SR_Index = ((a2.^2 + a2.*a1) <= 0);  

            SR_Index = strmatch(0, SR_Index); 

            SR = zeros(size(a1, 1), 1); 

            SR(SR_Index) = abs(a1(SR_Index) + a2(SR_Index)) ./ ... 

               (abs(a1(SR_Index) + a2(SR_Index)) + abs(a1(SR_Index) – _ 

               a2(SR_Index))); 

            Score = mean(SR); 

 

         case {'TheilForecastAccuracy'} 

            % Theil's Forecast Accuracy Coeff 

            Score = 1 - (sqrt(sum((a1 - a2).^2)) ./ (sqrt(sum(a1 .^ 2)) _ 

               + sqrt(sum(a2 .^ 2)))); 

 

         case {'InfoCoeff'} 

            Score = (corr(a1, a2) + 1) ./ 2; 

      end 

 

end 

 

Views Selection  
function [Views] = SelectViews (PairMatrix, PairScore, N, ... 

    MinConfidenceLevel) 

     

    Views = []; 

    AssetSelectionMatrix = zeros(N, 1); 

    NumberOfPairs = size(PairMatrix, 1); 

    AllAssetSelected = (min(AssetSelectionMatrix) ~= 0); 

    i = 1; 
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    while (AllAssetSelected == 0) && (i <= NumberOfPairs) 

        

        % Find the max score 

        % ------------------ 

        [max_score, max_index] = max(PairScore); 

         

        % If the max score is less than 50% then no need to proceed 

        if max_score < MinConfidenceLevel  

            break 

        end 

         

        Views(i) = max_index; 

        Asset1 = PairMatrix(max_index(1), 1); 

        Asset2 = PairMatrix(max_index(1), 2); 

        AssetSelectionMatrix(Asset1) = 1; 

        AssetSelectionMatrix(Asset2) = 1; 

 

 

        % Clear all scores that involves two selected assets 

        % -------------------------------------------------- 

        for j = 1:NumberOfPairs 

            if (AssetSelectionMatrix(PairMatrix(j, 1)) && _  

AssetSelectionMatrix(PairMatrix(j, 2))) 

                PairScore(j) = 0; 

            else 

                if (AssetSelectionMatrix(PairMatrix(j, 2)) && _  

  AssetSelectionMatrix(PairMatrix(j, 1))) 

                    PairScore(j) = 0; 

                end 
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            end 

        end 

 

        AllAssetSelected = (min(AssetSelectionMatrix) ~= 0); 

        i = i + 1; 

    end 

 

    if isempty(Views) ~= 1  

        Views = Views'; 

    else 

        Views = []; 

    End 
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Appendix 5: Robust Regression Techniques 

Robust regression techniques available are least trimmed squares (LTS) regression, least median squares 

(LMS) regression, least absolute deviations (L1) regression, and M-estimates of regression.  

 

Least Trimmed Sqaures (LTS) Regression 

Rousseeuw (1984) introduced LTS regression for fitting linear regression models. The LTS is equivalent to 

ordering the residuals resulting from a least squares fit, trimming the observations that correspond to the 

largest residuals, and then computing a least squares regression model for the remaining observations. 

However, the use of an ordinary least squares estimator lacks robustness because a single observation can 

cause the parameter estimates to take on any value.  

 

Least Median Squares (LMS) Regression 

Unlike LTS, LMS minimizes the median of the squared residuals instead of the sum of the squared 

residuals. LMS regression has a high breakdown point of almost 50%. That is, almost half of the data can 

be corrupted in an arbitrary fashion, and the estimates obtained by LMS continue to model the majority of 

the data well. One problem of LMS is that it is statistically inefficient. 

 

Least Absolute Deviation (L1) Regression 

This method gives less weight to larger errors than the least squares method. It finds the coefficients 

estimates 1
ˆ

Lβ that minimize the sum of the absolute values of the residuals: 

∑=

n

i ir1
β  

 

There exist also Lp regression methods that minimize 
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pn

i ir∑=1
β  

 

Forsythe (1972) suggested, on the basis of a 400-replicates Monte Carlo study, that a value of p = 1.5 

would be a good general choice. It led to estimates that were no worse than 95% as efficient1 as least 

squares when the errors were actually normal.  

 

M-Estimates of Regression 

The M-estimator of regression was first introduced by Huber in 1973. For a given ρ function, an M-

estimate of regression Mβ̂ minimizes the objective function: 

∑=
⎟
⎠

⎞
⎜
⎝

⎛n

i
ir

1 σ
β

ρ  

Least squares regression corresponds to ρ(x) = x2 and L1 regression corresponds to ρ(x) = |x|. Generally, 

the value of Mβ̂ is dependent on the value of σ, which is usually unknown. 

 

Although M-estimates are protected against wild values in the response variable, they are sensitive to high 

leverage points, which have very different x values compared to the other data points in a model. In 

particular, a typographical error in an explanatory variable can have a dramatic affect on an M-estimate, 

while least trimmed squares handles this situation easily. One advantage of M-estimates is that they can be 

computed in much less time than LTS or other high-breakdown point estimators.  

 

The weights are fitted using an iterative procedure. In the fitting algorithm, an initial model is calculated 

using traditional weighted least squares by default. The algorithm computes a new set of weights based on 

                                                      
1 Efficiency was defined as the ratio (mean square error for least squares)/ (mean square error for power p) 
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the results of the initial fit. The new weights are then used in another weighted least squares fit and so on 

until some convergence criteria are satisfied or a specified maximum number of iterations is reached. 
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Appendix 6: Country Weights of Global Model Portfolio 
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