

TRUST REGION ALGORTIHMS AND
 NEURAL NETWORKS FOR FINANCIAL

FORECASTING

Zhu Xiaotian

NATIONAL UNIVERSITY OF SINGAPORE
2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48625738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

TRUST REGION ALGORITHMS AND

NEURAL NETWORKS FOR FINANCIAL
FORECASTING

Zhu Xiaotian

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF SCIENCE
DEPARTMENT OF INFORMATION SYSTEMS

SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

2003

I

Acknowledgements

My sincere gratitude goes to my supervisor Professor Paul Kang Hoh Phua, for all his

guidance and constant encouragement during all phases of this thesis. I enjoy the many

lively discussions that we had about the theory and practice in financial forecasting and

artificial neural networks, which contributes to both the managerial and technical

insights in this thesis. He has taught me what a good researcher is and has shown me

the importance of writing well. He is both a great mentor and good friend.

I would like to thank Professor Chengxian Xu and Dr. Weidong Lin for their

tremendous help, especially in development of the financial forecasting software based

on trust region neural networks. They have provided me many invaluable suggestions

which greatly improve the efficiency of this software. I always turn to them whenever I

encounter problems in programming and algorithm. I am grateful to their kindness and

assistance.

Parts of this article have been presented at an Information System Workshop at

National University of Singapore and the IEEE International Joint Conference on

Neural Networks. I would like to thank participants for their comments and valuable

discussions.

I thank my research group co-workers for their advice and assistance on my thesis:

Xiaohua Wang, Chung Haur Koh and Wei Yu. I thank the Information Systems

Research Lab students, Wan Wen, Li Yan and Yang Fan, for their kindness and for

their making my stay at the university a pleasant experience. To my parents and sister,

I would like to express my thanks, for their love and their encouragement to help me

grow in all these years of my life.

II

Table of Contents

1 Introduction and thesis Overview 1

1.1 Predictability of financial markets...…………………...………………….…….1

1.2 Artificial neural networks for financial forecasting…….……………..….…....3

1.3 Current securities markets for forecasting...………...…………………..…....8

1.4 Univariate & Multivariate Models…………………………………………..….12

1.5 Scope of the thesis………………………………………………..…………....13

2 Literature Review 17

2.1 General review of neural network applications in finance………………….17

2.2 Learning algorithms in finance applications…….……………………..…….22

2.3 Stock index forecasting with neural networks..27

3 Component-Based Forecasting Models 33

3.1 Basic feedforward neural network model…….……………………………….33

3.2 Types of stock market indices………………………………………………...35

3.3 Component-based feedforward NN forecasting model…………………….37

4 Determining Optimal Network Topology 41

4.1 Determining optimal number of iterations…………………………………….41

4.2 Determining the optimal network architecture……………………………….49

4.3 Variable sensitivity analysis on network modeling……………………….…55

 4.3.1 Individual analysis……………………………………………………..55

 4.3.2 Interaction analysis...64

4.4 Proposed network topology……………………………………………….…..97

5 Comparisons and Performance Analysis 104

5.1 Stock index increments forecasting…………………………………………104

5.2 Performance analysis on TRNN model…………………………………….109

III

6 Conclusions and Discussions 112

7 Bibliography 124

8 Appendix A Distribution of Journals of NN Finance Application 131

9 Appendix B Distribution of Proceeding of NN Finance Application 133

10 Appendix C Brief Introduction of TRDP Algorithm 135

11 Appendix D Brief Introduction of SSPQN Algorithm 140

IV

List of Figures

1. Five Stock Markets Indices Daily Close Prices 11

2. The Returns of the Indices Daily Close Prices 11

3. Distributions of Articles by Year 19

4. Distributions of Articles by Seven Major Application Areas in Finance 20

5. Distribution of Articles by 5 Major Application Fields in Financial Markets 20

6. The Basic Structure of the Feedforward Neural Networks 35

7. Relationship between the NASDAQ Index and its components 39

8. Structure of the Component-Based Feedforward NN Forecasting Model 40

9. MSE Results for Five Markets During the Increase of Iterations 47

9. DS Results for Five Markets During the Increase of Iterations 48

10. Five Different Datasets for Training and Testing 50

11. Structure of the Experiments Conducted to Study the Combined Effects 54

12. Classification of Interrelationships of Variables by Chart Analysis 66

13. Effect of Dataset Size as Measured by Average MSE for Training (Fix H) 69

14. Effect of Input Number as Measured by Average MSE for Training(Fix H) 70

15. Effect of Dataset Size as Measured by Average MSE for Training (Fix I) 72

16. Effect of Hidden Nodes as Measured by Average MSE for Training (Fix I) 73

17. Effects of Dataset Sizes as Measured by Average DS for Training (Fix H) 76

18. Effects of Input Number as Measured by Average DS for Training (Fix H) 77

19. Effects of Dataset Size as Measured by Average DS for Training (Fix I) 78

20. Effect of Hidden Node as Measured by Average DS for Training (Fix I) 79

21. Effects of Dataset Sizes as Measured by Average MSE for Testing (Fix H) 81

22. Effect of Inputs Number as Measured by Average MSE for Testing(Fix H) 82

23. Effects of Dataset Size as Measured by Average MSE for Testing (Fix I) 84

V

24. Effects of Hidden Nodes as Measured by Average MSE for Testing (Fix I) 85

25. Effects of Dataset Size as Measured by Average DS for Testing (Fix H) 86

26. Effects of Input Number as Measured by Average DS for Testing (Fix H) 87

27. Effects of Dataset Size as Measured by Average DS for Testing (Fix I) 89

28. Effects of Hidden Nodes as Measured by Average DS for Testing (Fix I) 90

29. Optimal NN-Structures for One-Day Ahead Forecasting by TRNN model 103

30. Performance Comparison Based on Prediction Results Between 2 Models 107

31. Actual and Predicted Daily Returns of DJIA 110

32. Actual and Predicted value of DJIA daily close prices 111

VI

List of Tables

1. Details of Major Stock Indexes for Forecasting 10

2. Daily Returns Range of DAX, DJIA, FTSE-100, HSI and NASDAQ 10

3. Optimal Number of Iteration for Different Markets and NN Models 46

4. Component Stocks with the Highest Correlation Coefficient with Index 51

5. Calculation on the Sensitivity of Network Performance on Variables 58

6. Average Individual Effects of 3 Variables on the NN Performance 59

7. Rank of Variable Sensitivity on Network Performance 60

8. Summary of the interrelationship between variables by TRNN Model 96

9. Summary of the interrelationship between variables by SSPQN Model 97

10. Optimal Network Structures Based on Training Results 100

11. Optimal Network Structures Based on Testing Results 101

12. Performance Comparison between Two Models 106

13. Comparison of Index Direction Prediction by Different Researches 109

VII

List of Formulae

1. Neuron Calculation Formula (From Input Layer to Hidden Layer) 34

2. Neuron Calculation Formula (From Hidden Layer to Output Layer) 34

3. NN Objective Function (Mean Squared Error) 34

4. Formula for Stock Index Calculation in Price-Weighted Method 36

5. Formula for Stock Index Calculation in Market Value-Weighted Method 36

6. Component-Based Forecasting Model 37

7. Directional Symmetry Definition Formula1 42

8. Directional Symmetry Definition Formula2 42

9. Return Calculation Formula 52

10. Correlation Coefficient Calculation Formula 53

11. Component-Based One-day-ahead Prediction Function

53

12. Variable Sensitivity Calculation Formula (Total Variance)

58

13. Variable Sensitivity Calculation Formula (Unit Variance)

58

14. One-Step Sign Prediction Rate Calculation Formula (Based on Price)

105

15. One-Step Sign Prediction Rate Calculation Formula (Based on Return)

105

1
2

VIII

Summary

This thesis presents a study of using artificial neural networks in predicting

stock index increments. The data of five major stock exchange indices, DAX,

DJIA, FTSE-100, HSI and NASDAQ, are applied to test our network model.

Unlike other financial forecasting models, our model directly uses the

component stocks of the index as inputs for the prediction. For the neural

network training, a trust region dogleg path algorithm is applied. For

comparison purposes, other neural network training algorithms are also

considered, in particular, optimization techniques with line searches are

applied for solving the same class of problems. Computational results from five

different financial markets show that the trust region based neural network

model obtained better results compared with the results obtained by other

neural networks. In particular, we show that our model is able to forecast the

sign of the index increments with an average success rate above 60% in all the

five stock markets. Furthermore, the best prediction result in our applications

reaches the accuracy rate of 74%. Another major contribution of the thesis is

the development of artificial neural network models, including component-

based input selection, internal architecture and preprocessing of the sample

data. Based on individual and interactive sensitivity analysis on the three major

factors in network modeling, our results generalize some valuable

recommendations on neural network constructions.

The novel features of the model are the component-based prediction scheme

and the introduction of trust region learning algorithms for the network training,

IX

both of which are becoming the key issues in the neural network based

financial forecasting. This research may be helpful for both the stock market

practitioners and investors.

1

Chapter 1

Introduction and Thesis Overview

In Chapter one, we provide the motivation for this research and define its

scope. Specifically, it addresses the following questions:

1. Are financial markets predictable?

2. What are the currently available technologies for financial market

prediction?

3. What are the advantages of artificial neural network in financial

forecasting?

4. What is the scope of this thesis?

1. 1 Predictability of Financial Markets

Financial time series forecasting continues drawing considerable attention both

within the academic community and from the financial market practitioners.

Whether financial market is predictable has been a hot research topic for many

years. Generally, there are two main schools of thought in terms of the ability

to profit from the equity market. The first school believes that no investor can

achieve above average trading advantages based on the historical and present

information. In another words, the financial market is unpredictable. The major

theory includes the Random Walk Hypothesis and the Efficient Market

Hypothesis. The Random Walk Hypothesis states that price on the financial

market wanders in a purely random and unpredictable way. Each price change

2

occurs without any influence by past prices. The Efficient Market Hypothesis

states that the markets fully reflect all of the freely available information and

prices are adjusted fully and immediately once new information becomes

available. If this is true then there should not be any profit for prediction,

because the market will react and compensate for any action made from this

available information. In the actual market, some people do react to

information immediately after they have received the information while other

people wait for the confirmation of information. The waiting people don’t react

until a trend is clearly established. Because of the efficiency of the markets,

returns follow a random walk. If these hypotheses come true, it will make all

prediction worthless. While, Taylor provides compelling evidence to reject the

random walk hypothesis and thus offer encouragement for research into better

market prediction [48]. In fact, even the stock market price movements of

United States and Japan have been shown to confirm only to the weak form of

the efficient market hypothesis. Also, Solnik studied 234 stocks from eight

major European stock markets and indicated that these European stock

markets exhibited a slight departure from random walk [6]. My research

conducted here would be considered a violation of the above two hypotheses

for short-term trading advantages in financial markets. The second school’s

view is that the security prices cannot adjust rapidly to new information. In

another words, the current price of a security in financial markets can’t fully

reflect all the information currently available about the security, thus it’s

possible to get excess profit above average market return by financial

forecasting under technique or fundamental analysis.

3

1. 2 Artificial Neural Networks for Financial Forecasting

Over the past four decades, the field of artificial intelligence has made great

progress toward computerizing human reasoning. Nevertheless, the tools of AI

have been mostly restricted to sequential processing and only certain

representations of knowledge and logic. A different approach to intelligent

systems involves constructing computers with architectures and processing

capabilities that mimic the processing characteristics of the brain. The results

may be knowledge representations based on massive parallel processing, fast

retrieval of large amount of information, and the ability to recognize patterns

based on experience. The technology that attempts to achieve these results is

called neural computing, or artificial neural networks (ANN).

As an emerging and challenging computational technology, neural networks

offer a new avenue to explore the dynamics of a variety of financial

applications. Primarily offering time series forecasting and pattern-recognition

capabilities, neural networks complement algorithmic, statistical and other

artificial intelligence approaches for supporting financial decision-making and

problem solving. Their ability to model non-linear dynamics, to deal with noisy

data and their adaptability are potentially useful for a wide range of financial

decision-making. In recent years, numerous financial applications based on a

neural network approach have been developed in various areas such as stock

market forecasting, foreign exchange market forecasting, bankruptcy

prediction, credit scoring, investment screening and loan underwriting. My

4

research work is mainly focused on the application of artificial neural networks

on financial time series forecasting.

In many financial decision making areas, ANN are supplementing or taking the

place of statistical and conventional expert systems (ES) approaches, as the

artificial neural networks approach provides features and performance

advantages not available in the other types of systems.

The non-linear characteristics of neural networks make them a promising

alternative to traditional linear and parametric methods. Generally, one

chooses a non-linear model over a linear model when the underlining

relationships between the variables are either known to be non-linear, or are

not known. Conventional linear techniques cannot capture non-linear patterns

and trends in the relationships between and within stock and bond price

movements as well as cannot distinguish between random noise and non-

linear relationships. Financial markets, such as stock and foreign exchange

markets, are affected by many highly interrelated economics, political and even

psychological factors, and these factors interact with each other in a very

complex manner. Therefore, the movements of financial markets are nonlinear

and full of noisy and complex relationships between the variables. So, when

comparing with conventional linear statistical models, neural networks may

provide a better model to capture the underlying relationships between the

financial ratios and the dependent variables.

5

Neural networks also provide many advantages when comparing with the

conventional non-linear parametric models, such as multiple regression and

ARIMA: (1). Distributional assumptions are required for error terms for all the

parametric models, and regression model in particular. However, as non-

parametric models, neural networks can easily incorporate multiple sources of

evidence without simplifying assumptions concerning the functional form of the

relationship between output and predictor variables. When such statistical

assumptions (distribution, independence of multiple features, etc.) are not

valid, NNs that do not rely on these assumptions provide better generalization

properties and seem to be better suited to handle small sample problems. (2).

Parametric statistical models require the developer to specify the nature of the

functional relationships between dependent and independent variables. NNs

use the data to develop an internal representation of the relationship between

the variables so that a priori assumptions about underlying parameter

distributions are not required. (3). Most parametric statistical models require

that the input variables be linearly separable. When financial ratios and

aggregate account balance are used as inputs, this requirement can be easily

violated. So, in financial applications, NNs are more suitable to be used than

conventional statistical models. (4). Within a parametric model, outliers in a

data set influence the size of the correlation coefficient, the average value for a

group, or the variability of scores within a group. Those multivariate outliers are

even harder to detect since the value for each individual variables are within

bounds. There are numerous aspects of NNs that make them more robust with

respect to outliers. Research has shown that NNs are more robust than

6

regression when outliers are present in the data (Marques et al., 1991;

Subramanian et al., 1993) [35, 51]

In summary, NNs applied as non-parametric models are not constrained by

distribution-related requirements as most traditional statistical models. The

non-parametric NNs model may be preferred over traditional parametric

statistical models in those situations where the input data does not meet the

assumptions required by the parametric model, or when large outliers are

evident in the dataset.

Artificial neural networks outperform expert systems in the following four

aspects: (1). An expert system (ES) depends on the representation of the

expert’s knowledge as a series of IF-THEN conditions or rules, known as the

rule based approach. The extracting knowledge and rules from the experts

presents a very serious bottleneck. While, neural network systems do not

exhibit these same shortcomings, primarily they do not require a predefined

knowledge base. (2). Furthermore, once the expert system is functional,

making even minor changes to the knowledge base can be a complex and

expensive process because of the intricate relation between the rules forming

the knowledge base. Thus expert systems are generally cost effective only for

frequent recurring problems of a very narrow scope that can be solved by a

knowledge base that is essentially static. While for neural networks, changes in

the problem do not require reprogramming; the system simply retrains itself

based on the new information by adjusting nodal weights. Best of all, neural

network is fundamentally a dynamic, rather than a static system. The ability of

7

neural networks to self-organize and to function without a pre-programmed

knowledge base gives it an important additional advantage in financial

applications – protection of sensitive information. (3). Another problem with

expert systems is that ES can’t really deal with erroneous, inconsistent, or

incomplete knowledge because most ES rely on rules that represent

abstracted knowledge of the domain and thus the ES are not able to reason

from basic principles. It is also unable to perform effectively when the input

information is incomplete, ambiguous (noisy), or partially erroneous. It is in this

area that neural networks may offer the clearest advantage over expert

systems. Much of the information in real world financial market is noisy,

incomplete, and full of error. Neural networks, however, can work with noisy

and incomplete inputs and produce the correct output by using the particular

ability of generalization. (4). Neural networks are also capable of abstraction –

i.e., inferring the “ideal set” from a non-ideal training set. This process involves

determining the most prominent characteristics of the training set, then using

those characteristics to construct an internal representation of the idea or

archetypical pattern. In fact neural networks, unlike ES, can potentially exceed

the ability of human experts.

Though neural networks have many advantages that make them outperform

other conventional methods, they also have some disadvantages on which we

must also pay much attention. (1) A major and inherent problem of artificial

neural network is that the internal structure of the neural network makes it

difficult to trace the steps by which the output is reached. In other words, NNs

can’t tell the user how it processes the input information or reach a conclusion.

8

The output cannot be decomposed into discrete steps or series operations, as

would be possible with an ES rule base or any conventional statistical

methods. The only way to test the system for consistency and reliability is to

monitor the output. (2). The absence of a clearly identifiable internal logic could

be a severe stumbling block in the acceptance of neural networks, at least for

some applications. Many important business decisions made by human suffer

from the same shortcoming. (3). On the other hand, the NNs learning process

requires a large number of training examples, hence can involve substantial

time and effort. For most conceivable financial applications, especially financial

forecasting, ample training examples would be readily available, so relatively

little time or effort would be involved in data collection. Furthermore the time

and effort required to train NNs would be much less than that required to

extract and translate an expert’s knowledge base for an ES, as well as less

than required to set up a suitable conventional nonlinear statistical model. So,

for my particular research area, this disadvantage of NNs seems to be their

advantages compared to other methods, for time series data is very

convenient to available for financial markets applications.

1. 3 Current Securities Markets for Forecasting

Securities markets, such as stock markets and bond markets, are where

buyers and sellers are brought together to transfer securities. Capital market

instruments are fixed-income obligations that trade in the secondary market.

Bond is the major category of capital market instruments. Common stock

represents ownership of the listed firms on the equity markets. Owners of the

9

common stock of a firm share in the company’s successes and failures. On the

other hand, many other economics, industrial, political and even psychological

factors may also affect the stock prices in an interactive and very complex

manner. Thus stock markets are relatively more unpredictable and more risky

to invest compared with fix-income securities markets. From this point of view,

the research of financial forecasting in the stock markets will be of great

significance for both of the market investor and practitioners.

This thesis is mainly focused on the five major stock exchange markets in the

world, including four major National Security Exchanges of New York Stock

Exchange (NYSE), London Stock Exchange (LSE), Frankfurt Stock Exchange

(FSE), Hong Kong Stock Exchange (HKSE) and the largest over-the-counter

(OTC) security market in the world, NASDAQ. Security market indices are

used to track performance of segments of the market and are commonly used

as benchmarks to measure portfolio performance. A good prediction of the

indices may do great help for the prediction of the performance of the segment

of the corresponding stock markets. The details about indices corresponding to

the above five major stock exchange markets are listed in Table 1.

Figure 1 shows the five major stock market indices (including DAX, DJIA,

FTSE-100, HSI and NASDAQ) daily close prices from 04-Jan-1994 to 30-Sep-

2002. Figure 2, shows the return of these indices daily close prices during the

same period. Of this period, the range of daily returns of the five different

indices is shown in Table 2. From both of the Table 2 and Figure 2, it’s obvious

for us to discover that HSI and NASDAQ indices have greater volatilities in

10

daily return fluctuations than those of DAX, DJIA and FTSE 100. Averagely,

both HSI and NASDAQ have about 30% volatilities in returns during the past 8

years, while FTSE 100 having only about 10% during the same time. For

stocks and securities that move together with their corresponding index, a

reliable predictor of that index would benefit investors and financial institutions

in many aspects.

Index
Code

Index Full
Name

Stock
Exchange

Market
Location

Market
Type

Dominant
Weighting
Schemes

Number of
Component
Stocks

DAX
Deutsche

Aktienindex
Index

Frankfurt
Stock

Exchange
Germany

National
Security
Exchang

es

Value-
Weighted

Series
30

DJIA
Dow Jones
Industrial

Average Index

New York
Stock

Exchange

United
States

National
Security
Exchang

es

Price-
Weighted

Series
30

FTSE10
0

Financial
Times Stock

Exchange 100
Index

London
Stock

Exchange

Great
Britain

National
Security
Exchang

es

Value-
Weighted

Series
100

HSI Hang Seng
Index

Hong
Kong
Stock

Exchange

Hong
Kong

National
Security
Exchang

es

Value-
Weighted

Series
33

NASDA
Q

National
Association of

Security
Dealers

Automated
Quotation

/ United
States

Over-
the-

Counter
Market

Value-
Weighted

Series
100

Table 1, Details of Major Stock Indices for Forecasting

 DAX DJIA FTSE100 HSI NASDAQ

From
-9.13144% -7.18304% -5.43548% -13.7004% -9.8574%

To
7.845208% 6.348753% 4.998544% 18.82361% 18.77132%

Volatility
16.97665% 13.53179% 10.43402% 32.52405% 28.62871%

Table 2, Daily Returns Range of DAX, DJIA, FTSE-100, HSI and NASDAQ

11

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

04-Jul-94 19-Jan-96 07-Aug-97 25-Feb-99 08-Sep-00 28-Mar-02
Date

In
di

ce
s

C
lo

se
 P

ric
e

DAX DJIA FTSE HSI NASDAQ

Figure 1, Five Stock Markets Indices Daily Close Prices from 4/1/1994 to
30/9/2002

DAX

-10

-5

0

5

10

1 301 601 901 1201 1501 1801

Date

Re
turn

DJIA

-10

-5

0

5

10

1 301 601 901 1201 1501 1801

Date

Re
turn

FTSE

-10

-5

0

5

10

1 301 601 901 1201 1501 1801

Date

Re
turn

HIS

-10

-5

0

5

10

1 301 601 901 1201 1501 1801

Date

Ret
urn

NASDAQ

-10

-5

0

5

10

1 301 601 901 1201 1501 1801

Date

Ret
urn

Figure 2. The Returns of the Indices Daily Close Prices from 04-Jan-1994 to
30-September-2002 (From Up to Down the Returns are: DAX, DJIA, FTSE,
HSI, NASDAQ)

12

1. 4 Univariate & Multivariate Models

Practically, financial markets are normally predicted based on fundamental and

technical analysis. Neural networks are often trained by both technical and

fundamental indicators to produce trading signals. Fundamental and technical

analysis could be simulated in neural networks. For fundamental methods,

retail sales, gold prices, industrial production indices, and foreign currency

exchange rates, etc. could be used as inputs. For technical methods, the

delayed time series data could be used as inputs. Depending on what kind of

prediction indicators are used, technical, fundamental or both, the existing

neural network models could be classified as univariate or multivariate models.

A univariate model uses only the technical indicators or past value of the time

series for building a forecaster. The disadvantage of the univariate model is

that it doesn’t consider the environmental effects and interactions among

different factors other than outputs. A multivariate model uses both of the

technical and fundamental indicators as inputs. In another words, besides the

past value of the time series, additional relevant information such as financial

ratios/leverage of the company, other securities / foreign exchange market

indices, interest rate, etc. are all used to build a forecaster. The disadvantage

of the multivariate model is that the selection of inputs has always been a

difficult task [24]. To overcome the above difficulties, our research constructs a

simple univariate model, which uses only the past values of the component

stocks’ price time series to forecast the corresponding stock market index

increments.

13

1. 5 Scope of the Thesis

In this thesis, we would investigate the impact of prediction scheme, training

algorithm, input selection method, network internal architecture and pre-

processing of the sample data on the neural network performance in order to

construct a better model for financial forecasting. Specifically, we seek to

address the following research questions:

(i) Is it a good way to forecast the stock index increments by directly

using the past value of its selected component stocks’ price time

series?

(ii) What kind of optimization algorithms is more suitable for the neural

network training in financial forecasting, the trust region optimisation

algorithms or the line search based optimisation algorithms?

(iii) What is the individual impact of each of these three major factors in

neural network construction on the network performance?

(iv) Are there any interrelationships between these major factors in

network construction? If such interrelationships exist, how do they

affect the impact of each factor on the network performance?

To provide some insights into these questions as well as to obtain better

prediction accuracy in financial forecasting, we build up a component-based

neural network model training by trust region optimization algorithms and

14

compare it with neural network models training by other kinds of optimization

algorithms.

Our proposed model is novel in some aspects. First, we introduced a

component-based univariate neural network model to predict the stock index

increments. The idea is prompted by the fact that no matter whether the stock

index is calculated by value-weighted or price-weighted methods, its price

changes are heavily affected by its component stock price’s changes. Thus,

using the past value of its components stock’s time series in addition to its own

to build a forecaster is an innovative way for stock index prediction. Secondly,

we use a class of trust region algorithms to train the neural networks. Unlike

other trust region algorithms, this class of curvilinear search algorithms are

applied to solve the trust region problems arising from the unconstrained

optimization.

This research aims to make some contributions in the following aspects:

• In addition to a comprehensive survey in neural network applications in

finance, we provide an integrated review of the theory and practice in two

streams of literature: 1) training algorithms for neural networks, 2) financial

market prediction analysis scheme.

• Introducing a component-based neural network forecasting model. Unlike

other financial forecasting models, our model directly uses the component

15

stocks of the index as inputs for the prediction. We show that impressive

results could be obtained by this kind of model.

• Applying a class of trust region dogleg path algorithms for neural network

training process. Computational results from five different financial markets

show that the trust region based neural network model obtained better

results compared with the results obtained by neural networks training by

other kinds of algorithms. In particular, we show that our model is able to

forecast the sign of the index increments with an average success rate that

is statistically significant.

• Investigating the impact of three major factors on the network performance

by individual and interactive sensitivity analysises. We also generalize

some valuable recommendations on the artificial neural network

constructions.

This thesis is organized as follows. In chapter 2, we review the literature in

neural network based financial forecasting, particularly in the two streams of

learning algorithms and prediction schemes. We also give a brief introduction

on trust region optimization algorithms and conventional gradient decent

optimization methods. In chapter 3, we begin with the basic feedforward neural

network model, which is the most commonly used neural network model for a

variety of applications in finance and accounting [25]. We develop the model

into a component-based financial forecasting model by directly using the

component stocks of the index as inputs for the prediction. In chapter 4, we

determine the optimal network topology for the purposed model by plenty

experiments in five stock markets. Variable sensitivity analysises are also

16

conducted and some recommendations on neural network constructions are

generalized. Computational results and comparisons are given in chapter 5

and it follows by conclusions in chapter 6.

17

Chapter 2

Literature Review

In chapter 2, we first provide a comprehensive survey on the literature of

neural network applications in finance over the last decade. Furthermore, we

make a survey on two major streams of literature related to the neural network

based stock index forecasting: selection of learning algorithms for network

training and stock index prediction analysis scheme.

2.1 General Review of Neural Network Applications in Finance

Artificial neural network is an information processing technology inspired by

studies of the brain and nervous systems. After falling into disfavor in the

1970’s, the field of neural networks experienced a dramatic resurgence in the

late 1980s. The renewed interest developed because of the need for brainlike

information processing, advances in computer technology, and progress in

neuroscience toward better understanding of the mechanisms of the brain. It

was the development of back-propagation in 1986 that enable neural networks

to solve everyday business, scientific, and industrial systems and from then on

neural networks have been widely applied to many real-world situations. Since

the 1990’s, the drastic breakthrough of the computing technology has led to an

increasing amount of neural network research in the specific field of financial

functional applications.

18

In order to understand the current research situations, as well as the future

research trend in neural network applications in finance, we did a

comprehensive survey of research works conducted in this field during the last

decade (1988 ~ 2002). There are about 253 research articles (123 journal

articles, 121 conference proceedings and 9 working papers and doctor

dissertations) included in this survey. Of the total of 54 international journals

surveyed, five journals published the most papers on neural network

applications in finance: Journal of Management Science, European Journal of

Operational Research, Decision Support System, IEEE Transactions on Neural

Networks and Computer and Operational Research. On the other hand, the

proceedings included in this survey are all come from IEEE international

conferences (See Appendix A and B for details). A classification of these

articles by year reveals that an increasing amount of neural network research

has been conducted for a diverse range of financial applications over the last

decade. Most of these research findings point out that neural network

technology could be successfully used in finance and most of the time is

superior to other techniques or technologies.

Figure 3 shows the distribution of articles published by year in the last decade.

Overall the amount of research has been increasing in the last decade. It was

noted that the number of research studies has increased significantly from

1988 to 1994 and has slightly decreased from 1994 to 1997. On the other hand,

after the significant drop in 1998, the applications began to increase

continuously again after 1999. The possible explanation for the suddenly drop

in 1998 is that researchers are beginning to have more interest to conduct

19

research in other artificial intelligence techniques, such as genetic algorithm

and fuzzy logic. And the new trend of increase appeared after 1999 may be

caused by the newly developed interest to integrate neural networks with other

techniques such as other artificial intelligence techniques, conventional

statistics methods, and Grey theory or Chaos theory.

3
0

7

17

9

24

33 32 31
29

11

18 17 18

1
0

5

10

15

20

25

30

35

88 89 90 91 92 93 94 95 96 97 98 99 0 1 2
Year of publication

N
u
m
b
e
r

o
f

a
r
t
i
c
l
e
s

Figure 3 Distributions of Articles by Year

In our research, financial applications of neural networks are classified into 7

main categories: bank management, corporation finance, financial markets,

insurance, real estate, risk management and financial regulation. Our survey

disclosed that, over the last decade, almost two thirds of the financial

applications by neural networks are conducted in the particular field of financial

markets forecasting (see figure 4). Furthermore, figure 5 shows that stock

market application is the most popular application field among all the six sub

20

categories in financial market applications, as well as the most popular

application field among all the sub applications in finance area.

Financial Markets
Bank Management
Corporation finance
Risk Management
Financial Regulation
Real Estate
Insurance

 Figure 4 Distributions of Articles by Seven Major Application Areas in Finance

0

10

20

30

40

50

60
Stock Market

Bond Market

Foreign
Exchange
Market

Option Market

Futures Market

Figure 5 Distribution of Articles by 5 Major Application Fields in Financial
Markets

21

Neural network applications in the field of finance are mainly focused on either

time series forecasting or classification, while time series forecasting is more

popular in neural network financial applications over last decade. Time series

forecasting models assume that there is an underlying process from which

data are generated and that the future values of a time series are solely

determined by the past and current observations. Neural networks are able to

capture the autocorrelation structure in a time series even if the underlying law

governing the series is unknown or too complex to describe. Numerous neural

network models have been proposed and used for forecasting (Zhang et al.,

1998). The most popular and successful model in financial forecasting is the

feedforward multilayer network or the multilayer proceptron (MLP). Our

research work also makes financial time series forecasting using the

feedforward multilayer network.

It seems that the development of neural networks application in finance

experienced two main development stages over the last decade. The first

stage ranges from 1988 to 1997; during which period, most of the financial

application areas are established. Articles published in this period mainly

focused on introducing neural networks as a new practical approach in each

potential area in financial field, as well as to demonstrate that neural network

techniques improve the accuracy or effectiveness of the application, superior

to other conventional statistical technologies or at least give some insight in

some new/potential areas. In short, researches conducted in this stage are

mainly focused on whether neural network technique on its own is superior to

other conventional techniques. All the neural networks properties, advantages

22

and disadvantages are discussed and research in detail. Regression analysis,

discriminant analysis, human judgement, logit and ARMA/ARIMA model are

the five most common techniques compared with neural networks in financial

applications. A very large portion of research has confirmed that the

performance of a neural network is better than that of other techniques. The

second stage starts from 1998 to now and the trend is still going on.

Researches conducted in the second stage are mainly focused on setting up

new architectures or training algorithms for the neural networks or even

integrating neural networks with various other techniques in the financial

applications. For example, networks of many sub neural networks in various

structures, fuzzy neural networks and genetic adaptive neural networks are all

developed in this period. Though improved accuracy could be obtained by

integrating neural networks with other techniques, the hybrid forecasting

models or systems are normally too complex or impractical to use. A rule of

thumb for obtaining good generalization from a forecasting system is to use the

simplest model that will fit the data (Reed, 1993). Under this consideration, our

research work introduces a new training algorithm as well as a new scheme for

index forecasting in order to improve the network performance instead of

setting up a more complex hybrid system.

2.2 Learning Algorithms in Finance Applications

In neural network literature, learning algorithm has attracted considerable

attention. Once the decision to use neural network is made, the researcher

23

must decide which learning algorithm to use. Neural networks effectively filter

input to produce output. More specifically, a neural network looks for patterns

in a set of examples applied to the input layer of the network, and learns from

those examples to produce new patterns, the output. Knowledge within the

neural networks is maintained in the weights. The process of learning is

implemented by changing the weights until the desired response is attained at

the output nodes. In a NN with linear transfer functions, the weights can be

derived using matrix manipulation. In a NN with non-linear transfer functions,

two learning mechanisms can be used to derive the weights: unsupervised

learning and supervised learning. Unsupervised learning is analogous to a

cluster analysis approach and is mainly used in classification applications of

NNs. Supervised learning accepts input examples, computes the output

values, compares the computed output values to the desired output values or

target values, and then adjusts the network weights to reduce the difference.

The learning process is repeated until the difference between the computed

and target output values are an acceptably low value.

The most common supervised learning algorithm is back-propagation (BP)

(Rumelhart, 1986). Back-propagation employs a gradient-descent search

method to find weights that minimize the global error from the error function.

The error signal from the error function is propagated back through the network

from the output layer, making adjustments to the connection weights that are

proportional to the error. The process limits overreaction to any single,

potentially inconsistent data item by making small shifts in the weights. The

commonly cited disadvantages of the back-propagation learning algorithm are

24

that the training time usually grows exponentially as number of nodes

increases and there is no assurance that a global minimum will be reached.

To overcome the convergence problem, a very small step size or learning rate

must be used to guarantee asymptotic convergence to a minimum point. But

small learning coefficients lead to slow learning. The momentum factor was

added to back-propagation algorithm to act as a low-pass filter on the weight

adjustment terms. It allows a low learning coefficient with faster learning. But

incorrect specifying of learning rate and momentum term can lead to either

extremely slow convergence or to oscillatory behaviour without convergence.

Thus further researches are conducted to improve the back-propagation

algorithms under two directions; either speed up the converging procedure or

assist in constructing globally convergence.

The majority of the accelerating techniques can be classified as conjugate-

gradient (CG) methods or quasi-Newton (QN) algorithms. Leonard and Kramer

improved the BP algorithm with conjugate gradient methods in 1990 [32]. This

algorithm uses the second derivative of the error function to exploit information

regarding both the slope and curvature of the response surface. When

compared to BP, the conjugate-gradient algorithm has been shown to produce

comparable results with much faster training times (Charitou and

Charalambous, 1996; Wong 1991) [12, 53]. Ballo also speedup the training

procedure of BP algorithm by using a nonlinear least-square optimization

algorithm enhanced by a quasi-Newton (QN) algorithm in 1992 [8]. QN

methods were criticized because they require more computation time and

memory space to update the Hessian matrix (Watrous 1987; Nahas 1992).

25

Various modified QN methods are therefore proposed recently for training

neural networks in order to speed up the rate of the convergence and/or to

reduce the required memory space (Sectiono and Hui 1995; Robitaille 1999;

Denton and Hung 1996; McLoone and Irwin 1999). Most recently, Phua and

Ming (2000) proposed a class of parallel nonlinear optimization techniques

based on QN methods to improve the rate of convergence of the training

procedure for neural networks. Besides accelerating the convergence speed,

computational results also show that this parallel QN method outperforms

other existing methods by far. Our research work will taken this class of

parallel QN methods as benchmark to compare with our proposed learning

algorithms in neural network training process for real financial time series

forecasting.

A major drawback of the gradient descent algorithm is that there is no way of

determining in advance whether the architecture and selected methods will

converge. Real error surfaces, with multiple weight dimensions, tend to have

very complex features including dents and ravines. Although the gradient-

descent method always follows the steepest path towards the bottom of the

error surface, it may get a stuck within a large dent or ravine on the side of the

surface. Numerous methods are available to compensate for this tendency to

find local minima. Some methods adjust the weight derivation process to

maintain the momentum established by previous adjustments. Other methods

involve starting from a different point on the error surface by using a different

set of initial weights and ensuring that the results are similar. Still other

26

methods involve the dynamic adjustment of the network architecture by

trimming modes or connections between nodes.

Evolutionary programming is a stochastic optimization technique that has been

used in finance problems as an alternative to the conventional gradient

methods. Evolutionary programming involves two processes – mutation and

selection. The algorithm starts with an original population of weight sets that

are evaluated by examining the corresponding outputs. Random mutation of

the parents creates new solutions. Specifically, a Gaussian random variable

with mean zero and variance equal to mean squared error of the parent

perturbs each weight and bias term. Each offspring is evaluated, and the n

‘best’ solutions are retained as parents for the next iteration.

Genetic algorithms extend this mutation and selection process by adding a

recombination phase to create the child notes that are evaluated. Each child is

formed as a cross between two parents. Goldberg (1994) cites numerous

advantages of genetic algorithms: they can easily solve problems that have

many difficult-to-find optima, they are noise tolerant, and they use very little

problem-specific information. They work with the coding of parameter set, not

the specific value of the parameters. The major disadvantage of cited for

genetic algorithm is the difficulty in specifying the optimal parameter settings

for the model. A genetic algorithm was used by Huang (1994) to predict

financially distressed firms. Levitan and Gupta (1996) applied a genetic

algorithm to the cost driver optimization problem in activity-based costing. By

27

far, genetic algorithms have been demonstrated as possible techniques to aid

in the development of the neural network model (Back, 1996; Hansen 1998).

Optimal Estimation Theory has also been applied to finance problems as an

alternative learning algorithm to back-propagation. Optimal Estimation Theory

introduced by Shepanski (1988), uses a least squares estimator to calculate

the optimal set of connection weights for the presented training set. This

method significantly reduces the time required to train a network, but it is not

known whether it achieves similar performance (Boucher 1990; Boritz 1995)

Our review of the previous literature suggests that much of the literature on

neural network learning algorithm in last decade are mainly focused on line

search based optimization algorithms such as BP, modified BP, CG and QN

methods. To our knowledge, there has been no research introducing the class

of trust region optimization algorithms in the neural network training process for

financial forecasting. As an alternative to the conventional line search based

gradient methods, trust region methods are a class of algorithms for the

solution of nonlinear nonconvex optimization problems that covers both

unconstrained and constrained problems. In this study, we seek to bridge the

gap between the literature on the trust region optimization algorithm and the

financial forecasting by neural networks. Performance comparison will be

conducted between the neural network models training by trust region

algorithms and conventional gradient descent algorithms.

2.3 Stock Index Forecasting with Neural Networks

28

Reference [3] indicates that conventional statistical techniques for forecasting

have reached their limitation in applications with nonlinearities in the dataset.

Artificial neural network, a computing system containing many simple nonlinear

computing unites or nodes interconnected by links, is a well-tested method for

financial analysis on the stock markets [55]. Neural networks have been shown

to be able to decode nonlinear time series data which adequately describe the

characteristics of the stock markets [2]. In the past decades, neural networks

have been explored by many researchers for financial forecasting. Among

them, some researches are conducted particularly on forecasting the value of

a stock index [1, 3, 5, 23, 29, 39, 40, 44-46, 49, 50, 52, 54].

Wittkemper (1996) conducted a comparative study between seven traditional

forecast models based on regression and averages with two different types of

neural network models in forecasting the systematic risk as well as the market

index of German stock markets. In the analysis, 67 most traded stocks in the

German markets are considered. For each stock the daily stock market data or

yearly financial statements from the period 1967 to 1986 are used. From the

financial statements of the companies, totally 32 financial statement variables,

such as operation/financial leverages, debt/equity ratios, growth rate, etc, are

considered as the inputs for the neural network forecasting. Neural networks

outperformed all the traditional models in the one-step-ahead forecasting. For

the general regression neural network models, the one using the historical

price data as the only input variable performed better than the other one using

all fundamental financial variables. But, when genetic algorithms are used to

29

choose the optimal inputs from the fundamental variables for the network

model, the resulting model outperformed all other existing models in

comparison.

Antonio and Claudio (1996) applied neural networks to forecast the general

index of share prices at the Santiago de Chile Stock Market. Time series with

daily values of the index and of total amount of transactions were used to train

the neural networks. A complex multilayer architecture containing two kinds of

memories was used to design the neural network. Compared to traditional

simple architectured neural network model as well as other statistical methods,

this model produced better results in stock index forecasting. They also show

that a time delay of ten labor days was sufficient to forecast.

Yao and Poh (1998) reported the results for Kuala Lumpur Stock Exchange

indices forecasting by popular used backpropagation neural networks. Time

series of both stock index value and technical indicators were used as the

inputs for the neural network forecasting. Based on the out-of-sample results,

they found that for daily data, neural networks were much better than

conventional ARIMA models. However, if weekly data were used, the neural

networks did not show much improvement over the ARIMA model. The

experiment shows that useful predictions can be made without the use of

extensive market data or knowledge.

Steven and Chun (1998) examined the out-of-sample performance of

feedforward, recurrent and probabilistic neural networks in forecasting the

30

Singapore Stock Exchange index. Besides stock index price, total return index,

dividend yield, turnover by volume and price/earnings ratio are all considered

as the inputs for the network forecasting. The daily values consisting of 3056

observations were used in their investigation; with the last 186 data points

retained as out-of-sample testing periods. Their results showed that the

arrayed probabilistic network tended to outperform recurrent and back

propagation networks. However, case based reasoning tends to outperform

the arrayed probabilistic network as well as the other techniques when

mistakes were taken into consideration.

Renate and Joaquin (2000) assessed the short-term predictive ability of the

feedforward time delay neural networks in forecasting the Standard & Poor’s

500 index. The S&P 500 index data used in this study covers 22 years, from

1973 to 1994. Different time delayed time series of stock indices are used

together as inputs for the neural network forecasting. This study suggested

that there are no short-term correlations in this stock market time series, which

is consistent with conventional statistical analysis.

In order to increase the forecastability in terms of profit earning, Yao and Tan

(2000) developed a profit based adjusted weight factor for backpropagation

network training. Instead of using the traditional least squares error, they add a

factor which certains the profit, direction and time information to the error

function. Four major Asian stock market indices, Hong Kong Heng Seng Index,

Malaysia Kuala Lumpur Composite Index, Japan Nikkei-225 and Singapore

Straits Times Industrial Index together with the world economic benchmark

31

American Dow Jones Industrials Index are applied to this profit based adjusted

network model. For each stock index, only the time series of historical index

price are fed into the neural network model to make the one-day-ahead index

forecasting. The results show that this new approach does improve the

forecastability of neural networks.

In a recent time series prediction application, the data sets used were series of

S&P 500, NASDAQ and Dow Jones Industrial Average Indices for the period of

1990-2000. Filippo (2000) reported the experience of forecasting the price

value increments of these time series with backpropagation neural networks.

One-step-ahead forecasting was made by feeding only the delayed index price

time series to the network model. They show that a neural network able to

forecast the sign of the price increments with a success rate slightly above

50% can be found.

Liu and Yao (2001) developed an evolutionary neural network approach for

Hong Kong Heng Seng stock index forecasting. In this approach, a

feedforward neural network is evolved using an evolutionary programming

algorithm. Both the weights and architectures are evolved in the same

evolutionary process. The network may grow as well as shrink. Only the

historical time series data of Heng Seng index are used for the one-step-ahead

index forecasting. Experimental results show that the evolutionary neural

network approach can produce very compact neural networks with good

prediction.

32

Several observations are warranted. First, none of the previous studies in

stock index forecasting considered the component stock prices as the inputs

for the neural network based index forecasting. Besides the delayed value of

the stock index itself, fundamental indicators (such as various financial

statement variables, total trading volume of the markets and general economic

indicators, etc) and technique indicators are often considered as the additional

inputs for the network index prediction in the previous researches. Our study

would show that component-based prediction scheme could also produce

impressive results in the neural network based stock index forecasting. Second,

both multi- and one-step-ahead forecasting methods with different forecast

horizons are examined in the literature. Multistep forecasts are useful for long-

term forecasting and for the identification of major turning points in the stock

index data. Single-step predictions are desirable for making short term buy or

sell decisions. Single-step forecasting is also a good instrument for evaluating

the adaptability and robustness of a forecasting technique (Refenes, 1993).

Finally, the neural network out-of-sample performance is mixed, though most

of previous studies show that neural network outperformed other techniques in

dealing with nonlinear time series forecasting. We also notice that in the

literature that there is no universally agreed upon set of performance measures.

Both absolute and relative forecasting measures of performance have been

employed.

33

Chapter 3

Component-Based Forecasting Models

In this chapter, we begin with the basic feedforward neural network model. We

outline the basic structure, the computational scheme as well as the objective

function of this model. In the consideration that indices are always directly or

indirectly affected by its component instruments even under different kinds of

stock market indicator weighting schemes, we further extend the basic model

to a component-based financial forecasting model. It different from the basic

model in several ways: First, this model is particularly designed for financial

indices forecasting. Second, we directly use the component instruments of the

index to forecast the future index value. Third, a class of trust region algorithms

that can solve both definite and indefinite optimisation problems are used for

the network training.

3.1 Basic Feedforward Neural Network Model

For the purpose of conducting experiments, we choose a three-layered feed

forward neural network architecture as the basic financial forecasting model,

which is most commonly used in finance and accounting applications. The

Figure 6 shows the structure of a basic feedforward neural network model. The

input, hidden and output layers are noted as {X, H, Z} respectively. Here the

input layer X has (m+1) neurons with X0=1, the hidden layer H have (n+1)

34

neurons with H0=1, and the output layer Z has k output values. Let w(L) denoted

the weights at Level L.

Let (Xp, Yp), p=1,2…P be the set of given input/output vectors for training the

neural network. For each input Xpi (i=0,1…m), the neurons Hpj and Zpk are

calculated according to the following equations:

(1) (1) (1)

0
() ()

m

pj pi ij
i

H w f X w
=

= ∑ , j = 1, 2, …, N (1)

(1) (2) (2) (1) (2)

0
(,) (())

n

pk pj jk
j

Z w w f H w w
=

= •∑ , k=1,2,…, K (2)

Here, the transfer function f(1) from the input to the hidden layer is the sigmoid

function y=1/(1+e-x), and the transfer function f(2) from the hidden layer to the

output layer is the linear function y=x. The training of the neural network is

done by feeding the set of input-output vectors (Xp, Yp) to the neural networks

and by minimizing the following objective function:

 2

1 1

1() [()]
P K

pk pk
p k

g w Y Z w
P K = =

= −∑ ∑
×

 (3)

where w=w(1)∪w(2), represents the weights of the neural network. The error

function g defined by (3) is the Mean-Squared Error (MSE).

35

Figure 6. The Basic Structure of the Feedforward Neural Networks

3.2 Types of Stock Market Indices

The three predominant stock market indicator series weighting schemes are:

price weighted, value weighted, and unweighted.

1). Price-Weighted Series. A price-weighted series is an arithmetic average of

current prices; thus index price movements are directly influenced by the

differential prices of the components. Computationally, a price-weighted index

adds together the market price of each stock in the index and then divides this

total by the number of stocks in the index. Because the index is price-

weighted, a high-priced stock carries more weight than a low-priced stock. The

X0

X1

X2

Xm

H0

H1

H2

Hn
Zk

Z2

Z1

Layer 1: Input Layer 2: Hidden Layer3: Output

•
•
•

•
•

•
•

Level 1 Level 2

Wij(1) Wjk(2)

36

divisor must be adjusted for stock splits and other changes in the portfolio. Let

()t PWI be the price-weighted stock market index at time t, and m be the number

of component stocks of ()t PWI . Then ()t PWI can be computed by

 ()
1

m

t PW j tj
j

I w p
=

= ∑ (4)

where Ptj is the price of the component stock j (Cj) at time t, and wj is the price

weighting coefficient for Cj. The major price-weighted index is the Dow Jones

Industrial Average index (DJIA).

2). Market Value-Weighted Series. A market value-weighted series is

calculated by summing the total value (current stock price times the number of

shares outstanding) of all the stocks in the index. This sum is then divided by a

similar sum calculated during the selected base period. This ratio is then

multiplied by the index’s base beginning value. Let ()t VWI be the market value-

weighted stock market index at time t, and m be the number of component

stocks of ()t VWI . Then ()t VWI can be computed by

1

()

1

m

j tj
j

t VW Bm

j Bj
j

N P
I I

N P

=

=

= ×
∑

∑
 (5)

where Ptj is the price of the component stock j (Cj) at time t, PBj is the

component stock j (Cj) at base year, and Nj is the number of shares

outstanding at time t. IB is the base beginning value of the index. DAX,

FTSE100, HSI and NASDAQ are all the major market-weighted indices.

37

3). Unweighted Price Indicators Series. In an unweighted price indicator series,

all stocks carry equal weight regardless of their price or total market value. A

$20 stock is just as important as a $400 stock and a small-size company is just

as important as a large-sized company. Here it is assumed the investor makes

and maintains an equal dollar investment in each stock in the index. In effect,

you are working with percentage price changes. The price of an unweighted

index may be calculated using two methods of arithmetic average or geometric

average.

3.3 Component-Based Feedforward NN Forecasting Model

It’s obviously to notice that no matter what kind of indicator series weighting

scheme are used, stock indices are always computed directly or indirectly from

the values of their component instruments. So, when internal/external

information related to a particular component stock is perceived, the price of

that stock will change, and this will cause the corresponding index to change

as well. Taken the National Association of Securities Dealers Automated

Quotation System (NASDAQ) index as example, figure 7, shows the

relationship between the index and its component stocks. Hence it is natural

and logical to predict a market index by considering the prices of its component

stocks. For predicting a general financial market index, we propose the

following component-based forecasting model:

 1 1 2(, ,..., ,)t t t mt tI f C C C I+ = (6)

38

where C1t, C2t,…, Cmt are the closing prices of the component stocks C1, C2,

….., Cm at time t, while It and It+1 are values of the market indices computed at

time t and t+1, respectively. The component-based forecasting model based

on the basic structure of feedforward neural networks is called the Component-

Based Feedforward Neural Network Forecasting Model. Such model directly

uses the past value of the selected component stock prices time series as

inputs for the feedforward neural network model to predict the corresponding

index. Figure 8 illustrates the structure as well as the particular input scheme

for this model.

As an application of the component-based neural network forecasting model,

we apply the one-day ahead prediction for the five different stock market

indices: DAX, DJIA, FTSE-100, HSI and NASDAQ. For each market index, we

consider all stocks that served as component stocks of that index during the

period of 4 January 1994 to 30 September 2002. Although some stocks served

as component stocks for the corresponding index for only a part of the period,

we also treat these stocks as potential candidates of inputs to our model.

In this thesis, our proposed neural network model is trained by applying the

Trust Region Indefinite Single Dogleg Path (TRISDP) algorithms proposed in

[28]. Unlike other trust region algorithms, this class of curvilinear search

algorithms are applied to solve the trust region problems arising from the

unconstrained optimization. The curvilinear paths set by this algorithm are

dogleg paths, generated mainly by employing Bunch-Parlett factorization for

general symmetric matrices, which may be indefinite. These algorithms are

39

easy to use and they are shown to be globally convergent. It is proved that

these algorithms satisfy the first- and second-order stationary point

convergence properties and that the convergence rate is quadratic under some

common conditions [27]. We will show that this kind of trust region algorithm is

robust and efficient in solving all the test problems. We refer the neural

networks training by this class of algorithms as Trust Region Neural Networks

(TRNN).

For comparison purposes, we adopt another class of training algorithm for

MLP neural networks, known as Self-Scaling Parallel Quasi-Newton (SSPQN)

algorithms, proposed in [39], for solving the same set of test problems.

Computational results are presented in Chapter 5.

Figure 7, Relationship between the NASDAQ Index and its components

Close Price
Change of CSCO

Market Value
Change of

CSCO

Close Price
Change of DELL

Market Value
Change of

DELL

Change of Stock Index: NASDAQ

Close Price Change
of YAHOO

Market Value
Change of YAHOO

40

Figure 8, Structure of the Component-Based Feedforward Neural Networks
Forecasting Model

X0

X1

X2

Xm

H0

H1

H2

Hn

Zk

Z2

Z1

Layer 1: Input Layer 2: Hidden Layer3: Output

•
•
•

•
•

•
•

Market Index Return

Component Stock 1 Return

Component Stock m-1 Return

Component Stock 2 Return

Component Based Index
Forecasting By Feedforward
Neural Networks

Level 1 Level 2

Wij(1) Wjk(2)

41

Chapter 4

Determining Optimal Network Topology

Once the decision to use a neural network model is made, the researcher

faces numerous decisions in the network constructions. In this Chapter, we

first determine the optimal number of iterations on each stock market under

different forecasting models and then determine the optimal network topology

based on the variable sensitivity analysis in the network constructions.

Besides the training algorithms, three major factors that may have great impact

on the neural network performance are carefully considered in the process of

neural network construction: component-based input selection, internal

architecture and pre-processing of the sample data. First, we would conduct

the individual sensitivity analysis in order to learn the impact of each of these

factors on the network performance. Then, interactive sensitivity analysises are

introduced in order to learn whether interrelationships between these factors

may affect their impact on the network performance. Based on the results

getting from both of the sensitivity analysises, we would draw some general

recommendations on the network constructions.

4.1. Determining optimal number of iterations

42

Besides considering MSE results, the secondary mark for measuring the

model performance in our research is the Directional Symmetry (DS).

Following Caldwell (1995), [11], the directional symmetry metric is defined as:

 1

100
P

p
p

d
DS

n
==

∑
 (7)

Where

1 ()() 0
0

p p
p

if Y Z
d

Otherwise
≥⎧

= ⎨
⎩

 (8)

As mentioned in Section 3.1, the variable Yp is the set of given output vector

for training the neural network. Zp is the corresponding predicted return

computed by the network. As the inputs we used are all stock or index returns,

the DS shows the percentage of correctly predicted directions with respect to

the stock index. It has more value than MSE in the application field of financial

forecasting. Normally, institute investors and individual practitioners in financial

markets have more interest and pay more attention on the accuracy of the

direction prediction on the market index instead of MSE, because accurate

direction prediction may do great help on making correct and profitable

investment decisions. Most financial trading strategies in practice are mainly

based on the prediction of direction up or down in the coming stage [17].

From our experiments, we noticed that the MSE (or DS) results for testing

would reverse its trends from decreasing to increasing (or increasing to

decreasing) at some particular iteration number in the training process. Thus

the training process of our network will be terminated when the MSE (or DS)

results for testing reverse its trends. In practical, 30 different number of

43

iterations (Iter = 5, 10,…, 95, 100, 110 , 120,…, 210) are considered for

training in five different stock markets by TRNN and SSPQN component-based

forecasting models. Thus in total 300 experiments (30×5×2) are conducted to

determine the optimal number of iteration for different markets and neural

network models.

Experiment results from TRNN model in figure 9 (a)-(d) show how the MSE

and DS vary for different number of iterations both in the training and testing

process. Theoretically, if the iteration number is sufficiently high and there are

enough hidden neurons, the MSE on training data could be very low and even

reach zero. Research suggests that an architecture with n input data streams

will require at most (2n+1) processing nodes per hidden layer to achieve the

desired accuracy. It is also possible to approximate a continuous function that

may achieve the desired accuracy with a single hidden layer (Cybenko, 1989;

Hecht Nielsen, 1990; Hertz et al., 1991; Hornik et al., 1989). Generally

speaking, as the number of hidden nodes in a network is increased, the

number of variables and terms are also increased. If the network has more

degrees of freedom (the number of connection weights) than the number of

training samples, it’s easy for the network to accurately simulate the training

samples. This is similar to fitting a small number of points by a high-order

polynomial. Training of the neural network involves propagating the error to

adjust the set of weights to minimize the error function. The Trust Region

Dogleg Algorithm we proposed in this thesis guarantees that total error in the

training set will continue to decrease as the number of iterations increases and

this method is globally convergent. With each iteration, the weights are

44

modified to decrease the error on the training patterns. As training processes,

the amount of change in the error function becomes smaller. Training with

repeated applications of the same data set may result in exactly fitting the

limited set of points. So, in short, the MSE on the training data can finally go to

zero if the iteration number is sufficiently high and there are enough hidden

neurons. While, in practice, researchers or practitioners always set a desired

accuracy for the training process as a stop criterion in order to avoid the

phenomenon of overfitting or overtraining. That is, when change in the error

function is less than a specified threshold or when the error function value

reaches the desired accuracy, the convergence occurs and the training

process will be stopped. Simply pursuing zero MSE or error function results in

training process has no meaning for the prediction or testing process. A good

balance between accurately fitting the training set examples and still providing

a reasonable good interpolation capability should be determined by

experiments. As shown in Figure 9(b), our experimental results show that as

iteration number increases in training process, the MSE results decrease

continually. While we also noticed that with the increment of iteration number,

the testing MSE results not decrease continually, instead, it always reverse its

trend from decreasing to increasing at some particular point of training

iterations (see Figure 9 (a)). Overtraining occurs when neural network attempts

to exactly fit the limited set of points and loses its ability to interpolate those

points. In the first stage of training, the network learns the underlying

relationships in the data samples and with the increase of iteration number, in

the second stage of training, the network begins to learn the noise in the

training samples, which will lead to exactly fitting the limited sample data while

45

losing the capacity for accurate prediction for out-of-sample data in testing

process. Thus, it’s necessary to stop the training process after the MSE results

reverse its trends in testing process. As shown in figure (c) and (d), DS results

for training always increase. However, DS results for testing have some

fluctuations. For all the 5 stock markets, the DS results for testing usually

increase first, and then decrease after certain number of iterations, which is

different for different markets. Our experiments show that the best iteration

number for testing MSE results is usually not the best one for testing DS

results for the same stock market.

By experiments, we find out the optimal iteration number for both the neural

network models under the two criteria of MSE and DS. Table 3 shows the

results of the optimal iteration numbers. From the results, we can see that on

average the optimal iteration numbers for TRNN model are larger than those

for the SSPQN model under both the MSE and DS criteria. These results may

show that, on average, SSPQN neural networks model have faster

convergence speed than the TRNN model. The following experiments to

determine the optimal network topology in this study are all conducted with

these optimal numbers of iterations for corresponding models and stock

markets. For all the MSE results shown in the following many figures in

Chapter 4, the number of iterations in training process is based on the

corresponding optimal iteration number, which is pre-determined in this

section. As both the training sample size and network architecture will

determine the optimal iteration number in training process, we averaged the

optimal results for different combination of these variables by experiments to

46

determine the optimal iteration number for each stock market under different

models. So the optimal iteration numbers listed in Table 3 are all the averaged

optimal results. A very interesting finding is that the optimal iteration numbers

show great difference for different network model as well as for different stock

markets. It seems that the optimal iteration number is very sensitive on the

sample data and training algorithms for neural network based financial

forecasting. Why the experimental results show so much difference would a

very interesting research issue in our future research.

Table 3. Optimal Number of Iteration for Each Market and Neural Network
Model Based on Two Criteria

TRNN SSPQN Markets

MSE DS MSE DS

DAX 65 10 100 10

DJIA 150 180 120 95

FTSE-100 140 95 95 15

HSI 150 120 65 75

NASDAQ 140 55 55 160

Average Result 129 92 87 71

47

Normalized Avg_MSE_Testing for Different Iter_Numbers &
Markets

0

0.2

0.4

0.6

0.8

1

1.2

10 30 50 70 90 120 160 200

Iter_Numbers

MS
E

DAX DJIA FTSE HIS NASDAQ

Figure 9(a), MSE Results in Testing Process for 5 Markets during the Increase
of Iterations

Normalized Avg_MSE_Training for Different Iter_Number &
Markets

0

0.2

0.4

0.6

0.8

1

1.2

10 30 50 70 90 120 160 200

Iter_Number

MS
E

DAX DJIA FTSE HIS NASDAQ

Figure 9(b), MSE Results in Training Process for 5 Markets during the
Increase of Iterations

48

Normalized Avg_DS_Testing for different Iter_Number &
Markets

0

0.2

0.4

0.6

0.8

1

1.2

10 30 50 70 90 120 160 200

Iter_Numbers

DS

DAX DJIA FTSE HIS NASDAQ

Figure 9(c), DS Results in Testing Process for 5 Markets during the Increase of
Iterations

Normalized Avg_DS_Training for different Iter_Number &
Markets

0

0.2

0.4

0.6

0.8

1

1.2

10 30 50 70 90 120 160 200
Iter_Numbers

DS

DAX DJIA FTSE HIS NASDAQ

Figure 9(d), DS Results in Training Process for 5 Markets during the Increase
of Iterations

49

4.2. Determining the optimal network architecture

To train the proposed neural network model, about nine years of daily trading

data are captured for the period of 4 January 1994 to 30 September 2002,

which give us a total of 2204 training patterns. To avoid the problem of over-

training, we study the effects of employing different sizes of dataset in network

training. We use the date of 30 September 2002 as the ending point, five

different datasets are chosen for training our network models; these datasets

include: 600, 800, 1000, 1500 and 2000 daily trading data. For each dataset,

the latest 100 patterns are used for testing and the remaining patterns are

used for training. As shown in Figure 10, five different sizes of samples are

used in the neural network model based financial forecasting for the same

period of 9 May 2002 to 30 September 2002.

To better understand the effects of the number of input neurons on the training

and testing results, three kinds of component stock selection methods are

considered in our experiments. To select the inputs for the neural network, we

choose the component stocks whose correlation coefficient with their

corresponding index ranks within the highest 5th, 10th and 15th respectively.

However, even for the same particular market, the component stocks’

correlation coefficients with the index depend on different sample sizes. For

different sample sizes, the combination of those component stocks whose

correlation coefficient ranks within the highest 5th, 10th or 15th may be

50

different. Thus we have to re-calculate as well as re-rank the correlation

coefficient of the component stocks with their corresponding indices when

sample sizes are different. So, a total of m component stocks (m = 5, 10, 15)

are selected under these criteria for each particular market in conjunction with

some specified sample size. (see Table 4.)

100

100

100

100

100

500

700

900

1400

1900

0200400600800100012001400160018002000

600

800

1000

1500

2000

5
D

at
as

et
s

DateData for Testing Data for Training

Figure 10 Five Different Datasets for Training and Testing

14-Oct-96 8-Oct-98 26-Jul-99 9-May-00 9-May-02 30-Sep-02

Data for Training

21-Oct-94

Forecast

51

Table 4 Component Stocks with the Highest Correlation Coefficient with the
Corresponding Indices for Each Market and for Different Dataset Size.

S=60
0

DAX DJIA FTSE HSI NASDAQ

Rank Code Score Code Score Code Score Code Score Code Score
1 DBKGN 0.810 C 0.747 HSBA 0.563 941.000 0.782 CSCO 0.831
2 SIEGN 0.805 GE 0.739 III 0.559 13.000 0.770 MXIM 0.824
3 ALVG 0.782 AXP 0.718 AVZ 0.553 1.000 0.751 LLTC 0.823
4 DCXGN 0.752 JPM 0.698 VOD 0.552 5.000 0.738 XLNX 0.796
5 MUVGN 0.721 MMM 0.686 RTR 0.544 16.000 0.690 AMCC 0.789
6 DTEGN 0.711 UTX 0.672 BP 0.536 12.000 0.664 QLGC 0.789
7 HVMG 0.708 GM 0.659 RBOS 0.515 267.000 0.617 PMCS 0.784
8 VOWG 0.705 CAT 0.651 BARC 0.513 17.000 0.613 VRTS 0.784
9 BAYG 0.693 DD 0.640 LLOY 0.507 4.000 0.601 ALTR 0.780

10 BASF 0.687 HD 0.623 HBOS 0.505 20.000 0.597 SEBL 0.776
11 IFXGN 0.665 HON 0.605 PRU 0.504 11.000 0.593 AMAT 0.775
12 SAPG 0.640 MSFT 0.605 BSY 0.500 83.000 0.587 MOLX 0.772
13 EPCGN 0.637 AA 0.600 SDRT 0.488 992.000 0.574 FLEX 0.760
14 CBKG 0.636 IBM 0.587 SGE 0.487 23.000 0.540 INTC 0.756
15 BMWG 0.608 IP 0.580 OML 0.478 179.000 0.522 KLAC 0.754

S=80
0

DAX DJIA FTSE HSI NASDAQ

Rank Code Score Code Score Code Score Code Score Code Score
1 SIEGN 0.783 C 0.743 HSBA 0.545 941.000 0.797 CSCO 0.825
2 ALVG 0.725 GE 0.735 VOD 0.535 13.000 0.777 MXIM 0.801
3 DBKGN 0.722 AXP 0.709 AVZ 0.526 1.000 0.759 LLTC 0.797
4 DTEGN 0.720 JPM 0.681 III 0.506 5.000 0.699 XLNX 0.793
5 DCXGN 0.685 MMM 0.650 PRU 0.495 16.000 0.665 AMCC 0.781
6 MUVGN 0.668 UTX 0.639 RTR 0.477 12.000 0.594 VRTS 0.776
7 BAYG 0.655 GM 0.623 SGE 0.466 20.000 0.583 ALTR 0.771
8 HVMG 0.647 CAT 0.610 OML 0.465 11.000 0.581 AMAT 0.771
9 VOWG 0.633 HD 0.604 BSY 0.460 17.000 0.580 PMCS 0.767

10 SAPG 0.619 DD 0.593 BARC 0.454 83.000 0.580 QLGC 0.762
11 IFXGN 0.616 HON 0.589 CW 0.449 23.000 0.543 SEBL 0.762
12 BASF 0.613 WMT 0.561 RBOS 0.447 4.000 0.540 INTC 0.753
13 CBKG 0.598 AA 0.558 STAN 0.445 267.000 0.509 KLAC 0.749
14 BMWG 0.527 INTC 0.554 LLOY 0.444 14.000 0.501 BRCM 0.748
15 TKAG 0.505 IP 0.553 BP 0.439 992.000 0.501 JDSU 0.746

S100
0

DAX DJIA FTSE HSI NASDAQ

Rank Code Score Code Score Code Score Code Score Code Score
1 SIEGN 0.624 C 0.730 HSBA 0.561 941.000 0.735 CSCO 0.829
2 DTEGN 0.613 GE 0.727 AVZ 0.529 1.000 0.697 MXIM 0.787
3 ALVG 0.596 AXP 0.712 VOD 0.528 13.000 0.694 XLNX 0.777
4 DBKGN 0.562 JPM 0.675 PRU 0.496 5.000 0.661 LLTC 0.777
5 MUVGN 0.537 UTX 0.623 BARC 0.493 16.000 0.613 INTC 0.754
6 DCXGN 0.532 MMM 0.602 III 0.492 17.000 0.546 VRTS 0.753
7 SAPG 0.511 GM 0.593 STAN 0.473 12.000 0.545 ALTR 0.748
8 VOWG 0.493 HD 0.590 LLOY 0.471 20.000 0.542 SUNW 0.747
9 BAYG 0.482 HON 0.577 RBOS 0.467 83.000 0.533 AMCC 0.745

10 HVMG 0.478 DD 0.572 RTR 0.466 11.000 0.524 AMAT 0.744
11 CBKG 0.453 WMT 0.561 BT 0.457 14.000 0.486 PMCS 0.737
12 BASF 0.421 CAT 0.560 CW 0.455 4.000 0.478 SEBL 0.735
13 BMWG 0.412 INTC 0.544 AV 0.448 23.000 0.471 JDSU 0.731
14 TUIG 0.393 MSFT 0.541 LGEN 0.437 363.000 0.461 KLAC 0.723
15 LHAG 0.374 IBM 0.539 SGE 0.434 19.000 0.460 QLGC 0.720

S150
0

DAX DJIA FTSE HSI NASDAQ

Rank Code Score Code Score Code Score Code Score Code Score
1 ALVG 0.628 GE 0.744 HSBA 0.586 1.000 0.529 CSCO 0.824
2 SIEGN 0.621 C 0.720 VOD 0.532 13.000 0.524 INTC 0.763

52

3 DBKGN 0.599 AXP 0.711 LLOY 0.526 5.000 0.518 MXIM 0.754
4 DTEGN 0.592 JPM 0.675 PRU 0.517 16.000 0.483 LLTC 0.751
5 MUVGN 0.579 UTX 0.631 BARC 0.514 12.000 0.454 XLNX 0.739
6 DCXGN 0.578 HD 0.597 STAN 0.509 17.000 0.447 SUNW 0.729
7 SAPG 0.543 MMM 0.589 RBOS 0.489 20.000 0.439 MSFT 0.724
8 VOWG 0.534 GM 0.588 III 0.483 11.000 0.413 AMAT 0.720
9 BAYG 0.527 HON 0.586 CW 0.469 291.000 0.411 ALTR 0.716

10 HVMG 0.512 DD 0.582 LGEN 0.469 101.000 0.392 DELL 0.698
11 CBKG 0.504 WMT 0.580 AV 0.467 83.000 0.390 KLAC 0.695
12 BASF 0.484 CAT 0.571 RTR 0.460 23.000 0.375 VRTS 0.694
13 BMWG 0.476 IBM 0.564 SDRT 0.458 267.000 0.372 PMCS 0.685
14 LHAG 0.444 MSFT 0.545 ANL 0.449 14.000 0.369 VTSS 0.678
15 TUIG 0.426 INTC 0.534 BT 0.448 4.000 0.367 JDSU 0.673

S200
0

DAX DJIA FTSE HSI NASDAQ

Rank Code Score Code Score Code Score Code Score Code Score
1 ALVG 0.620 GE 0.736 HSBA 0.590 1.000 0.516 CSCO 0.814
2 SIEGN 0.610 C 0.702 BARC 0.519 13.000 0.507 INTC 0.763
3 DBKGN 0.592 AXP 0.693 VOD 0.516 5.000 0.495 LLTC 0.726
4 DCXGN 0.575 JPM 0.655 PRU 0.514 16.000 0.467 MSFT 0.725
5 VOWG 0.531 UTX 0.622 STAN 0.505 12.000 0.451 SUNW 0.715
6 BAYG 0.526 HON 0.577 LLOY 0.498 17.000 0.439 XLNX 0.715
7 HVMG 0.503 MMM 0.575 RBOS 0.484 20.000 0.424 MXIM 0.711
8 CBKG 0.499 DD 0.575 III 0.480 11.000 0.396 AMAT 0.706
9 BASF 0.491 HD 0.572 AV 0.469 101.000 0.383 ALTR 0.701

10 BMWG 0.474 GM 0.566 LGEN 0.469 291.000 0.381 KLAC 0.676
11 LHAG 0.443 CAT 0.556 CW 0.463 267.000 0.369 ORCL 0.672
12 TUIG 0.426 WMT 0.549 RTR 0.463 83.000 0.368 DELL 0.668
13 TKAG 0.411 IBM 0.543 ANL 0.457 97.000 0.367 NVLS 0.647
14 EONG 0.397 MSFT 0.525 BP 0.454 14.000 0.366 PMCS 0.645
15 MANG 0.385 INTC 0.512 SDRT 0.449 4.000 0.365 ATML 0.644

To reflect the gains and losses of investors, the daily prices of component

stocks are converted to their respective daily returns. In fact, we compute the

daily returns Rit of each component stock Ci as follows:

 1

1

100it it
it

it

C CR
C

−

−

−
= × (9)

where Cit and Cit-1 are close prices of the component stocks Ci for day t and

day t-1, respectively. Similarly, the daily returns RIt of the stock indices are

calculated from index prices of It and It-1 in the same way.

53

In this study, the correlation coefficient, ri(I) of the component stock Ci, is

computed as follows:

 1

2 2

1 1

[()()]
()

() ()

N

it i t
t

i N N

it i t
t t

R R RI R I
r I

R R RI R I

=

= =

− −∑
=

− −∑ ∑

 (10)

where
1

1 N

i it
t

R R
N =

= ∑ , and
1

1 N

t
t

RI RI
N =

= ∑ .

Consequently, taking DJIA stock index as example, the one-day ahead

prediction function for daily returns can be constructed as follows.

 1 2() ((1), (1), (1),..., (1))DJIA DJIA mR t R t R t R t R t=Φ − − − − (11)

where, Ri(t-1),i=1,2…m is the daily return of the component stock Ci computed

at day t-1. The prediction function (11) will be generated by the proposed

neural network models.

Random initial weights are generated to our network simulations. As we are

going to determine the optimal neural network structure and optimal data size

by experiments with minimal potential influence caused by initial weights, each

experiment in this section is repeated five times with different random initial

weights. Thus the results reported in each experiment in this section are in fact

the average results obtained from 5 independent experiments.

Besides inputs selection, we also investigate the effects of the hidden neuron

number on the training and testing results, so, four kinds of neural networks

with NN=5, 10, 15 and 20 neurons at the hidden layer are considered in our

experiments. Thus a total of twelve kinds of neural network architectures (3×4)

54

are chosen in this thesis for the optimization experiments and further study.

Since the size of dataset also affects the training and testing results, each

network architecture is tested with the above-mentioned five kinds of datasets.

Besides datasets, experiments are conducted in five stock markets by two

different neural network models and repeated five times with different initial

weights. Thus, as shown in Figure 11, totally 3000 independent experiments

(3×4×5×2×5×5) are performed in order to study the combined effects of the

datasets and the neural network architectures in both the input and hidden

layers.

 Figure 11, The Structure of the Experiments Conducted to Study the

Combined Effects of the Network Structure & Dataset Sizes on Training and
Testing

55

4.3. Variable sensitivity analysis on network modeling

4.3.1. Individual analysis

In our research, three important variables that have influence on the

performance of the neural network models in both training and testing

processes are considered: Dataset Size, Input Neural Number and Hidden

Neuron Number. The sensitivity analysis of the neural network performance on

these three major factors is a very important issue on network modeling. These

major variables are noted as {D, I, H} respectively. As mentioned in Section

4.2, five different Dataset Sizes (M=5), three kinds of Input Neuron Number

(N=3) and four Hidden Neuron Numbers (K=4) are considered for each of

these variables in this study respectively. Table 5 illustrates the sensitivity

calculation methods for each of these variables.

(, ,), 1,.. , 1,.., , 1,..,i j kf D I H i M j N k K= = = represents the neural network

performance function in MSE or DS results depends on three major variables.

For a particular class of { , , }i j kD I H there is a unique (, ,)i j kf D I H function

results corresponding to it. In the case that some particular variable in the

class changes, the performance function result will also change accordingly.

The purpose of the study in this section is just to learn how sensitive the

network performance is on the variance of these three major variables. Both

the sensitivities of the neural network performance based on total variance and

unit variance of these major variables are considered. Take the variable of

Dataset Size as example, the sensitivity on total variance of Dataset Size

56

represents the largest possible influence of D, { (, ,)}, 1,...,
iD iMax f D I H i M∆ = ,

on the network performance during D’s variance from 1D to MD , while the

sensitivity on unit variance of Dataset Size representing the averaged influence

of D,
{ (, ,)}

, 1,...,
1

iD iMax f D I H
i M

M
∆

=
−

, on network performance when D changed

in unit space (changed from XD to 1XD ±).

The sensitivity results of the network performance on both total variance and

unit variance of each variable are illustrated in table 6. The network

performances in five stock markets by two models are evaluated in two criteria

of MSE and DS. Take the influence of variable of Dataset Size on the testing

results in Frankfurt stock exchange market as example, for there are totally 5

different sizes of dataset considered in our experiments (600, 800, 1000, 1500,

2000), “V=0.1635333” represents the largest possible change in the network

performance during the variance of Dataset Size within its all possible values;

while “∆V=0.040883” (which is calculated by V/4 in this case) represents the

averaged volatility effects on the neural networks performance by the unit

variance of the variable (for example, the average influence on results when

dataset size change from 600 to 800 or change from 800 to 1000). As

obviously reflected in table 6, the sensitivity of the network performance on

each of these three variables is different. Some variables may have greater

influence on the performance of neural networks than other variables in some

particular cases while having less influence in other cases.

57

It’s a good idea to set M=N=K, especially when we compare the variable

sensitivities based on the total variance of variables. But, there are two main

considerations that make setting M=N=K in this thesis unnecessary. The first

reason is for comparison with former researches. Many former researches in

neural network based financial forecasting studied the different effects of

training sample, input and hidden neuron number on the prediction

performance and based on these analyses to determine the optimal network

topology for final prediction. For a more objective comparison on the prediction

results, we followed the way of former researches in determining the optimal

network architecture and training samples for final prediction. For example,

former researches considered five different kinds of sample sizes (600, 800,

1000, 1500 and 2000) for network training and considered four kinds of hidden

neuron number (5, 10, 15 and 20) for proposed network architecture.

Secondly, as we are more concerned with ∆V, the sensitivity on prediction

based on the averaged unit variance of variables, the number of possible value

for each variable (M or N or K) won’t affect ∆V and thus won’t affects the

ranking results as well. Table 7, rank of variable sensitivity on network

performance, is totally based on ∆V. From this point of view, the sensitivity

ranking results in Table 7 based on averaged unit variance of variables do not

depend on the number of N, M or K. Thus it’s not necessary to set M=N=K, if

we are just concerned with the sensitivity based on averaged unit variance of

these variables.

58

Table 5 Calculation on the Sensitivity of Variables Based on Both the Total and
Unit Variance of Variables

Variable
Name

Dataset Size Input Neuron
Number

Hidden Neuron
Number

Variable
Note

D I H

Number of
possible
value for
each
variable

M=5 N=3 K=4

All possible
values for
each
variable

Di =
600,800,1000,1500,
2000
i=1,2,..,M

Ij= 6,11,16

j=1,.., N

Hk=5,10,15,20

k=1,2,..K

V,

Sensitivity
of neural
network
performanc
e on each
variable
(based on
total
variance)

1 1 1 1
(, ,) (, ,)

[] [], 1,2,..
i i

N K N K

i j k i j k
j k j k

D D D

f D I H f D I H
V Max Min i M

N K N K
= = = =
∑∑ ∑∑

= − =
× ×

 (12-1)

1 1 1 1
(, ,) (, ,)

[] [], 1,2,..
j j

M K M K

i j k i j k
i k i k

I I I

f D I H f D I H
V Max Min j N

M K M K
= = = =
∑∑ ∑∑

= − =
× ×

 (12-2)

1 1 1 1
(, ,) (, ,)

[] [], 1,2,..
k k

M N M N

i j k i j k
i j i j

H H H

f D I H f D I H
V Max Min k K

M N M N
= = = =
∑∑ ∑∑

= − =
× ×

 (12-3)

∆V ,

Sensitivity
of neural
network
performanc
e on each
variable
(based on
unit
variance)

1 1 1 1
(, ,) (, ,)

[] []
, 1,2,..

1
i i

N K N K

i j k i j k
j k j k

D D

D

f D I H f D I H
Max Min

N K N KV i M
M

= = = =
∑ ∑ ∑ ∑

−
× ×∆ = =

−
 (13-1)

1 1 1 1
(, ,) (, ,)

[] []
, 1,2,..

1
j j

M K M K

i j k i j k
i k i k

I I

I

f D I H f D I H
Max Min

M K M KV j N
N

= = = =
∑∑ ∑∑

−
× ×∆ = =

−
 (13-2)

1 1 1 1
(, ,) (, ,)

[] []
, 1,2,..

1
k k

M N M N

i j k i j k
i j i j

H H

H

f D I H f D I H
Max Min

M N M NV k K
K

= = = =
∑∑ ∑∑

−
× ×∆ = =

−
 (13-3)

59

Table 6, Average Individual Effects of 3 Variables on the NN Performance

Trust Region Neural Networks SSPQN Neural Networks Based on Testing

Results MSE DS MSE DS
Markets Variables V* ∆V* V ∆V V ∆V V ∆V

Dataset Sizes 0.164 0.041 4.865 1.216 0.127 0.032 5.498 1.375

Inputs Number 0.411 0.206 0.202 0.101 0.468 0.234 1.005 0.503 DAX

Hidden Neurons 2.123 0.708 1.564 0.521 2.263 0.754 1.019 0.340

Dataset Sizes 0.036 0.009 1.565 0.391 0.024 0.006 1.437 0.359

Inputs Number 0.420 0.210 0.478 0.239 0.441 0.220 0.681 0.341 DJIA

Hidden Neurons 1.980 0.660 1.456 0.485 2.098 0.699 0.855 0.285

Dataset Sizes 0.097 0.024 3.963 0.991 0.052 0.013 5.793 1.448

Inputs Number 0.395 0.198 0.516 0.258 0.453 0.226 0.409 0.205 FTSE

Hidden Neurons 2.124 0.708 0.972 0.324 2.267 0.756 0.812 0.271

Dataset Sizes 0.056 0.014 5.013 1.253 0.031 0.008 7.135 1.784

Inputs Number 0.441 0.220 1.725 0.863 0.468 0.234 1.891 0.946 HSI

Hidden Neurons 1.883 0.628 0.927 0.309 1.992 0.664 1.404 0.468

Dataset Sizes 0.106 0.026 1.880 0.470 0.165 0.041 2.737 0.684

Inputs Number 0.350 0.175 0.654 0.327 0.408 0.204 0.907 0.454 NASDAQ

Hidden Neurons 2.086 0.695 0.589 0.196 2.194 0.731 0.428 0.143

Trust Region Neural Networks SSPQN Neural Networks Based on Training
Results MSE DS MSE DS
Markets Variables V* ∆V* V ∆V V ∆V V ∆V

Dataset Sizes 0.547 0.137 2.082 0.520 0.492 0.123 2.614 0.653

Inputs Number 0.424 0.212 0.148 0.074 0.475 0.238 0.290 0.145 DAX

Hidden Neurons 2.123 0.708 0.524 0.175 2.253 0.751 0.430 0.143

Dataset Sizes 0.390 0.097 1.231 0.308 0.335 0.084 1.964 0.491

Inputs Number 0.448 0.224 0.215 0.108 0.477 0.239 0.342 0.171 DJIA

Hidden Neurons 2.120 0.707 0.417 0.139 2.268 0.756 0.133 0.044

Dataset Sizes 0.330 0.082 0.554 0.138 0.286 0.071 0.437 0.109

Inputs Number 0.467 0.234 0.306 0.153 0.509 0.254 0.297 0.148 FTSE

Hidden Neurons 2.150 0.717 0.598 0.199 2.277 0.759 0.354 0.118

Dataset Sizes 1.859 0.465 2.199 0.550 1.851 0.463 2.592 0.648

Inputs Number 0.455 0.228 0.414 0.207 0.475 0.238 0.127 0.064 HSI

Hidden Neurons 2.101 0.700 0.756 0.252 2.226 0.742 0.289 0.096

Dataset Sizes 4.709 1.177 1.254 0.314 4.658 1.164 1.995 0.499

Inputs Number 0.481 0.240 0.178 0.089 0.511 0.255 0.219 0.110 NASDAQ

Hidden Neurons 2.300 0.767 0.594 0.198 2.388 0.796 0.228 0.076

* V represents the sensitivity of neural network performance on total variance of the
variables
* ∆V represents the sensitivity the neural network performance on unit variance of the
variables

60

Table 7 Rank of Variable Sensitivity on Network Performance

For Training The Extent of Variables Influencing the Performance of
Neural Networks in Financial Forecasting

MSE Criteria
Most sensitive
variable

More sensitive
variable Not sensitive variable

DAX Hidden Neuron Number Input Neuron Number Dataset Size

DJIA Hidden Neuron Number Input Neuron Number Dataset Size
FTSE Hidden Neuron Number Input Neuron Number Dataset Size
HSI Hidden Neuron Number Dataset Size Input Neuron Number

NASDAQ Dataset Size Hidden Neuron Number Input Neuron Number

DS Criteria
Most sensitive
variable

More sensitive
variable Not sensitive variable

DAX Dataset Size \ \
DJIA Dataset Size \ \
FTSE \ \ Dataset Size

HSI Dataset Size Hidden Neuron Number Input Neuron Number
NASDAQ Dataset Size \ \

For Testing The Extent of Variables Influencing the Performance of
Neural Networks in Financial Forecasting

MSE Criteria
Most sensitive
variable

More sensitive
variable Not sensitive variable

DAX Hidden Neuron Number Input Neuron Number Dataset Size

DJIA Hidden Neuron Number Input Neuron Number Dataset Size

FTSE Hidden Neuron Number Input Neuron Number Dataset Size
HSI Hidden Neuron Number Input Neuron Number Dataset Size
NASDAQ Hidden Neuron Number Input Neuron Number Dataset Size

DS Criteria
Most sensitive
variable

More sensitive
variable Not sensitive variable

DAX Dataset Size \ \

DJIA \ \ \
FTSE Dataset Size Hidden Neuron Number Input Neuron Number
HSI Dataset Size Input Neuron Number Hidden Neuron Number

NASDAQ Dataset Size Input Neuron Number Hidden Neuron Number

As shown in table 7, the sensitivities of the network performance on three

variables in each particular market are ranked in three levels: the most

sensitivity, more sensitivity and least sensitivity. We should note that, only

when the two ranking results obtained from both network models are

61

consistent; the consistent ranking results could be concluded. If the ranking

results for the same particular market obtained from different models are

different, then no conclusion could be drawn and in this case the results are

reflected by the mark of “/”. The variable that ranks as the “most sensitive”

should be given more attention by researchers in network forecasting for it has

greater influence on the network performance than other two variables. It’s

very interesting that, based on testing MSE results, the ranking orders for all

the five markets are absolutely consistent: that the variance of Hidden Neural

Number gives the most influence on the network performance, while the

variance of Dataset Size gives the least influence on it, leaving the variance of

Input Neural Number at the middle point. This results shows that in neural

network based financial forecasting, the prediction accuracy depends more on

the specification of the network architecture than on the sample data selection.

Based on training MSE results, the ranking orders for DAX, DJIA and FTSE

are also consistent with what is concluded from the testing MSE results. But for

the HSI and NASDAQ indices, the ranking orders are different: in both

implementations the Dataset Size ranks with higher sensitivity than it does in

other cases, leaving the ranking orders between the two architecture variables

remain unchanged. Comparing with other three stock market indices, HSI and

NASDAQ indices data are obviously noisier, which may be the main reason

that causes the difference in ranking orders in the training process. Tough,

many ranking results based on DS obtained from two different network models

are not consistent; we still can draw some conclusions on the importance of

some variables on the influence of DS performance of neural networks. One

most impressive finding under the DS criteria is that sample data selection

62

impacts the network DS performance more than network architecture variables

do in all consistent cases except for London stock exchange market both in

training and testing processes. As we have introduced in chapter one, the

FTSE index data is the least noisy one among all the five indices. In the FTSE

case, the network DS performance is least sensitive on the variance of Dataset

Size.

Based on the individual sensitivity analysis on the three major factors in neural

network modeling for financial forecasting, some important conclusions could

be drawn from the findings:

(1). The network prediction accuracy evaluated under MSE criterion

depends more on the specification of network architecture than on the

sample data size, while such relationship will reverse when prediction

accuracy is evaluated under DS criterion.

(2). In the aspect of network architecture, the Hidden Neural Number usually

has more impact on the network performance than Input Neuron

Selection.

(3). The sensitivity of the network performance on sample data size is

positively correlated with the extent of noise or volatility of the sample

dataset being studied. The noisier or more volatility the sample dataset

is, the more attention should be paid on determining the optimal sample

data size in order for a good network performance. In the case that the

sample data is not noisy, sample dataset selection is comparatively less

important than specification of network architecture in the aspect of the

impacts on network performance.

63

As shown in Table 7 that under MSE evaluation criterion, the entire ranking

results in five different stock markets are consistent by different network

models both in training and testing processes, while under DS evaluation

criterion, many ranking results are inconsistent when different network models

are used. For example, under DS criterion, the network performance is more

sensitive on the Input Neurons than on the Hidden Neurons when TRNN

model is used, while the network performance is more sensitive on the Hidden

Neurons than on the Input Neurons if SSPQN model is used. As we know that

evaluation criteria of MSE and DS are just different ways to measure the

neuron network performance on prediction accuracy. Why under different

performance evaluation criteria, the consistency of the sensitivity ranking

results under different models is different? A main possible reason may lead to

such difference, that is the difference between the definitions of these two

criteria themselves. Mean Squared Error (MSE) is the average of the square of

the difference between the desired response and the actual system output (the

error), while, in this thesis, Directional Symmetry (DS) reflects the percentage

of correctly predicted directions with respect to the stock index return. In our

research, only MSE is used as the error function for both of the network

models. Thus, the learning process is implemented by changing the weights in

order to reduce the MSE value. The learning process is repeated until the MSE

between the computed and target output values are at an acceptably low

value. Though, a low (or high) MSE value often in conjunction with a

corresponding high (or low) DS value, their relationship is not always

consistent. Low (or high) MSE value cannot guarantee a high (or low) DS

64

value, because mean squared error cannot reflect the prediction accuracy in

the aspect of direction. Thus a sensitivity ranking based on MSE criterion may

not always consistent with the ranking results based on the DS criterion. Also,

in the case when MSE based sensitivity rankings are consistent for different

models, it still possible for the inconsistency in the ranking results for different

models when DS evaluation criterion is used. The key point here is that the

error function for the network training is MSE, thus we cannot guarantee the

DS value to be optimized steadily during the process of minimizing MSE value

in the training process, especially when different training algorithms are used.

The sensitivity analysis, especially the ranking results can be regarded as a

valuable reference on neural network modeling for financial forecasting both in

training and testing processes. Particularly, the analytical results for the five

major stock markets are more valuable for the future researches conducted in

these particular markets based on neural networks.

4.3.2. Interaction analysis

The above research analysis is mainly focused on ranking variable influences

on the network performance individually without paying much attention on the

interrelationship between these three factors as well as how these

interrelationships affect the network performance. Understanding more about

the interrelationships of these major factors between each other and how they

65

affect the network performance may generalize more valuable

recommendations on network modeling, especially in financial forecasting.

In this research work, we classify the influence of one variable on the impact of

other variable on the network performance into three levels: “High”, “Medium”

and “Low” influences. If the impact of variable A on the network performance

(either MSE or DS result) is not sensitive on the variance of variable B, then

variable B is said to have “Low” influence on the impact of variable A on the

network performance. On the contrary, if the impact of variable A on network

performance is obviously sensitive on the variance of variable B, then such

influence is said to have “High” effect on the impact of A on network

performance. In the case that the extent of influence of variable B on A ranks

between “High” and “Low”, such influence is said to be “Medium”. In this thesis,

we use the chart analysis method to identify the three levels of

interrelationships between the major variables as mentioned above. In the

chart analysis (see figure 12), if the shape of the chart that reflects the

relationship between variable A and MSE (or DS) results keeps consistent in

all cases of variable B, then it was said that there is a “Low” influence of

variable B on A in the aspect of the impact of A on network performance.

While, when the chart shape changes for each case of variable B, the

influence of B on the impact of A on network performance is classified into the

category of “High”. The influence in situations that ranks between “High” and

“Low” are classified into “Medium”, that is when the chart shape only changes

in some cases of variable B, instead of changing in all cases. Under this

classification method, the interrelationships between these variables are

66

ranked into three levels of “High”, “Medium” and “Low”. The summarized

results reflected under this way are shown at the end of this subsection.

Figure 12. The Classification of Interrelationship between Two Variables Based
on Chart Analysis

67

In this section, we will first take Hong Kong Heng Seng Stock Index

(forecasting by TRNN model) as example to show how we analyse the

interrelationships between these three variables in detail and then summarize

the analyzing results obtained from all the five stock markets under two neural

network models. Figure 13 to 20 analyse the interrelationships between these

three variables in the training process based on both the MSE and DS results,

while figure 21 to 28 mainly focused on the similar analysis in the testing

process. For there are totally three major variables that may have influence on

the network performance, in order to know more clearly about the

interrelationship of the variables between each other, it’s wise for us to fix one

particular variable and see what’s the relationship between the remaining two.

Under this consideration, figure 13 (a) to (e) illustrate the relationship between

dataset size and input number when the number of hidden neuron is fixed at 5,

10, 15 and 20 respectively and the averaged results are also plotted for

reference. As we can see that in all cases, the charts are in the quite similar

shape for all different hidden neuron numbers. That is, the MSE result for

training keeps rising gradually as the dataset size changes from 600 to 1500

and drops suddenly from 1500 to 2000, leaving the chart reaches its global top

at 1500. This observation could demonstrate that the changes of input number

and hidden neuron number have little or “Low” influence on the impact of

dataset size on the training MSE results. On the basis of the above analysis,

the best dataset size is obtained when dataset size is 600. Besides the

obvious influence of dataset size on the training MSE results, we also could

notice that as the hidden neuron number changes from 5 to 20 the impact of

68

input number on the training MSE results becomes more obvious. From figure

(b) to (e) we could easy to find that the best MSE result was obtained when

input number is 6 and the worst one was get when input number is 11. These

phenomena could show that the hidden neuron number could influence the

impact of input number on the training MSE results. Figure 14 (a) to (e) also fix

the hidden neuron number to 5, 10, 15, 20 and average value respectively, but

focused on illustrating the impact of input number on the performance of MSE

results on training. When hidden neuron number fixed at 5, the variance of

input number seems have no impact on training MSE. But, under remaining

conditions when hidden neuron number is larger than 5 and on average, the

impact of input number becomes obviously that for different dataset sizes the

relationships between input number and training MSE are all in the shape of

reversed “V”, that means the model gets the highest MSE result when input

number is 11 and gets lower ones when input number being 6 or 16. On the

other hand, the best training MSE is always obtained when input number is 6.

These results demonstrate again that the hidden neuron number influences the

impact of input number on training MSE results in “Medium” level.

69

Figure 13-a. (N2=5) Training MSE for different datasizes &
input number

1.72

2.22

2.72

3.22

3.72

4.22

4.72

600 800 1000 1500 2000

Different Datasizes

M
S

E
 V

al
u

e

Input:6 Input:11 Input:16

Figure 13-b. (N2=10) Training MSE for different datasizes
& input number

2.2

2.7

3.2

3.7

4.2

4.7

5.2

5.7

600 800 1000 1500 2000

Different Datasizes

M
S

E
 V

a
lu

e

Input:6 Input:11 Input:16
Figure 13-c. (N2=15) Training MSE for different datasizes &

input number

2.5

3

3.5

4

4.5

5

5.5

6

6.5

600 800 1000 1500 2000

Different Datasizes

M
S

E
 V

a
lu

e

Input:6 Input:11 Input:16

Figure 13-d. (N2=20)Training MSE for different datasizes
& input number

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

600 800 1000 1500 2000

Different Datasizes

M
S

E
 V

a
lu

e

Input:6 Input:11 Input:16

Figure 13-e. (Average results from 4 N2) Training MSE for
different datasizes & input number

2

2.5

3

3.5

4

4.5

5

5.5

6

600 800 1000 1500 2000

Different Datasizes

M
SE

 V
al

ue

Input:6 Input:11 Input:16

Figure 13 (a) to (e), Effects of Dataset Sizes as Measured by Average MSE for
Training (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 15,
20 and Average respectively)

70

Figure 14-a. (N2=5) Training MSE for different
input & datasizes

2

2.5

3

3.5

4

4.5

5

Input:6 Input:11 Input:16

differnt inputs

M
SE

 V
al

ue

600 800 1000 1500 2000 Average

Figure 14-b. (N2=10)Training MSE for different
inputs & datasizes

2

2.5

3

3.5

4

4.5

5

5.5

Input:6 Input:11 Input:16

Different Inputs

M
SE

 V
al

ue

600 800 1000 1500 2000 Average

Figure 14-c. (N2=15) Training MSE for different
inputs & datasizes

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Input:6 Input:11 Input:16

Different Inputs

M
S

E
 V

al
u

e

600 800 1000 1500 2000 Average

Figure 14-d. (N2=20) Training MSE for Different
Inputs & Datasizes

2

3

4

5

6

7

8

Input:6 Input:11 Input:16
Different Inputs

M
S

E
 V

al
ue

600 800 1000 1500 2000 Average
Figure 14-e. (Average results from 4 N2)Training MSE for

different Inputs & Datasizes

2

2.5

3

3.5

4

4.5

5

5.5

6

Input:6 Input:11 Input:16
Different Inputs

M
SE

 V
al

ue

600 800 1000 1500 2000 Average

Figure 14 (a) to (e), Effects of Inputs Number as Measured by Average MSE
for Training (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10,
15, 20 and Average respectively)

71

After fixing the number of input neurons to 6, 11 and 16 respectively, the

effects of dataset size on training MSE as well as the interrelationship between

dataset size and hidden neuron number are illustrate in figure 15 (a) to (c). It is

obviously that the impact of dataset size on training MSE is consistent in all

cases. It seems that the neuron network structure has “Low” influence on the

impact of dataset size on the training MSE results in neuron network based

forecasting.

As for the number of hidden neurons, there are many studies in the literature to

guide the architecture selection. Generally, too many nodes in the hidden layer

produce a network that memorize the input data and lack the ability to

generalize. However, besides that there is no general guidance that is suitable

for all situations. Some methods are time-consuming and impractical, such as

cascade-correlation method proposed by Fahlman [16] and pruning approach

[4, 26]. While the others seems do not work well for all problems, which include

some rule of thumb in the literature. In summary, the specification of the

internal architecture involves tradeoffs between fitting accuracy and

generalization ability and the best way to find the optimal number of hidden

neurons for a particular application is through experiments [25]. The effects of

hidden neurons on training MSE are illustrated in figure 16. It’s interesting to

find that the training MSE result keeps rising gradually as the hidden neuron

number increases from 5 to 20 and this trend keeps consistent for all different

dataset sizes and input numbers. It demonstrates that the other two variables

have “Low” influence on the impact of hidden neuron number on training MSE.

72

Figure 15-a. (Input=6) Training MSE for different
datasizes & hidden neurons

1.5

2

2.5
3

3.5

4

4.5

5
5.5

6

6.5

600 800 1000 1500 2000

Different Datasizes

MS
E V

alu
e 5

10
15
20
Average

Figure 15-b. (Input=11) Training MSE for different

Datasizes & hidden neurons

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

600 800 1000 1500 2000

Different Datasizes

MS
E V

alu
e 5

10
15
20
Average

Figure 15-c. (Input=16) Training MSE for different

Datasize & hidden neurons

1.5

2.5

3.5

4.5

5.5

6.5

7.5

600 800 1000 1500 2000

Different Datasizes

MS
E V

alu
e 5

10
15
20
Average

Figure 15 (a) to (c), Effects of Dataset Size as Measured by Average MSE for
Training (TR) on HSI Experiments (Input Number fixed to 6, 11, 16
respectively)

73

Figure 16-a. (Input=6) Training MSE for different hidden
neuron number & Datasizes

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5

5 10 15 20

Different number of Hidden Neurons

MS
E V

alu
e

600
800
1000
1500
2000
Average

Figure 16-b. (Input=11)Training MSE for different # of Hidden

Neurons & Datasizes

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

5 10 15 20

Different number of hidden neurons

MS
E V

alu
e

600
800
1000
1500
2000
Average

Figure 16-c. (Input=16) Training MSE for different # of hidden

neurons & datasizes

1.5

2.5

3.5

4.5

5.5

6.5

7.5

5 10 15 20
Different Number of hidden neurons

MS
E V

alu
e

600
800
1000
1500
2000
Average

Figure 16 (a) to (c), Effects of Hidden Neuron Number as Measured by
Average MSE for Training (TR) on HSI Experiments (Input Number fixed to 6,
11, 16 respectively)

74

In our research work, both of the criteria are considered and analysed in

details. Figures 17 to 20 analyse the interrelationships between the three

variables in the training process based on DS results. Figure 17 (a) to (e)

illustrate the effect of dataset size on the training DS as well as the

interrelationship between dataset size and input number by fixing the hidden

neuron number to 5, 10, 15, 20 and average value respectively. On average,

the training DS result first increases from 600 to 800 and, after reaching its

high point at 800, it keeps decreasing after 800 until 2000. As shown in figure

17 (d), when hidden neuron number is 20, we could see that the relationships

between dataset size and the DS results are obviously different under different

input numbers. But, the impact of dataset size on training DS is not obviously

sensitive to the variance of the other two variables in all other situations, thus

we can say that hidden neuron number and input number have no obvious

influence on the impact of dataset size on training DS. Their influence on the

impact of dataset size on network performance could be regard as “Medium”.

The effects of input neuron number on the training DS results are illustrated in

the figure 18. It’s obviously that for each particular fixed hidden neuron

number, the impact of input neuron number on training DS is different for

different dataset sizes. Taken N2=5 as example, the DS results for all three

input number have no obvious differences when dataset size is 800, while

obvious difference could be observed when dataset size changes to 1000.

These results show that the dataset size has “High” influence on the impact of

input number on the training DS. On the other hand, it’s also easy to notice

that for different number of hidden neurons the relationship between input

number and DS result changes obviously. Thus, hidden neuron number can

75

also influence the impact of input number on training DS in “High” level. Figure

19 illustrates the effects of dataset size on training DS by fixing the input

neuron numbers respectively. By the variance of input number, the

interrelationships between the dataset size, hidden neuron number and the

training DS seem consistent without obvious changes, which shows that input

neuron number has “Low” influence on the impact of dataset size on training

DS results. While for each particular fixed input number, when hidden neuron

number changes, the corresponding relationships between DS and dataset

size may also change, which shows that the hidden neuron number has

influence on the impact of dataset size on network performance, but this

influence is “Medium”. By the similar analysing methods, we discovered that

there is no consistent relationship between the hidden neuron number and the

training DS results. And on the other hand, both the input number and the

dataset size have obviously “High” influence on the impact of hidden neuron

number on the training DS, which is illustrated in the Figure 20. Based on the

analysing results obtained under two criteria, we can see that the

interrelationships between the three variables are more obviously reflected

when DS criterion is used. While in the case of using DS criterion, the

interrelationships between the three major factors become obviously and the

variance of each variable may cause obvious influence on the impact of other

variables on the network performance. Thus, we should pay more attention on

the impact of interrelationship between the major variables on network

performance when DS is used as the evaluation criterion.

76

Figure 17-a. (N2=5) Training DS for
Different Datasize & Inputs

44

46

48

50

52

54

56

58

600 800 1000 1500 2000

Different Datasizes

D
S

Va
lu

e

Input:6 Input:11 Input:16

Figure 17-b. (N2=10) Training DS for
Different Datasize & Inputs

44

46

48

50

52

54

56

58

600 800 1000 1500 2000

Different Datasize

D
S

Va
lu

e

Input:6 Input:11 Input:16

Figure 17-c. (N2=15) Training DS for

Different Datasize & Inputs

40

42

44

46

48

50

52

54

56

58

600 800 1000 1500 2000

Different Datasizes

D
S

Va
lu

e

Input:6 Input:11 Input:16

Figure 17-d. (N2=20) Training DS for
Different Datasize & Inputs

51.5

52

52.5

53

53.5

54

54.5

55

55.5

56

600 800 1000 1500 2000

Different Datasizes

D
S

Va
lu

e

Input:6 Input:11 Input:16

Figure 17-e. (Average of 4N2) Training DS for Different

Datasizes & Inputs

51.5

52

52.5

53

53.5

54

54.5

55

55.5

56

56.5

600 800 1000 1500 2000

Different Datasizes

D
S

Va
lu

e

Input:6 Input:11 Input:16

Figure 17 (a) to (e), Effects of Dataset Sizes as Measured by Average DS for
Training (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 15,
20 and Average respectively)

77

Figure 18-a. (N2=5) Training DS for
Different Datasizes & Inputs

51

52

53

54

55

56

57

Input:6 Input:11 Input:16

Different Inputs

D
S

Va
lu

e

600 800 1000 1500 2000 Average

Figure 18-b. (N2=10) Training DS for
Different Datasizes & Inputs

51

52

53

54

55

56

57

Input:6 Input:11 Input:16

Different Inputs

D
S

Va
lu

e

600 800 1000 1500

2000 Average

Figure 18-c. (N2=15) Training DS for

Different Datasize & Inputs

51

52

53

54

55

56

57

Input:6 Input:11 Input:16

Different Inputs

D
S

Va
lu

e

600 800 1000 1500 2000 Average

Figure 18-d. (N2=20) Training DS for
Different Datasize & Inputs

51.5

52

52.5

53

53.5

54

54.5

55

55.5

56

Input:6 Input:11 Input:16

Different Inputs

D
S

Va
lu

e

600 800 1000 1500 2000 Average

Figure 18-e. (Average of 4N2) Training DS for Different

Datasize & Inputs

51.5

52

52.5

53

53.5

54

54.5

55

55.5

56

56.5

Input:6 Input:11 Input:16

Different Inputs

D
S

Va
lu

e

600 800 1000 1500 2000 Average

Figure 18 (a) to (e), Effects of Input Number as Measured by Average DS for
Training (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 15,
20 and Average respectively)

78

Figure 19-a. (Input=6) Training DS for Different Number of Hidden
Nuerons & Datasizes

46
48
50
52
54
56
58

600 800 1000 1500 2000
Different Datasizes

D
S

Va
lu

e 5
10
15
20
Average

Figure 19-b. (Inputs=11) Training DS for Different Number of Hidden
Neurons & Datasizes

46

48

50

52

54

56

58

600 800 1000 1500 2000
Different Datasizes

D
S

Va
lu

e 5
10
15
20
Average

Figure 19-c. (Input=16) Training DS for Different Number of Hidden
Neurons & Datasizes

46

48

50
52

54

56

58

600 800 1000 1500 2000
Different Datasizes

D
S

Va
lu

e 5
10
15
20
Average

Figure 19 (a) to (c), Effects of Dataset Size as Measured by Average DS for
Training (TR) on HSI Experiments (Input Number fixed to 6, 11, 16
respectively)

79

Figure 20-a. (Input=6) Training DS for Different Number of Hidden
Neurons & Datasizes

50
51
52
53
54
55
56
57

5 10 15 20
Different number of hidden neurons

D
S

Va
lu

e

600
800
1000
1500
2000
Average

Figure 20-b. (Input=11) Training DS for Different Number of Hidden
Neurons & Datasizes

50
51
52
53
54
55
56
57

5 10 15 20
Different number of hidden neurons

D
S

Va
lu

e

600
800
1000
1500
2000
Average

Figure 20-c. (Input=16) Training DS for Different Number of Hidden
Neurons & Datasizes

50
51
52
53
54
55
56
57

5 10 15 20
Different number of hidden neurons

D
S

Va
lu

e

600
800
1000
1500
2000
Average

Figure 20 (a) to (c), Effects of Hidden Neuron Number as Measured by
Average DS for Training (TR) on HSI Experiments (Input Number fixed to 6,
11, 16 respectively)

80

After analysing the effects and interrelationships of each variable based on

both the MSE and DS results in the training process, we now move to the

analysis in the testing process. Compared to the training process analysis, the

analysis in the testing process is more important for us, because the

performance of the neuron network model is mainly evaluated from the results

in testing or real forecasting process. Figure 21 to 24 analyse the effects and

interrelationships based on the MSE results in testing process, while Figure 25

to 28 based on the DS results in testing process. For the analysing methods

used in testing process is the same with those used in training process, we just

make a summary description for what are reflected from each figure in this

process briefly. Figure 21 illustrates the effects of dataset size on the testing

MSE results as well as the interrelationships between it and the other two

variables. There is no consistent relationship exist between the dataset size

and the testing MSE result. The relationship is influenced by other two

variables obviously in “High” level. Figure 22 illustrates the effects of input

number on the MSE results in testing process. For the conditions when hidden

neuron number larger then 5, the inputs number has a relationship with the

testing MSE results in the shape of reversed “V”. (When hidden neuron

number is 5, the relationship is in the shape of “V”). Hidden neuron number

obviously influences the impact of input number on the testing MSE result

when hidden neuron number is small and influences weakly when hidden

neuron number increases. On the other hand, dataset sizes have slight

influence on the impact of input number on network performance.

81

Figure 21-a. (N2=5) Testing MSE for different
datasizes & input number

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

600 800 1000 1500 2000
Different Datasizes

M
S

E
 V

al
u

e

Input:6 Input:11 Input:16

Figure 21-b. (N2=10) Testing MSE for different
datasizes & input number

1.6

2.1

2.6

3.1

3.6

4.1

4.6

600 800 1000 1500 2000

Different Datasizes

M
S

E
 V

al
u

e

Input:6 Input:11 Input:16

Figure 21-c. (N2=15) Testing MSE for different
datasizes & input number

1.6

2.1

2.6

3.1

3.6

4.1

4.6

600 800 1000 1500 2000

Different Datasizes

M
S

E
 V

a
lu

e

Input:6 Input:11 Input:16

Figure 21-d. (N2=20)Testing MSE for different
datasizes & input number

1.6

2.1

2.6

3.1

3.6

4.1

4.6

600 800 1000 1500 2000

Different Datasizes

M
S

E
 V

al
u

e

Input:6 Input:11 Input:16

Figure 21-e. (Average results from 4 N2) Testing MSE for
different datasizes & input number

1.6

2.1

2.6

3.1

3.6

4.1

4.6

600 800 1000 1500 2000

Different Datasizes

M
SE

 V
al

ue

Input:6 Input:11 Input:16

Figure 21 (a) to (e), Effects of Dataset Sizes as Measured by Average MSE for
Testing (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 15,
20 and Average respectively)

82

Figure 22-a. (N2=5) Test MSE for different input
number & Different datasizes

1.68

1.7

1.72

1.74

1.76

1.78

1.8

1.82

Input:6 Input:11 Input:16

differnt inputs

M
S

E
 V

al
u

e

600 800 1000 1500 2000 Average

Figure 22-b. (N2=10)Test MSE for different inputs &
datasizes

2

2.1

2.2

2.3

2.4

2.5

2.6

Input:6 Input:11 Input:16

Different Inputs

M
S

E
 V

al
u

e

600 800 1000 1500 2000 Average

Figure 22-c. (N2=15) Test MSE for different inputs
& datasizes

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Input:6 Input:11 Input:16

Different Inputs

M
SE

 V
al

ue

600 800 1000 1500 2000 Average

Figure 22-d. (N2=20) Test MSE for Different Inputs
& Datasizes

2

2.5

3

3.5

4

4.5

Input:6 Input:11 Input:16

Different Inputs

M
S

E
 V

al
ue

600 800 1000 1500 2000 Average

Figure 22-e. (N2)Test MSE for different Inputs & Datasizes

2

2.2

2.4

2.6

2.8

3

3.2

Input:6 Input:11 Input:16

Different Inputs

MS
E

Va
lu

e

600 800 1000 1500 2000 Average

Figure 22 (a) to (e), Effects of Inputs Number as Measured by Average MSE
for Testing (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10,
15, 20 and Average respectively)

83

Figure 23 and figure 24 focus on illustrating the impact of dataset size and

hidden neuron number on the MSE results in testing process. It is obviously

that the dataset size has influence on the testing MSE results, but there are no

consistent relationships between the dataset size and the MSE results. Both

the input and hidden neuron number have “High” influences on the impact of

dataset size on the testing MSE results. There are obvious relationship

between the testing MSE results and the hidden neuron number and this

relationship is consistent in all cases when other variables are different. The

testing MSE result keeps rising gradually as the hidden neuron number

increases, and the increase is very fast during the whole process. Thus it could

be said that both the inputs number and dataset size have “Low” influence on

the impact of hidden neuron number on testing MSE.

The effects of dataset size on the testing DS results are illustrated in figure 25.

On the whole, the relationship between dataset size and DS results could be

regard as consistent without obvious fluctuation. That is, the DS results for

testing decrease gradually and reach the global minimum point as the dataset

size changes from 600 to 1000. It increases from 1000 to 1500 and reverses to

decrease again after 1500. Both the other variables have “Medium” influence

on the impact of data size on network performance. As shown in figure 26 the

input number has impact on the testing DS but this relationship is not

consistent and is highly sensitive to the other two variables. But, on average,

the best DS is obtained when input number is the smallest one.

84

Figure 23-a. (Input=6) Test MSE for different
datasizes & hidden neurons

1.5

1.7

1.9
2.1

2.3

2.5

2.7

2.9
3.1

3.3

3.5

600 800 1000 1500 2000

Different Datasizes

MS
E V

alu
e 5

10
15
20
Average

Figure 23-b. (Input=11) Test MSE for different

Datasizes & hidden neurons

1.5

2

2.5

3

3.5

4

4.5

5

600 800 1000 1500 2000

Different Datasizes

MS
E V

alu
e 5

10
15
20
Average

Figure 23-c. (Input=16) Test MSE for different

Datasize & hidden neurons

1.5

2

2.5

3

3.5

4

600 800 1000 1500 2000

Different Datasizes

MS
E V

alu
e 5

10
15
20
Average

Figure 23 (a) to (c), Effects of Dataset Size as Measured by Average MSE for
Testing (TR) on HSI Experiments (Input Number fixed to 6, 11, 16 respectively)

85

Figure 24-a. (Input=6) Test MSE for different
hidden neuron number & Datasizes

1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
3.5

5 10 15 20

Different number of Hidden Neurons

MS
E V

alu
e

600
800
1000
1500
2000
Average

Figure 24-b. (Input=11)Test MSE for different # of

Hidden Neurons & Datasizes

1.5

2

2.5

3

3.5

4

4.5

5

5 10 15 20

Different number of hidden neurons

MS
E V

alu
e

600
800
1000
1500
2000
Average

Figure 24-c. (Input=16) Test MSE for different # of

hidden neurons & datasizes

1.5

2

2.5

3

3.5

4

5 10 15 20

Different Number of hidden neurons

MS
E V

alu
e

600
800
1000
1500
2000
Average

Figure 24 (a) to (c), Effects of Hidden Neuron Number as Measured by
Average MSE for Testing (TR) on HSI Experiments (Input Number fixed to 6,
11, 16 respectively)

86

Figure 25-a. (N2=5) Testing DS for
Different Datasize & Inputs

44

46

48

50

52

54

56

600 800 1000 1500 2000

Different Datasizes

D
S

Va
lu

e

Input:6 Input:11 Input:16

Figure 25-b. (N2=10) Testing DS for
Different Datasize & Inputs

44

45

46

47

48

49

50

51

52

53

54

600 800 1000 1500 2000

Different Datasize

D
S

Va
lu

e

Input:6 Input:11 Input:16

Figure 25-c. (N2=15) Testing DS for
Different Datasize & Inputs

40

42

44

46

48

50

52

54

56

600 800 1000 1500 2000

Different Datasizes

D
S

Va
lu

e

Input:6 Input:11 Input:16

Figure 25-d. (N2=20) Testing DS for
Different Datasize & Inputs

40

42

44

46

48

50

52

54

56

600 800 1000 1500 2000

Different Datasizes

D
S

Va
lu

e

Input:6 Input:11 Input:16

Figure 25-e. (Average of 4N2) Testing DS for Different
Datasizes & Inputs

42

44

46

48

50

52

54

56

600 800 1000 1500 2000

Different Datasizes

D
S

Va
lu

e

Input:6 Input:11 Input:16

Figure 25 (a) to (e), Effects of Dataset Size as Measured by Average DS for
Testing (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 15,
20 and Average respectively)

87

Figure 26-a. (N2=5) Testing DS for Different
Datasizes & Inputs

42

44

46

48

50

52

54

56

Input:6 Input:11 Input:16

Different Inputs

D
S

Va
lu

e

600 800 1000 1500 2000 Average

Figure 26-b. (N2=10) Testing DS for
Different Datasizes & Inputs

40

42

44

46

48

50

52

54

Input:6 Input:11 Input:16

Different Inputs

D
S

Va
lu

e

600 800 1000 1500 2000 Average

Figure 26-c. (N2=15) Testing DS for

Different Datasize & Inputs

40

42

44

46

48

50

52

54

56

Input:6 Input:11 Input:16

Different Inputs

D
S

Va
lu

e

600 800 1000 1500 2000 Average

Figure 26-d. (N2=20) Testing DS for
Different Datasize & Inputs

40

42

44

46

48

50

52

54

56

Input:6 Input:11 Input:16

Different Inputs

D
S

Va
lu

e

600 800 1000 1500 2000 Average

Figure 26-e. (Average of 4N2) Testing DS for Different
Datasize & Inputs

42

44

46

48

50

52

54

56

Input:6 Input:11 Input:16

Different Inputs

D
S

Va
lu

e

600 800 1000 1500 2000 Average

Figure 26 (a) to (e), Effects of Input Number as Measured by Average DS for
Testing (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 15,
20 and Average respectively)

88

Figure 27 and figure 28 illustrate the impact of dataset size and hidden neuron

number on the testing DS results respectively. It’s obviously that the dataset

size has influences on the testing DS results and the relationship between

dataset size and DS results are almost consistent in all cases. In another

words, both the variables of input number and hidden neuron number give

“Medium” influence on the impact of dataset size on testing DS results. The

hidden neuron number has obvious effects on the DS performance of network

model in the testing process, but the relationship is not consistent. As we can

see clearly that for any particular fixed number of inputs, the effect of hidden

neuron number on DS results changes substantially when dataset size

changes. On the other hand, the relationship between hidden neuron number

and DS results also changes substantially when the variable of input number

changes. Thus it has no doubt that both the variable of dataset size and input

number highly influence the impact of hidden neuron number on the testing DS

results.

From the detailed analysis on the interrelationships between the three factors

in neural network modeling, we notice that in most situations such interactive

relationships may have obvious influence on the network performance. In

some cases, particular variable may have great influence on other variables,

while, in other cases, such influences may be weak.

89

Figure 27-a. (Input=6) Testing DS for Different Number of
Hidden Nuerons & Datasizes

40
42
44
46
48
50
52
54
56

600 800 1000 1500 2000
Different Datasizes

D
S

Va
lu

e 5
10
15
20
Average

Figure 27-b. (Inputs=11) Testing DS for Different Number of
Hidden Neurons & Datasizes

40
42
44
46
48
50
52
54

600 800 1000 1500 2000
Different Datasizes

D
S

Va
lu

e 5
10
15
20
Average

Figure 27-c. (Input=16) Testing DS for Different Number of
Hidden Neurons & Datasizes

40

42

44

46

48

50

52

600 800 1000 1500 2000

Different Datasizes

D
S

Va
lu

e 5
10
15
20
Average

Figure 27 (a) to (c), Effects of Dataset Size as Measured by Average DS for
Testing (TR) on HSI Experiments (Input Number fixed to 6, 11, 16 respectively)

90

Figure 28-a. (Input=6) Testing DS for Different Number of
Hidden Neurons & Datasizes

40
42
44
46
48
50
52
54
56

5 10 15 20
Different number of hidden neurons

D
S

Va
lu

e

600
800
1000
1500
2000
Average

Figure 28-b. (Input=11) Testing DS for Different Number of
Hidden Neurons & Datasizes

40
42
44
46
48
50
52
54

5 10 15 20
Different number of hidden neurons

D
S

Va
lu

e

600
800
1000
1500
2000
Average

Figure 28-c. (Input=16) Testing DS for Different Number of
Hidden Neurons & Datasizes

40

42

44

46

48

50

52

5 10 15 20
Different number of hidden neurons

D
S

Va
lu

e

600
800
1000
1500
2000
Average

Figure 28 (a) to (c), Effects of Hidden Neuron Number as Measured by
Average DS for Testing (TR) on HSI Experiments (Input Number fixed to 6, 11,
16 respectively)

91

Understanding such kind of effects of variables on each other in different stock

markets may have great value for both the researchers and practitioners in

financial markets. For there are totally 160 charts obtained from 5 different

markets under two neural network models, we are unable to plot all the charts

in this thesis even in the appendix, but we can briefly summarize all the

important findings about the interrelationships between the three variables in

all cases. Table 8 and table 9 summarize the interrelationships between these

three major variables in five stock markets by TRNN and SSPQN models

respectively. Though the analysing results getting from different neural network

models are not consistent in all cases, some consistent general findings from

both models could be drawn as below:

(1). On average, the interrelationships between these three variables

measured under DS criterion are obviously stronger than those

measured under MSE criterion in both training and testing processes.

Most interrelationships under the DS criterion are “high” or “medium”,

while most such relationships under MSE criterion are “Low”.

(2). All interrelationships between variables are “low” under training MSE

results, besides Hidden Neuron Number having above average

influence on the impact of Input Neuron Number on network

performance.

(3). The interrelationships under testing MSE results are quite similar with

those under training MSE results, besides, under testing MSE results,

both of the network architecture factors have stronger influence on the

impact of Dataset Size on network performance.

92

(4). The differences of the analysing results among different stock markets

are smaller under MSE results and larger under DS results. In another

word, the stronger the average interrelationships between the variables,

the wider the differences between the results getting from different stock

markets.

In this thesis, there are two kinds of criteria used for the network performance

evaluation. The Mean Squared Error and Directional Symmetry. By comparing

between Table 8 and Table 9, we can notice that under MSE evaluation

criterion, the analysis results (hence the conclusions) by two different training

algorithms are very similar. In all the 60 items under MSE criterion, only few

analysis results by different training algorithms are different. Under DS

criterion, more obvious differences are observed under different models. It

seems that when variables like network topology and data set are same, the

interrelationships between these variables should be consistent even when

different training algorithms are used. But, there may be some slight effects of

training algorithms on the interrelationships between those variables like

network topology and data set. The slight effects maybe caused by the

difference between different training algorithms, for example, the different stop

criteria for the training process. The two training algorithms in this thesis use

different convergence thresholds to stop the training process. Maybe the

interrelationships between these variables are sensitive on the different stop

criteria of the training algorithms. Whether such difference between different

training algorithms may have some slight effects on the interrelationships

between these variables is a very interesting issue. Maybe under some

93

particular training algorithms, the interrelationships could be more obviously,

while under other training algorithms, the interrelationships would be less

obviously. Anyway, training algorithm itself is also a very important factor that

may affect the network performance. Different training algorithms may lead to

different network performance. As we know, the network topology determines

the number of weights (thus the number of variables and terms) for the

network model and the data set determines the points the model simulates in

the training process. For number of weights represent the complexity of the

network model, and data set represent the property of the points to be

simulated by the model, it’s no strange that there are some interrelationship

between these variables on the network performance. Training the neural

network involves propagating the error to adjust the set of weights to minimize

the error function. Different training algorithms involve different way to adjust

the set of weights to accurately simulate the sample points. From this point of

view, training algorithm is the link between these variables under the

framework of network model, thus different kinds of algorithms may have

different effects on the interrelationships between these variables. How and on

what extent the training algorithm affects the interrelationships between the

variables could be a very interesting topic in our further research.

In my opinion, though, the analysis results on training process may not give a

direct reference on the later practices in financial forecasting, it provide us a

deeper insight on the process of network training. By comparing the results

from training and testing processes, we found some interesting findings. For

example, our MSE results show that, in training process, the network

94

architecture variables (input and hidden neurons) have low influence on the

impact of Data Size on network performance. While, in testing process, such

influence become more obviously and the choice of network architecture

obviously influence the relationship between data size and network

performance. As training process is the repeated applications of the same data

set, as long as the network architecture is complex enough for the desired

accuracy, it won’t have obvious effects on the impact of data set on network

performance. It is possible to approximate a continuous function that may

achieve the desired accuracy with a single hidden layer (Cybenko, 1989;

Hecht-Nielsen, 1990; Hertz, 1991; Hornick, 1989). Specification of the internal

architecture involves tradeoff between fitting accuracy and generalization

ability. The architecture of the network in testing process is very important for

determining the generalization ability of the network, thus affecting the data set

impact on network performance.

Of course, the most important things we discovered from these results are

those unique characteristics that each particular stock market has, which are

different from each other. These unique characteristics are valuable for our

further research in that particular market. Based on the interactive sensitivity

analysis between these major factors in neural network modeling, we

discovered that the network performance is not only sensitive to each of these

major factors individually, but also affected by the interrelationships between

these factors. From this study, we could see that in some cases such

interrelationships may have obvious influence on the network performance,

thus the issue on how such interrelationships will affect the network

95

performance must also be considered during the neural network constructing

for financial forecasting. For example, in the case that Hidden Neuron Number

has great influence on the impact of Dataset Size on network performance, we

should consider both the direct and indirect roles that Hidden Neuron Number

act in the neural network constructing. The general findings from two different

models as well as the unique interrelationships between these three major

variables under five different stock markets could be a valuable reference for

both the academic researchers and the investment practitioners in neural

network constructing for these particular markets.

96

Table 8 Summary of the interrelationships between major variables in each
particular market by TRNN model

Summary of the interrelationship between variables in each particular
market by TRNNs
(1).For Training Process

Based on MSE results Dataset Sizes
Hidden Neuron

Number
Input Neuron

Number

Extent of other variables
affecting the specified Variable

Hidden Neuron
Number

Input
Neuron
Number

Dataset
Sizes

Input
Neuron
Number

Dataset
Sizes

Hidden
Neuron
Number

DAX Low* Low Low Low Low Medium
DJIA Medium* Low Low Low Low Medium
FTSE Low Low Low Low Low Medium
HSI Low Low Low Low Low Medium
NASDAQ Low Low Low Low Low Low
Based on DS results

DAX Low Medium Low Medium High High
DJIA Medium Medium High High High High
FTSE High* High High High High High
HSI Medium Low Medium Medium High Medium
NASDAQ High High High High Medium Medium
(2).For Testing Process

Based on MSE results Dataset Sizes
Hidden Neuron

Number
Input Neuron

Number

Extent of other variables
affecting the specified Variable

Hidden Neuron
Number

Input
Neuron
Number

Dataset
Sizes

Input
Neuron
Number

Dataset
Sizes

Hidden
Neuron
Number

DAX High High Low Low Low Medium
DJIA High High Low Low Low Medium
FTSE Medium Medium Low Low Low Medium
HSI Medium Medium Low Low Low Medium
NASDAQ High High Low Low Low Medium
Based on DS results
DAX Medium High High High High High
DJIA High High Medium High High High
FTSE Medium Medium High High High High
HSI Low Low High High Medium Medium
NASDAQ Medium High High High High High
*H, *M and *L represents other variables has high, medium or low influence on the impact of target variable on network
model performance respectively

97

Summary of the interrelationship between variables in each particular
market by SSPQN
(1).For Training Process

Based on MSE results Dataset Sizes
Hidden Neuron

Number
Input Neuron

Number

Extent of other variables affecting
the specified Variable

Hidden
Neuron
Number

Input
Neuron
Number

Dataset
Sizes

Input
Neuron
Number

Dataset
Sizes

Hidden
Neuron
Number

DAX Low Low Low Low Low Medium
DJIA Low Low Low Low Low Medium
FTSE Low Low Low Low Low Medium
HSI Low Low Low Low Low Medium
NASDAQ Low Low Low Low Low Low
Based on DS results
DAX Low Medium High Medium Medium Medium
DJIA Low Medium High Medium Medium Medium
FTSE Medium High High High High High
HSI Low Medium Medium Medium High High
NASDAQ Low Medium High High High High
(2).For Testing Process

Based on MSE results Dataset Sizes
Hidden Neuron

Number
Input Neuron

Number

Extent of other variables affecting
the specified Variable

Hidden
Neuron
Number

Input
Neuron
Number

Dataset
Sizes

Input
Neuron
Number

Dataset
Sizes

Hidden
Neuron
Number

DAX High High Low Low Low Medium
DJIA Medium High Low Low Low Medium
FTSE Medium High Low Low Low Medium
HSI Low Low Low Low Low Medium
NASDAQ Medium High Low Low Low Medium
Based on DS results
DAX Medium Medium High High High Medium
DJIA Medium High High High High High
FTSE Low Medium High High High Medium
HSI Low Medium High High Medium Low
NASDAQ Medium High High High High Medium
*H, *M and *L represents other variables has high, medium or low influence on the impact of target variable on network
model performance respectively

Table 9 Summary of the interrelationships between major variables in each
particular market by SSPQN model

4.4. Proposed network topology

98

Table 10 illustrates the optimal neural network structures and optimal dataset

sizes for the five different stock markets based on the training MSE and DS

performances. A very interesting finding from MSE results is that, besides the

optimal dataset size of HSI by SSPQN, the optimal network topologies (both in

network structure and dataset size) for all the five markets are absolutely the

same: the optimal number of input neuron, hidden neuron and optimal dataset

size are 11, 5 and 2000 respectively for both models in the training process.

These results seem demonstrate that, in training process, the larger the

dataset size the better. Particularly, in the case of HSI index forecasting, the

best dataset size is 600 in training process. For the hidden neuron number,

there seems no doubt that the lesser the hidden neuron number the better the

results in training process. Based on the training DS results, the optimal

number of hidden neurons is still 5 in all cases. This finding re-confirm that the

lesser the hidden neurons the better the training results. It’s also no strange

that based on training DS results, stock markets show some differences in the

optimal number of input neurons and optimal dataset sizes. However, it is just

such kind of difference that provides us a nice way to distinguish the particular

financial time series characteristics among those different stock markets being

studied.

Although the study of the optimal topology in training process may provide us

some valuable references and hints on neural network modeling, what we

really care about in this thesis is the optimal network topology for each

particular market in the testing process. The optimal network topologies in the

testing process will finally determine the ultimate proposed neural network

99

models for performance comparison in the next chapter. For the problem of

overtraining exists in neural network training process, a good performance in

training may not guarantee a comparable good results in testing process or in

real forecasting, thus the optimal topologies for training are normally different

from those for testing. Table 11 illustrates the optimal network topologies for

different stock markets under both models based on the testing results, which

will be the proposed network architectures for the stock index increments

forecasting in next chapter. Based on the average testing MSE results, the

optimal hidden neuron numbers in all cases are still 5. Thus our experiments

show that for both the training and testing processes, the lesser the hidden

neuron number the better the network performance in MSE results. On the

other hand, the optimal numbers of input neurons are all 11 by TRNN model

for all stock markets except DAX. The optimal dataset sizes are not consistent

for different markets and models. There are no obvious conclusion could be

drawn from the optimal topology based on testing DS results, besides that the

best input neuron number in most cases by SSPQN model are 6, that is the

smaller the input neuron number the better. Taken NASDAQ index as

example, figure 29 illustrates the optimal network structures for one-day-ahead

prediction by TRNN model under the criteria of both MSE and DS.

100

(1). Based on the Criteria of Average MSE on Training
Optimal Structure for Trust Region Dogleg Method Based Neural
Networks
 DAX DJIA FTSE HSI NASDAQ

Optimal Number of Input Neuron 11 11 11 11 11
Optimal Number of Hidden Neuron 5 5 5 5 5
Optimal Dataset Size 2000 2000 2000 2000 2000
Optimal Structure for Parallel Quasi-Newton Method Based Neural
Networks
 DAX DJIA FTSE HSI NASDAQ

Optimal Number of Input Neuron 11 11 11 11 11
Optimal Number of Hidden Neuron 5 5 5 5 5
Optimal Dataset Size 2000 2000 2000 600 2000

(2). Based on the Criteria of Average DS on Training
Optimal Structure for Trust Region Dogleg Method Based Neural
Networks
 DAX DJIA FTSE HSI NASDAQ

Optimal Number of Input Neuron 6 6 6 6 16
Optimal Number of Hidden Neuron 5 5 5 5 5
Optimal Dataset Size 2000 2000 1500 800 600
Optimal Structure for Parallel Quasi-Newton Method Based Neural
Networks
 DAX DJIA FTSE HSI NASDAQ

Optimal Number of Input Neuron 16 6 16 16 16
Optimal Number of Hidden Neuron 5 5 5 5 5
Optimal Dataset Size 2000 2000 600 800 2000

Table 10 Optimal Network Topology Based on Training Results for Each
Market

101

(1). Based on the Criteria of Average MSE on Testing
Optimal Structure for Trust Region Dogleg Method Based Neural
Networks
 DAX DJIA FTSE HSI NASDAQ

Optimal Number of Input Neuron 16 11 11 11 11
Optimal Number of Hidden Neuron 5 5 5 5 5
Optimal Dataset Size 600 800 800 1500 600
Optimal Structure for Parallel Quasi-Newton Method Based Neural
Networks
 DAX DJIA FTSE HSI NASDAQ

Optimal Number of Input Neuron 16 6 11 6 16
Optimal Number of Hidden Neuron 5 5 5 5 5
Optimal Dataset Size 600 800 600 600 800

(2). Based on the Criteria of Average DS on Testing
Optimal Structure for Trust Region Dogleg Method Based Neural
Networks
 DAX DJIA FTSE HSI NASDAQ

Optimal Number of Input Neuron 6 6 11 6 16
Optimal Number of Hidden Neuron 15 20 10 15 20
Optimal Dataset Size 600 800 800 600 800
Optimal Structure for Parallel Quasi-Newton Method Based Neural
Networks
 DAX DJIA FTSE HSI NASDAQ

Optimal Number of Input Neuron 11 6 6 6 6
Optimal Number of Hidden Neuron 5 20 20 5 20
Optimal Dataset Size 600 800 600 600 1000

Table 11 Optimal Network Topology Based on Testing Results for Each Market

The optimal neural network internal architecture is an important issue that

affects the network performance in forecasting. Despite the importance, there

is no standard criterion on the number of hidden neurons. However, some

“rules of thumb” can be found in the literature. Following are some examples:

102

• The number of hidden neurons should be less then twice of the input

nodes [9]

• For a three layer network with n input neurons and m output neurons,

Masters [36] proposes n m× neurons for the hidden layer

• Katz [30] states that the optimal number of hidden layer neurons will

generally be found between 0.5 to 3 times of the number of the input

neurons.

• Baily and Thompson [7] suggest that for a three layer neural networks,

the number of neurons for the hidden layer should be 75% of the

number of the input neurons.

Our experiment results on the optimal number of hidden neurons are not

consistent with what Masters, Katz and Baily had suggested, but consistent

with the first suggestion that the number of hidden neurons should be less than

twice of the input nodes. On the other hand, our results show that for different

optimal input neuron numbers, the optimal hidden neuron numbers in all cases

are the same, which, on some extent can reflect that the optimal hidden neural

number may not influenced by the number of input neurons in the networks.

As for each particular stock market, the proposed optimal network topologies

for forecasting are different for TRNN and SSPQN models. The prediction

performance comparison between these two models is based on their

corresponding optimal network topologies in five stock markets determined

from testing process. For example, for DS performance comparison in

103

NASDAQ index prediction, the TRNN model with 16 inputs, 20 hidden neurons

and dataset size of 800 are compared with the SSPQN model with 6 inputs, 20

hidden neurons and dataset size of 1000. The performance comparison

between the TRNN and SSPQN models based on their corresponding optimal

network topologies in five stock markets is analysed in the next Chapter.

Figure 29 Optimal NN-Structures for One-Day Ahead Forecasting for NASDAQ
Index by Trust Region Neural Network Model

●
●
●

●
●
●

Bias 1

1: CSCO

2: MXIM

15: JDSU

16: NASDAQ

Bias 1

H1

H2

H20

Next
Daily
Return of
NASDAQ

Optimal NN Structure
Based on DS results

●
●
●

●
●
●

Bias 1

1: CSCO

2: MXIM

10: SEBL

11: NASDAQ

Bias 1

H1

H2

H5

Next
Daily
Return of
NASDAQ

Optimal NN Structure
Based on MSE results

104

Chapter 5

Comparisons and Performance Analysis

In Chapter 5, we conduct stock index increments prediction by both

component-based neural network forecasting models trained by trust region

algorithms and SSPQN algorithms. Computational results obtained from five

stock markets are disclosed. We then analyze which kind of model gives better

prediction accuracy in the aspect of one-step sign prediction rate.

Furthermore, additional performance analysis would be conducted on the trust

region algorithms based neural network model. Performance comparisons

between our purposed forecasting model and models proposed by other

researchers in the similar markets would be conducted in order to know

whether our purposed model improve the network forecasting accuracy.

5.1. Stock Index Increments Forecasting

After determining the optimal network topologies for both the TRNN and

SSPQN models, further experiments are conducted to compare the neural

network models’ performance in forecasting index increments in five major

stock markets. Each experiment is trained 50 times with random selected

different sets of starting arc weights. The final set of training arc weights that

give the best result in training is then applied in the testing process.

105

The final estimation of the performance in forecasting is made by means of the

one-step sign prediction rate ξ defined on T as follows:

 1 [() 1 ()]t t t t
t T

HS C G HS C G
T

ξ
∈

= ∆ •∆ + − ∆ + ∆∑ (14)

where ∆Ct=Ct-Ct-1= Ct-1 × Rt is the actual price change at time t∈T and ∆Gt=Gt-

Ct-1= Ct-1 × GRt is the guessed price change at the same time step, where GRt

is the guessed return at time t. Note that we assume to know the value of Ct-1

to evaluate ∆Gt. HS is a modified Heaviside function, HS(x)=1 for x>0 and 0

otherwise. The argument of the summation in (14) gives one if ∆Ct and ∆Gt are

non-zero and with same sign, or if ∆Ct and ∆Gt are both zero. For our model

uses both the index and component stock returns as network inputs, thus the

sign prediction rate ξ can also be expressed without change in value as

follows:

 1 [() 1 ()]t t t t
t T

HS R GR HS R GR
T

ξ
∈

= • + − +∑ (15)

In other words, ξ is the probability of a correct guess on the sign of the price

increment estimated on T. In fact, the probability to make a correct guess on

the sign of the increment seems independent from the magnitude of the

increment ∆C itself.

 To check and compare the performance of our proposed network models, the

optimal network topology is applied to perform one-day ahead prediction of five

different indices (DAX, DJIA, FTSE, HSI, and NASDAQ) daily increments from

14 May 2002 to 30 September 2002. Table 12 illustrates the prediction

performance of the two models in one-step sign prediction rate.

106

Average Accuracy Best Accuracy Models
TRNN SSPQN TRNN SSPQN

DAX 60.27% 57.30% 68% 61%
DJIA 61.46% 58.56% 70% 67%
FTSE 65.51% 57.87% 73% 64%
HSI 64.39% 63.35% 74% 70%
NASDAQ 64.86% 62.03% 73% 67%
Average 63.30% 59.82% 71.60% 65.80%

Table 12, Performance Comparison between Two Models

It is easy to notice that, in all the five markets predictions, the Trust Region

Neural Networks always outperform the SSPQN neural networks. The average

one-step sign prediction rates by TRNN model are higher than 60% in all the

five stock markets forecasting. Forecasting accuracy values at or above 60%

are statistically significant [50]. Furthermore, the average accuracy in FTSE-

100, HSI and NASDAQ even reaches as high as 65.51%, 64.39% and 64.86%

respectively. For SSPQN model, only two prediction results are more than 60%

accuracy. In the aspect of best testing one-step sign prediction, the accuracy

rate of TRNN model even exceed 70% in four markets of DJIA, FTSE, HSI and

NASDAQ. For the SSPQN model, only in HSI index prediction, the best

accuracy reaches 70%. In fact, the best prediction result obtained by the

TRNN model is 74%, both for network training and testing. The proposed Trust

Region Neural Networks deliver impressive results for forecasting the financial

indices, especially in the aspect of index price increments.

107

52.00%

54.00%

56.00%

58.00%

60.00%

62.00%

64.00%

66.00%

Rate

DAX DJIA FTSE HSI NASDAQ

Stock Indices

Average One-Step Sign Prediction Rate For Testing

TRNN SSPQN

0%

10%

20%

30%

40%

50%

60%

70%

80%

Rate

DAX DJIA FTSE HSI NASDAQ

Stock Indices

Best One-Step Sign Prediction Rate for Training

TRNN SSPQN

Figure 30 Performance Comparison based on Average and Best Prediction
Results between Two Models

Figure 30 compares the average and the best index price increments

prediction results obtained by the Trust Region Neural Networks and the

SSPQN neural networks in five stock markets. In all the stock markets

presented, the Trust Region Neural Network model outperforms the SSPQN

108

neural network model. On the other hand, the MSE results obtained by the

TRNN model also obviously outperform than those of SSPQN model both in

training and testing process. These outcomes strongly demonstrate that the

neural networks training by Trust Region Dogleg Path Algorithms have better

convergence capacity than neural networks training by line search based

optimization methods, especially in solving complex and high nonlinear

optimization problems in real financial forecasting applications.

There seems to be a scarcity of research works on predictions of the indices of

DJIA, NASDAQ, FTSE, DAX and HSI while comparable many such works can

be found for S & P 500. Some researchers have evaluated their works based

on results of directional symmetry (DS). We quoted some of these works here

for comparison purposes. They include: Azoff (1994), Dorsey and Sexton

(1998) [15], Landasse et al. (2000) [31] and Phua and Ming (2000) [39]. Table

13 summarizes DS results obtained by various network models. Based on DS

results, Table 13 shows that our proposed network model outperforms all the

other network models considered here. In fact, the best DS obtained by our

model even reach the rate as high as 74%, in the testing process.

The figures in table 13 are not computed on the same data. There seems to be

a scarcity of former research works on predictions of the indices of DJIA,

NASDAQ, FTSE, DAX and HSI, and in these forecasting researches even few

evaluated their works based on the results of directional symmetry (DS). So,

we quoted all the few works here for comparison purposes. For each former

research work evaluated in DS results, we only quoted the best DS results

109

they could obtain by their proposed models. Thus we just compared the best

possible DS results that each models could obtain from the applied data.

Though the DS results obtained by different models are not computed on the

same data, the comparison results still can show that the best prediction

accuracy by our proposed model outperforms all the best prediction results by

other models. On the other hand, though the comparison results computed on

different data cannot demonstrate that our trust region based neural network

model always outperforms other models proposed by former researchers, the

results still could show that our model can obtain the best prediction accuracy

evaluated in DS by far.

Similar Research Works
Average
DS for
Training

Average DS
for Testing

The Best
DS for
Training

The Best DS
for Testing

Our Results 68.85% 65.51% 75.12% 74%
Phua, P K H & D H
Ming(2000) 68.50% 65.75% 71.11% 70.00%

Landasse et al (2000) 60.30% 57.20% × ×
Dorsey & Sexton (1998) 58.68% 53.97% × ×
Azoff (1994) 56.50% 54.50% 58.50% 56.00%

Table 13 Comparison of Stock Index Direction Prediction by Different
Researches

5.2. Performance Analysis on TRNN model

To check the convergence performance of our proposed Trust Region Neural

Networks in more detail, the optimal network structure is applied again to

perform one-day ahead prediction of DJIA daily returns on another time series:

from 1/24/95 to 6/15/95. The actual and predicted values of DJIA daily returns

110

for this period are shown in figure 31. Figure 32 shows the actual and

predicted daily prices of DJIA. These figures show that our prediction results

by trust region neural network model agree with actual value of DJIA

impressively. Furthermore, our predicted results show that the common

problem of the laziness of neural networks has been overcome, see figure 32

for instance.

-2.00E+00

-1.50E+00

-1.00E+00

-5.00E-01

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

24-Jan-95 14-Feb-95 8-Mar-95 29-Mar-95 20-Apr-95 11-May-95 2-Jun-95

Date

N
e

x
t

D
a

ily
 R

e
tu

rn
 %

Actual Predicted

Figure 31, Actual and Predicted Daily Returns of DJIA

111

3800

3900

4000

4100

4200

4300

4400

4500

24-Jan-95 14-Feb-95 8-Mar-95 29-Mar-95 20-Apr-95 11-May-95 2-Jun-95

Date

D
JI

A
 D

ai
ly

 C
lo

se
Actual Index One Day Ahead Predicted Index

Figure 32, Actual and Predicted value of DJIA daily close prices

112

Chapter 6

Conclusions and Discussions

This thesis presents a comprehensive study of applying artificial neural

networks in predicting stock index increments. The data of five major stock

exchange indices, DAX, DJIA, FTSE-100, HSI and NASDAQ, are applied to

test our network models. Unlike other financial forecasting models, our model

directly uses the component stocks of the index as inputs for the prediction.

For the neural network training, a trust region dogleg path algorithm is applied.

For comparison purposes, other neural network training algorithms are also

considered; in particular, optimization techniques with line searches are

applied for solving the same class of problems. Optimal neural network

topologies are determined for each model by experiments. Computational

results from five different stock markets show that the trust region based neural

network model obtained better results compared with the results obtained by

other neural network models. In particular, we show that our model is able to

forecast the sign of the index increments with an average success rate above

60% in all the five stock markets. Furthermore, our prediction results for FTSE-

100, HSI and NASDAQ are exceeding an average accuracy of 64%.

Besides the issue on learning algorithms, a major challenge faced by neural

network researchers is that there are no formal theories for determining the

optimal network model. Neural network modelling is a complex process that is

113

currently more art than science. Thus for an artificial neural network applied to

a specific problem, experiments must be conducted to determine the

performance differences between alternative models. In our research, three

major factors that have influence on the network performance are considered

in the process of neural network modelling. Both the individual and interactive

sensitivity analysises are conducted in order to study how these major factors

as well as their interrelationships influence the neural network performance,

especially in financial forecasting. Based on the analysis results, the following

general guidelines on network modelling in financial forecasting are suggested:

(1). Sample size in the training set affects the network prediction accuracy.

Our result shows that it’s not the larger sample size in training set the

better the network performance. The optimal sample size for training set

should be determined by experiments. On the other hand, the sensitivity

of the network prediction accuracy on sample size depends on the noise

within the data. The noisier the data the more sensitive the network

performance is on the sample size. In this thesis, we exams the effects

of different in-sample time periods and sample size on the network

performance. We considered five different sample sizes of 600, 800,

1000, 1500 and 2000 in the experiments and the results show that it’s

not the larger the training sample size the better the prediction results.

In fact, our experiments show that the optimal sample sizes for

prediction are the latest 600 or 800 sample data in most cases. After

determining the optimal training samples for each model, we make the

final prediction. Though some data used in this thesis is as old as dated

114

in 1994, they are just used to determine the optimal training sample and

to exam the effects of training sample on network performance. In fact,

none of these very old data are used in the real financial forecasting for

the period of May 2002 to September 2002. The sample data in the

most recently two or three years are finally used for the financial

forecasting for the 100 days in 2002. Our experiments also show that

the recent data is better than old data in making financial forecasting.

(2). Although numerous heuristics have been suggested for determining the

number of nodes in the hidden layer, they do not apply across all the

reported studies. Our result shows that in financial forecasting, the less

the number of nodes in the hidden layer the better the network

prediction accuracy. The main reason for this result is that the financial

time series data are highly noisy and highly nonlinear, thus smaller

networks should be used to increase generalization ability and avoid

overfitting to the noise.

(3). Under the component-based index forecasting method, the number of

component stocks that should be used as inputs for the networks also

affects the network prediction accuracy. There is no clear guidance on

the selection of the inputs number under the component-based

forecasting scheme. Determining the number of inputs nodes is still part

of the ‘art’ of neural networks.

115

(4). Our research shows that there exist interrelationships between these

major factors in network modelling and such interrelationships also

affect the network performance. For such impact could be obvious in

some cases, we must consider both the direct and indirect impacts of

each particular factor on the network prediction accuracy in the process

of network modelling. Our results show that both of the network

architecture factors (input and hidden nodes) have obvious influence on

the impact of sample size on network performance and hidden nodes

number also has above average influence on the impact of input nodes

on network performance.

(5). Under different evaluation criteria for the network performance, the

effects of each factor as well as the interrelationships between these

major factors on the network performance are usually different. Thus it’s

no strange to find that the optimal network topologies for the same

particular time series data under different evaluation criteria are usually

different. Under MSE criteria, the network architecture factors normally

have more impact on the network performance than the sample size

does and the interrelationships between all these factors are usually low

on average, while all these relationships will reverse under the DS

criteria.

Particularly, as the experimental results in this thesis are valid only for

prediction of stock returns for the 100 days in 2002, if one is to use the

methods presented in the thesis to predict stock returns in 2003, our

116

recommendations on determining the network training algorithms, training

samples, network topology and number of iterations would be as following:

• Though the results are only valid for prediction of stock returns for the

100 days in 2002, computational results obtained from five different

stock markets demonstrate that the trust region based algorithms

always outperform the line search based SSPQN algorithms in the

aspect of prediction accuracy on the one-step sign prediction rate. And

our experiments conducted on five different financial time series data

show that the average one-step sign prediction rates by trust region

algorithm based network model are higher than 60% in all markets,

which is statistically significant. The main difference between the

predictions in 2002 or in 2003 is the different time series data being

used for the prediction. As we have shown that for different financial

time series data in different stock markets, the trust region algorithms

based model always outperform the other model, we would strongly

recommend the trust region based network training algorithms

presented in the thesis if someone is to use the component-based

neural network model for the stock index increments forecasting in 2003.

• Sample size in the training set affects the network prediction accuracy.

Our experiment results for 2002 prediction have shown that it’s not the

larger sample size in training set the better the network performance.

The optimal sample size for training set should be determined by

experiments. On the other hand, the sensitivity of the network prediction

accuracy on sample size depends on the noise within the data. The

117

noisier the data the more sensitive the network performance is on the

sample size. Particularly, our experiments show that for DAX index

forecasting the optimal sample size is always 600 for both models under

two criteria of MSE and DS. For DJIA index forecasting, the optimal

sample size is always 800. In the case of FTSE forecasting, the optimal

sample size is different when different models are used: 800 for TRNN

model and 600 for SSPQN model. While in the cases of HSI and

NASDAQ, the difference between optimal sample sizes for different

criteria or different models becomes very obviously when comparing

with the former three cases: the optimal sample size is 1500 for HSI

forecasting when TRNN model is used and is 600 when SSPQN model

is used; the optimal sample size is 600 for NASDAQ index forecasting

under MSE criterion while be 1000 under DS criterion. As we have

shown in Chapter one that the data in HSI and NASDAQ indices are

obviously more noisy than the data in DAX, DJIA and FTSE indices.

That’s why the optimal samples sizes for HSI and NASDAQ indices

forecasting show obvious diversity for different models or different

criteria. For 2003 stock index forecasting, we would recommend 600

data samples for DAX index forecasting and 800 data samples for DJIA

index forecasting. For FTSE forecasting, we would recommend 600 or

800 data samples depending on different models. But for HSI and

NASDAQ indices forecasting, we strongly recommend practitioners to

determine the optimal sample size by experiments. For noisy data the

optimal sample size is affected by many factors thus the optimal sample

size would be inconsistent for different cases.

118

• Although numerous heuristics in former researches have been

suggested for determining the number of nodes in the hidden layer, they

do not apply across all the reported studies. Our results in 2002

prediction shows that in financial forecasting, the less the hidden

neurons the better the prediction accuracy in MSE. The main reason for

this result is that the financial time serious data are highly noisy and

highly nonlinear, thus smaller networks should be used to increase

generalization ability and avoid overfitting to the noise. If someone

would predict the stock returns in 2003, we will recommend them not to

use too many nodes in the hidden layer, for too many hidden nodes will

produce a network that memorizes the input data and lacks the ability to

generalize. By our experiments, around 5 hidden nodes will lead to the

best results in MSE. While under DS criterion, the optimal number of

hidden nodes is unconstant for different stock markets. The possible

explanation for such difference for different criteria maybe that MSE is

the objective function for the network training algorithm while DS is not

the objective function and just reflects the percentage of correctly

predicted directions with respect to the stock index. Our experiments

show that larger architectures are normally required for complex

response surfaces, thus optimal hidden nodes under DS criterion don’t

always follow the rule of “ the less the hidden nodes the better the

prediction accuracy in DS”. If researchers were to predict the stock

returns under DS criterion in 2003, we would recommend them to

determine the optimal hidden nodes by experiments.

119

• Under our proposed component-based index forecasting method, the

number of component stocks that should be used as inputs for the

networks also affects the network prediction accuracy. As the optimal

inputs are sample data based under both criteria of MSE and DS, there

is no clear guidance on the selection of the inputs under the component-

based forecasting scheme. Determining the number of input nodes is

basically problem-dependent and requires an experimental trial-and-

error approach.

• Our experiments show that it’s not the more iterations the better the

prediction results. Though training algorithms guarantee that total error

in the training set will continue to decrease as the number of iteration

increases, training with repeated applications of the same data set may

result in the phenomenon of overtraining. Overtraining occurs when the

neural network attempts to exactly fit the limited set of points and loses

its ability to interpolate between those points (Hecht-Nielsen 1990). In

practice, our experiments show that the MSE (or DS) results for testing

will reverse its trends to decreasing to increasing (or increasing to

decreasing) at some particular iteration number in the training process.

In theory, as training processes, there is always an intermediate stage

at which the algorithm reaches a good balance between accurately

fitting the training set examples and still providing a reasonable good

interpolation capability. The problem created from overtraining is

determining when sufficient iterations have been accomplished to

achieve the desired prediction accuracy. The “best” predictive

performance should be obtained with the set of weights that produces

120

the minimum value for the error function in the testing set of data.

Iterations beyond that point will not improve predictive performance.

Thus the training process of our network should be terminated when the

MSE (or DS) results for testing reverse its trends. The internal

architecture (nodes in hidden and input layers) of network will determine

the number of connection weights of the neural network model, thus

finally determine the degrees of freedom of the network (the variables

and terms of the model). On the other hand, the sample data size will

determine the points to be fitted by the neural network model. Thus, all

these variables of training samples and network topology will determine

the optimal iteration number for network training. In our prediction

experiments in 2002, we obtained the optimal iteration number for some

particular stock market and training algorithm by averaging all the

possible results from the combination of the three variables of training

samples (600, 800, 1000, 1500, 2000), inputs (5, 10, 15) and hidden

nodes (5, 10, 15, 20). The average results of optimal iteration number

for network training under two criteria are listed in the Table 3 of the

thesis. All the computations and comparisons between the two models

in the thesis are all based on the averaged optimal iteration numbers

listed in Table 3. Though researchers could take the average results in

table 3 as reference if they are to predict the stock indices in 2003, we

would recommend them to re-determine the optimal iteration number

under the new training sample data by the method we proposed in this

thesis. In my opinion, the difference sometimes may be large, because

121

the variable of training sample is a key element for determining the

optimal iteration number for training, which could be reflected in Table 3.

Our research conducted detailed sensitivity analysis on several design factors

that significantly impact the accuracy of neural network forecasts and the

proposed optimal network topology is determined by such analysis.

Furthermore, a trust region dogleg path algorithm is applied to train the

proposed neural network model and this TRNN model has been shown to give

an impressive result in financial forecasting. Though the forecasting accuracy

values by TRNN model have been statistically significant, more researches

could be conducted in the following areas in order to improve the network

performance even further:

(1). The component-based input selection method in this paper is mainly

based on the correlation coefficient between the returns of the index

and the component stock prices. The m component stocks that highest

correlated with the corresponding index in addition with the index itself

are selected as the inputs (1m +) for the network forecasting. Several

other input selection schemes should also be considered: (a). Based on

the correlation coefficient between the returns of the index and the

component stocks, only the m component stocks that highest correlated

with the corresponding index are selected as the inputs (m); (b). Based

on the correlation coefficient between the prices of the index and the

component stocks, the m component stocks that highest correlated with

122

the corresponding index in addition with the index itself are selected as

the inputs (1m +); (c). Based on the correlation coefficient between the

prices of the index and the component stocks, only the m component

stocks that highest correlated with the corresponding index are selected

as the inputs (m). Experiments must be conducted to determine the

network performance differences between alternative inputs selection

schemes.

 (2). Artificial neural network training usually requires two main sets of data:

the training set which must be representative of the entire domain and

the test set which is used to evaluate the prediction accuracy of the

model. There are many alternative ways of dividing the whole time

series data into the two parts. For example, 90% whole data could be

used as the training set and the remaining 10% were used as the test

set. Further researches should be conducted to see whether alternative

sample data dividing method could improve the network prediction

accuracy. How do we choose an appropriate sample dividing method

especially for ANN financial forecasting is an interesting issue for further

research.

(3). Besides one-step-ahead forecasting, multi-step-ahead forecasting

should also be considered for further research in order to see whether

neural networks could also produce impressive better results than

123

traditional statistical methods, as well as whether the TRNN model still

could significantly outperform than other neural network models.

124

Bibliography

[1] A. Abhyankar, L.S. Copeland and W. Wang, “Uncovering Nonlinear

Structure in Real Time Stock Market Indexes: The S&P 500, the DAX,

The Nikkei 225, and the FTSE -100”, Journal of Business & Economic

Statistics, Vol. 15, no. 1, pp.1-14, 1997.

[2] A.Lapedes and R. Farber, " Nonlinear signal processing using neural

networks", Proceedings of the IEEE Conference on Neural Information

Processing System - Natural and Synthetic, 1987.

[3] A.N. Refenes, A. Zapranis and G. Francies, "Stock performance

modelling using neural networks: a comparative study with regression

models", Neural Network, Vol. 5, pp. 961-970, 1994.

[4] Armstrong W, Dwelly A, Liang J, Lin D, Reynolds S.,"Learning and

generalization in adaptive logic networks", Artificial Neural Networks,

Proceedings of the 1991 International Conference on Artificial Neural

Networks, 1173-1176, 1991.

[5] B. Freisleben, "Stock market prediction with back propagation networks"

Proceedings of the 5th International Conference on Industrial and

Engineering Application of Artificial Intelligence and Expert System, pp

451-460, June 1992.

[6] B.H.Solnik, "Note on the Validity of the random walk for European stock

prices", Journal of Finance, December 1973.

[7] Baily D. and Thompson D. M., "Developing neural network application",

AI Expert, pp. 33-41, Sept. 1990.

125

[8] Ballo M. G.,"Enhanced training algorithm and integrated training /

architecture selection for multilayer perception networks" IEEE

Transactions on Neural Networks, 3, 864-875, 1992.

[9] Berry M. J. A. and Linoff, G., Data Mining Techniques, New York: John

and Wiley and Sons, 1997.

[10] C. G. Broyden, “Convergence of A Class of Double Rank Minimization

Algorithms”, Journal of the Institute of Mathematics and Its Applications,

vol. 6, pp. 76-90, 1970.

[11] Caldwell,R.,"Performance Metric for Neural Network-based Trading

System Development", NeuroVest Journal, Vol. 3Num 2, pp. 13-23.

[12] Charitou A, Charalambous C., "The prediction of earnings using

financial statement information: empirical evidence with Logit models

and artificial neural networks.", International Journal of Intelligent

Systems in Accounting, Finance and Management, 5: 199-215, 1996.

[13] D. F. Shanno, “Conditioning of Quasi -Newton Methods for Function

Minimization”, Mathematics and Computation, vol. 24, pp. 647-656,

1970.

[14] D. Goldfarb, “A Family of Variable Metric Methods Derived by

Variational Means”, Mathematics and Computation, vol. 24, pp. 23-26,

1970.

[15] Dorsey R. and Sexton R., "The Use of Parsimonious Neural Networks

for Forecasting Financial Time Series", Journal of Computational

Intelligence in Finance, vol.6, pp. 24-31, January/February 1998.

126

[16] Fahlman SE, Lebiere C.,"The Cascade-Correlation Learning

Architecture", Technical Report: CMU-CS-90-100, Carnegie-Mellon

University, 1990.

[17] Filippo Castiglione, "Forecasting Price Increments Using An Artificial

Neural Network", Advances in Complex Systems, Vol. 4, No. 1, pp. 45-

56, 2001.

[18] G.A.Shultz, R.B.Schnabel and R.H.Byrd, "A family of trust-region-based

algorithms for unconstrained minimization with strong global

convergence properties", SIAM Journal on Numerical Analysis 22

(1985) 47-67.

[19] G.E. PBox and G.M. Jenkins, Time Series analysis: forecasting and

control, Holdenday, San Francisco (1976).

[20] Hertz J, Krogh A, Palmer RG. 1991. Introduction to the Theory of Neural

Computation. Addison-Wesley: Reading, MA.

[21] J. O. Katz, “Developing Neural Network Forecasters for Trading”,

Technical Analysis of Stock and Commodities, pp. 58-90, April 1992.

[22] J.P.Bulteau and J.Ph.Vial, "A restricted trust region algorithm for

unconstrained optimization", Journal of Optimization Theory and

Applications 47 (1985), 413-434.

[23] J.T. Yao and H.L. Poh, "Equity forecasting: a case study on the KLSE

index", Neural Networks in Financial Engineering, Proceedings of the

3rd International Conference on Neural Networks in the Capital Markets,

Oct 1995. A.P N. Refenes, Y. Abu-Mostafa, J.

127

[24] J.T. Yao, C.L. Tan and H.L. Poh,"Neural Networks for Technical

Analysis: A Study on KLCI", International Journal of Theoretical and

Applied Finance, Vol. 2, No. 2, pp. 221-241, 1999.

[25] James R. Coakley and Carol E. Brown, " Artificial Neural Networks in

Accounting and Finance: Modeling Issues" International Journal of

Intelligent Systems in Accounting, Finance & Management, Vol. 9, pp.

119-144, 2000.

[26] Jhee WC, Lee JK. 1993. "Performance of neural networks in managerial

forecasting", Intelligent Systems in Accounting, Finance and

Management, 2: No. 1, 55-71.

[27] Jianzhong Zhang and Chengxian Xu, "A Class of Indefinite Dogleg Path

Methods for Unconstrained Minimization", SIAM Journal of Optimization,

Vol. 9, No. 3, pp 646-667, 1999.

[28] Jianzhong Zhang and Chengxian Xu, "Trust region dogleg path

algorithms for unconstrained minimization", Annals of Operations

Research, vol. 87, pp. 407-418, 1999.

[29] Jingtao Yao and Chew Lim Tan, “Time Dependent Directional Profit

Model for Financial Time Series Forecasting”, Proceedings of the IEEE-

INNS-ENNS International Joint Conference on Neural Networks, 2000,

vol. 5, pp. 291-296, 2000.

[30] Katz J. O., "Development neural network forecasters for trading",

Technical Analysis of Stocks and Commodities, pp. 58-90, April 1992.

[31] Lendasse A., De Bodt E., Wertz V. and Verleysen M., "Non-linear

financial time series forecasting-Application to the Bel 20 stock market

128

index", European Journal of Economics and Social Systems, vol. 14,

No.1, pp.81-91, 2000.

[32] Leonard J. A. and M. A. Kramer, "Improvement of the back propagation

algorithm for training neural networks", Computers Chem. Engineering.

14,337-341,1990.

[33] M. C. Biggs, “A Note on Minimization Algorithms Which Make Use of

Non-Quadratic Properties of the Objective Function”, Journal of the

Institute of Mathematics and its Applications, vol. 7, pp. 337-338, 1973.

[34] M. Jorgensen, Experience with the accuracy of software maintenance

task effort prediction models, IEEE Trans. Software Engineering, 21(8),

Page 674-681, 1995.

[35] Marques L, Hill T, Worthley R, Remus W. 1991, "Neural network models

as an alternative to regression", Proceedings of the 24th Annual Hawaii

International Conference on Systems Sciences, Vol. IV. 129-146.

[36] Masters, T., "Practical Neural Networks in C++", Academic Press, New

York, 1993.

[37] Micheal Y.Hu, Peter Zhang, Christine X. Jiang and B. Eddy Patuwo, “A

Cross –Validation Analysis of Neural Network Out-of-Sample

Performance in Exchange Rate Forecasting”, Decision Sciences, Vol.

30, no. 1, pp.197-216, 1999.

[38] P. K. H. Phua, “Multi-Directional Parallel Algorithms for Unconstrained

Optimization”, Optimization, vol. 38, pp. 107-125, 1996.

[39] P.K.H. Phua and D. Ming, “Parallel Nonlinear Optimization Techniques

for Training Neural Networks”, Accepted for publication in the IEEE

Transactions on Neural Networks.

129

[40] Peter Tino, C. Schittenkopf and G. Dorffner, "Financial Volatility Trading

Using Recurrent Neural Networks", IEEE Transactions on Neural

Networks, Vol. 12, No.4, 2001, July.

[41] R. Fletcher, “A New Approach to Variable Metric Algorithms”, Computer

Journal, vol. 13, pp. 317-322, 1970.

[42] R.H.Byrd, R.B.Schnable and G.A.Shultz, "Approximate solution of the

trust region problem by minimization over two-dimensional subspaces",

Mathematical Programming 40 (1988) 247-263.

[43] Randall B. Caldwell, “Three Methods of Neural Network Sensitivity

Analysis for Input Variable Reduction: A Case Study in Forecasting the

S&P 500 Index”, NeuroVest Journal, pp.17-22, 1996.

[44] Renate Sitte and Joaquin Sitte, "Analysis of the Predictive Ability of

Time Delay Neural Networks Applied to the S&P 500 Time Series”,

IEEE Transactions on Systems, Man and Cybernetics, Part C:

Applications and Review, Vol. 30, No. 4, 2000, November.

[45] Resta, M., “Towards an Artificial Technical Analysis of Financial

Markets”, Proceedings of the IEEE-INNS-ENNS International Joint

Conference on Neural Networks 2000, Vol. 5, pp. 117 -122, 2000.

[46] Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning representations

by back-propagation errors. Nature 323: 533-536.

[47] S. S. Oren and D. G. Luenberger, “ Self-scaling Variable Metric (SSVM)

Algorithms, Part I: Criteria and Sufficient Conditions For Scaling a Class

of Algorithms”, Management Science, vol. 20, pp. 845-862, 1974.

[48] S.Taylor, "Modeling financial time series", John Wiley & Sons 1986.

130

[49] Steven H. Kim and Se Hak Chun, “Graded forecasting using an array of

bipolar predictions: application of probabilistic neural networks to a

stock market index”, International Journal of Forecasting, vol. 14, pp.

323-337, 1998.

[50] Steven Walczak, "An Empirical Analysis of Data Requirements for

Financial Forecasting with Neural Networks", Journal of Management

Information Systems, Vol. 17, No. 4, pp. 203-222, 2001, spring.

[51] Subramanian V, Ming SH, Hu MY. 1993 " An experimental evaluation of

neural networks for classification", Computers and Operations Research

20: No. 7, 769-782.

[52] Tim Hill et al, Neural Network Models for Time Series Forecasts,

Management Science, Vol. 42, Issue 7, Page 1082-1092.

[53] Wong FS.,"A 3D neural network for business forecasting", proceedings

of the 24th Annual Hawaii International Conference on System

Sciences, Vol. IV, 113-123, 1991.

[54] Yong Liu and Xin Yao, “Evolving neural networks for Hang Seng stock

index forecast”, Proceedings of the 2001 Congress on Evolutionary

Computation, vol.1, pp.256-260, 2001.

[55] Yves Bentz, A.P. N. Refenes and A. Neil Burgess, " Neural Network in

Financial Engineering: A Study in Methodology" IEEE Transactions on

Neural Network, Vol. 8, No. 6, 1997, November.

131

APPENDIX A

Distributions of Journals Publishing NNs Applications in Finance

JOURNAL NUMBER OF
ARTICLES

Journal of Management Science 11
European Journal of Operational Research 10
Decision Support System 9
IEEE Transactions on Neural Networks 6
Computers and Operations Research 5
Journal of Forecasting 5
Journal of AI Expert 4
Journal of Decision Science 4
Intelligent Systems for Finance and Business 3
Journal of Business and Economics Statistics 3
Journal of Expert System 3
Journal of Financial Analyst 3
Journal of Future Markets 3
Journal of Management Information System 3
Operational Research Society 3
Computers and Industrial Engineering 2
IEEE Expert (Intelligent Systems & Their Application) 2
IEEE Transactions on Systems, Man and Cybernetics 2
Journal of Applied Business Research 2
Journal of Business forecasting 2
Journal of Finance 2
Journal of Futures 2
Journal of Operational Research Society 2
Journal of Risk and Insurance 2
A Review of Financial Studies 1
Advances in Complex Systems 1
America Business Review 1
Application of Artificial Intelligence 1
Applied Financial Economics 1
IEEE Computational Science and Engineering 1
IEEE Transactions on Evolutionary Computation 1
Journal of Accounting, Auditing and Finance 1
Journal of America Statistics Association 1
Journal of Applied Economics 1
Journal of Banking and Finance 1
Journal of Financial and Quantitative Analysis 1
Journal of Financial Management 1
Journal of Financial Markets 1
Journal of Fixed Income 1

132

Journal of Information and Management 1
Journal of Interface 1
Journal of Managerial Finance 1
Journal of PC AI 1
Journal of Portfolio Management 1
Journal of Real Estate Appraiser 1
Journal of Real Estate Research 1
Journal of Transport Economics and Policy 1
Marketing Research 1
Neural Computer and Applications 1
Property Tax Journal 1
Quarterly J. of Business and Economics 1
Studies in Economics and Finance 1
The Executive’s Journal 1
Theoretical and Applied Finance 1
TOTAL NUMBER 123

133

APPENDIX B

Distributions of Conference Proceedings on NNs Applications in Finance

NAME OF THE INTERNATIONAL CONFERENCE ON
NEURAL NETWORKS

NUMBER OF
ARTICLES

YEAR
HELD

Neural Networks, 1999. IJCNN '99. International Joint
Conference on

12 1999

Neural Networks, 1994. IEEE World Congress on
Computational Intelligence., 1994 IEEE International
Conference on

12 1994

Neural Networks, 1995. Proceedings., IEEE International
Conference on

9 1995

Neural Networks, 2000. IJCNN 2000, Proceedings of the
IEEE-INNS-ENNS International Joint Conference on

8 2000

Neural Networks, 2001. Proceedings. IJCNN '01.
International Joint Conference on

7 2001

Neural Networks, 1991. 1991 IEEE International Joint
Conference on

7 1991

Neural Networks, 1997., International Conference on 5 1997
Neural Networks, 1990., 1990 IJCNN International Joint
Conference on

5 1990

Computational Intelligence for Financial Engineering,
1996., Proceedings of the IEEE/IAFE 1996 Conference on

4 1996

Neural Networks, 1996., IEEE International Conference
on

4 1996

Artificial Neural Networks and Expert Systems, 1993.
Proceedings., First New Zealand International Two-
Stream Conference on

4 1993

Neural Networks, 1993. IJCNN '93-Nagoya. Proceedings
of 1993 International Joint Conference on

4 1993

Neural Networks, 1991., IJCNN-91-Seattle International
Joint Conference on

4 1991

Neural Networks Proceedings, 1998. IEEE World
Congress on Computational Intelligence. The 1998 IEEE
International Joint Conference on

3 1998

Neural Networks, 1988., IEEE International Conference
on

3 1988

Computational Intelligence and Multimedia Applications,
1999. ICCIMA’99. Proceedings. Third International
Conference on

2 1999

Intelligent Processing Systems, 1997. ICISP’97. 1997 IEEE
International Conference on

2 1997

Computational Intelligence for Financial Engineering,
1995., Proceedings of the IEEE/IAFE 1995 Conference on

2 1995

Information Systems: Decision Support and Knowledge-
Based Systems, 1994., Proceedings of the Twenty-Seventh

2 1994

134

Hawaii International Conference on
System Sciences, 1991., Proceedings of the Twenty-Fourth
Hawaii International Conference on

2 1991

Evolutionary Computation, 2001. Proceedings of the 2001
Congress on

1 2001

IFSA World Congress and 20th NAFIPS International
Conference 2001.

1 2001

Adaptive Systems for Signal Processing, Communications
and Control Symposium 2000. AS-SPCC. The IEEE 2000.

1 2000

Computational Intelligence for Financial Engineering,
2000. Proceedings of the IEEE/IAFE/INFORM 2000
Conference on

1 2000

Neural Networks, 2000. Proceedings. Sixth Brazilian
Symposium on

1 2000

Systems, Man and Cybernetics, 2000 IEEE International
Conference on

1 2000

Artificial Neural Networks, 1999. ICANN 99. Ninth
International Conference on

1 1999

NAFIPS’97., 1997 Annual Meeting of the North America 1 1997
Neural Networks for Industrial Applications, IEEE
Colloquium on, 1997.

1 1997

Neural Networks, 1997. Proceedings., IVth Brazilian
Symposium on

1 1997

Fuzzy Systems Symposium, 1996. Soft Computing in
Intelligent Systems and Information Processing.,
Proceedings of the 1996 Asian

1 1996

Neural-Fuzzy Systems, 1996. AT’96., International
Symposium on

1 1996

System Sciences, 1996., Proceedings of the Twenty-Ninth
Hawaii International Conference on

1 1996

Systems, Man and Cybernetics, 1996., IEEE International
Conference on

1 1996

Artificial Neural Networks and Expert Systems, 1995.
Proceedings., Second New Zealand International Two-
Stream Conference on

1 1995

Military Communications Conference, 1995.
MILCOM’95, Conference Record, IEEE

1 1995

Artificial Intelligence for Applications, 1994., Proceedings
of the Tenth Conference on

1 1994

Artificial Neural Networks, 1993., Third International
Conference on

1 1993

Neural Networks, 1993., IEEE International Conference
on

1 1993

Artificial Intelligence on Wall Street, 1991. Proceedings,
First International Conference on

1 1991

TOTAL NUMBER OF THE ARTICLES 121

135

APPENDIX C

A Brief Introduction of Trust Region Dogleg Path (TRDP) Algorithm

 In this appendix, we give a brief introduction to the Trust Region Dogleg

Path (TRDP) algorithm proposed by [27, 28] for solving unconstrained

minimization problems. Consider the solution of the problem

 (){ }()
2

1min
2

Tdef
k T

k k k kq f g Bδ δ δ δ δ= + + ≤ ∆ (I.1)

in trust region methods for minimizing a smooth function ()f x , nx R∈ , where

()()k
kf f x= , () ()()k kg f x= ∇ , ()k

k x xδ = − , kB is either 2 ()()kf x∇ or its

approximation and k∆ is the trust region radius. The solution of problem (I.1)

generally satisfies the system

 () () ()

2
() () , ,k k k

kB I gµ δ µ δ+ = − = ∆

where 0µ ≥ such that kB Iµ+ is at least positive semi-definite, except that if

kB is positive definite and 1 ()

2

k
k kB g− ≤ ∆ , the solution is () 1 ()k k

kB gδ −= − .

However, there is no definite method to determine such a µ . Most algorithms

find an approximate solution of (I.1). Shultz et al. [18, 42] proposed an

approximate solution of (I.1) by performing a two-dimensional quadratic

minimization:

 { }2
min () ,k kq δ δ ς δ∈ ≤ ∆ (I.2)

136

where ς is a two dimensional subspace.

 Let k∆ vary, the solution points of (I.1) form a curvilinear path in the 2-

dimensional space, called the optimal path which minimizes ()kq k within the

trust region. Most practical two-dimensional curvilinear paths work well when

kB is positive definite, but they are unable to deal with the non-positive definite

case. To improve this situation, TRDP algorithm proposes some indefinite

single dogleg paths for the solution of (I.1). These paths are obtained by

considering negative curvature directions for indefinite kB . Bunch-Parlett

factorization of a symmetric matrix is employed to factorize kB

 T T
kPB P LDL= (I.3)

where P is a permutation matrix, L a unit lower triangular matrix and D a block

diagonal matrix with 1×1 and 2×2 diagonal blocks. If kB is positive definite, D

is diagonal. Without loss of generality, it is assumed in the sequel that P I= . It

is known from [22] that the elements of L are bounded with bounds

independent of the matrix kB , i.e. there exist positive constants 1 2 3, ,c c c and

4c such that 1
1 2 3 42 2

,c L c c L c−≤ ≤ ≤ ≤ . Positive definiteness of kB is implied

from that of D, whose eigenvalues are easy to calculate and Newton directions

are generated.

 In the case, kB is indefinite, then the most negative eigenvalues 1µ and 1d of

kB and D satisfy relations

22 1

1 1 12 2
d L d Lµ −≤ ≤ (I.4)

137

 Let 1 2 nd d d≤ ≤ ⋅⋅⋅ ≤ be eigenvalues of D and 1 2, ,..., nu u u be the

corresponding orthonormal eigenvectors. Let { 0}ii d−ℵ = ≤ . The direction

 ()sgn() , { , }
Tdef

k T T i
i i

i
d g L L u Rυ υ υ ς υ υ

−

− −

∈ℵ
= − ∈ = = ∀ ∈∑ l l (I.5)

is a direction of negative curvature of kB , since 2() 0.T T
k i i

i
d B d D dυ υ

−∈ℵ
= = <∑ l

 The model algorithm presented in this section locates a minimizer of a

smooth function ()f x . At each iteration, the gradient ()kg and the matrix kB are

evaluated. A dogleg path, denoted by ()kΓ , is formulated from Bunch-Parlett

factorization of kB and the problem

 () ()
2

1min{ () , }
2

Tk T k
k k k kq f g Bδ δ δ δ δ δ= + + ∈Γ ≤ ∆ (I.6)

is solved to get ()kδ . Then either () ()k kx δ+ is accepted as a new point or k∆ is

reduced, depending upon a comparison between the actual

reduction ()()kared δ of the objective function and the predicted reduction

()()kpred δ by the quadratic model

 () () () () () () () ()1() (), ()
2

T Tdef def
k k k k k k k k

k kared f f x pred g Bδ δ δ δ δ δ= − + =− −

if the reduction in the objective function is satisfactory, we start a new iteration

at (1) () ()k k kx x δ+ = + with the updated trust region radius; otherwise, the iteration

continues at point ()kx with a reduced k∆ . The model of these algorithms is as

follows.

Trust Region Dogleg Path (TRDP) Algorithms

138

1. Given (0) ,n
masx R∈ ∆ and 0 ()mas∆ < ∆ . Set 1 2 1 20 1,0 1 ,η η γ γ< < < < < < and

0k =

2. Evaluate ()()k
kf f x= and () ()()k kg g x=

3. Convergence test. If not determined, generate kB and form a dogleg

path ()kΓ .

4. Determine () ()
2

arg min{ () , }k k
k kqδ δ δ δ= ∈Γ ≤ ∆

5. Calculate () ()() ()k k
k ared predθ δ δ= . If 1kθ η< , then 1k kγ∆ = ∆ . Go to step

4.

6. (1) () ()k k kx x δ+ = + and 2 2 2
1

min{ , },

,
k mas k k k

k
k

if and

otherwise

γ θ η δ
+

⎧ ∆ ∆ ≥ = ∆⎪∆ = ⎨
∆⎪⎩

 set

1k k← + and go to step 2.

 In the following, () ()[, ,] [, ,)k kx y w or x y w denote a single dogleg path starting

from ()kx and turning direction at y. The former is a finite single dogleg path

with end point w, while the latter is an infinite single dogleg path where the

second piece is a ray starting at point y along the direction w. the single dogleg

path ()kΓ in step 3 is formulated in the following ways:

(1). If kB is positive definite, ()kΓ is Powell’s single dogleg path:

() () () () () () () () () () () () () 1 ()[, ,], , ,k k k k k k k k k k k k k k
ps cp np cp cp k np np kx x x x x x g x x x B gδ β δ −Γ = = + = − = + = −

where () () () ()T Tk k k k
k kg g g B gβ = .

139

(2). If kB is indefinite, we give four choices for ()kΓ . Let kB be factorized into the

form (I.3) and a negative curvature direction d be generated from (I.5)

withυ ∈£ .

(a) In the case () () 0
Tk k

kg B g > , if () 0
Tk Tg L υ− ≥ or

 () 0
Tk Tg L υ− < and

() () ()

() ()
,

T T

T

k k k

Tk k
kk

g g g d
d B dg B g

< (I.7)

 the path is chosen to be () () ()
1 [, ,).k k k

s cpx x dΓ =

(b) In the case () () 0
Tk k

kg B g > , () 0
Tk Tg L υ− < but the second part of (I.7) dose

not hold, or in the case () () 0
Tk k

kg B g ≤ , we

set () 1 () () () ()() ,k k k k k
B k B BB I g x xδ µ δ−= − + = + , where

'
1 1 1(() , max{ () , ()}),k k n kB B Bµ µ ω θ µ µ∈ + (I.8)

'
10 1andω θ> > is a constant such that it makes the right end of the

interval greater than the left end. Notice that for such a choice of µ ,

kB Iµ+ is positive definite and 12 2
(1)k kB I Bµ θ+ ≤ +

(I.9) when () () 0
Tk k

kg B g > , if
2 2() () () () ()

2 2 2

Tk k k k k
B k B B cp cpandδ δ δ δ δ≥ ∆ > >

(I.10) the path is () () () ()
2 [, ,].k k k k

s cp Bx x xΓ = ; otherwise, the path

is () () ()
3 [, ,),k k k

s Bx x dΓ =
)

 ()sgn() .T k
Bd d dδ=

)
 When () () 0

Tk k
kg B g ≤ ,if

() ()

() ()
,

T

T

k k T
k

Tk k

g B g d Bd
d dg g

< (I.11)

(c) the path is () () () ()
4 [, ,)k k k k

s Bx x gΓ = − ; otherwise, ()kΓ is the path ()
3
k

sΓ .

140

APPENDIX D

A Brief Introduction of SSPQN Algorithm

 In this appendix, we give a brief introduction to the self-scaling parallel

Quasi-Newton (SSPQN) algorithm proposed by [7] for solving unconstrained

nonlinear optimization problems. Consider minimizing the following objective

function:

 2

1 1

1() [()]
P K

pk pk
p k

f w Y Z w
PK = =

= −∑∑ (I.1)

Where (1) (2)w w w= ∪ represents the weights of the neural network, ()pkZ w are

the output values of the networks, and{(,) : 0,1,..., ; 1, 2,..., }pi piX Y i m p P= = is the

set of given input/output vectors for training the neural network.

 In solving the above minimization problem, Quasi-Newton methods

proceed to generate a sequence of solution points:

 1k k k kW W dα+ = + (I.2)

Where kd is the search direction used for iteration k and kα is the step-size of

the iteration k. The Search direction is computed by:

141

 k k kd H g= − (I.3)

Where kH is the current approximation to the inverse Hessian matrix, and

()k kg f w= ∇ is the current gradient vector. The matrix kH is obtained through a

recursive process of updating the previous inverse Hessian matrix

approximation, and 0H is generally chosen to be the identity matrix I. In fact,

the updating matrix 1kH + is chosen to satisfy the so-called Quasi-Newton

equation:

 1k k kH y S+ = (I.4)

Where 1k k ky g g+= − and 1k k ks w w+= − . To improve the performance of QN

methods, we propose to use the following three parameter family of updates

(see [14]):

 1(, ,) [()]
T T

T Tk k k k k k
k k k k k k k k k k k kT T

k k k k k k

H y y H s sH H y H y v v
y H y s y

φ θ λ φ θ
λ+ = − + + (I.5)

Where

 k k k
k T T

k k k k k

s H yv
s y y H y

= − (I.6)

142

 Here, kφ is the parameter proposed by [15], kθ is a scaling parameter

proposed by [16], and kλ is the parameter proposed by [17] to improve the

performance of BFGS updates proposed independently by Broyden in [15],

Fletcher in [19], Goldfarb in [20] and Shanno in [21]. Note that the update

formula given in Equation I.5 combines the features and merits of the above

three classes of updates. In practice, we note that a particular class of QN

methods may be ‘good’ in solving certain types of optimization problems

efficiently, however, their efficiencies may degenerate when they are applied to

solve other categories of problems (see [23], for instance).

 Based on the above observations, the ideal situation would be that

relative merits of different QN methods are adopted into the design and

development of new algorithms. This lead us the introduction of the following

self-scaling parallel Quasi-Newton (SSPQN) methods.

 Self-Scaling Parallel Quasi-Newton (SSPQN) Algorithms

1. Initialization

 Set initial values:

 0w = the initial random value of the weights;

 0H = the initial Approximation Inverse Hessian, say I;

 ε = the accuracy requirement; 510− for instance;

 k = the iterations; k=0 initially;

143

2. Compute the function and gradient values

Let ()k kf f w= and ()k kg f w= ∇

3. Compute the parallel search directions

Let J be the number of processors available for computing the search

directions simultaneously. Compute in parallel,

 (, ,)kj k kj kj kj kd H gφ θ λ= − (I.7)

4. Perform the parallel line searches

Along each search direction kjd , perform inexact line searches to

determine the step-size in parallel to satisfy the following Wolfe

conditions:

 1() () T
k jk kj k jk kj kjf w d f w g dα ρ α+ ≤ + (I.8)

and

 2()T T
k jk kj kj k kjg w d d g dα ρ+ ≥

(I.9)

Where 10 0.5ρ< < and 1 2 1ρ ρ< < are some positive small quantities.

Points satisfying conditions of equation (I.8) and (I.9) are called

‘successful points’.

144

5. Choose the minimum point

If Successful points are found from more than one search directions, let

*
kd denoted the direction that attained the minimum function value, and

*
kα is the step size. That is

 * *

1
() min ()k k k k kj kjj m

f w d f w dα α
≤ ≤

+ = + (I.10)

6. Generate the new iteration points

 Let * *
1k k k kw w dα+ = + , 1 1()k kf f w+ += and 1 1()k kg f w+ += ∇

7. Test for Convergence

Apply the following convergence criterion:

 1 1max{1, }k kg wε+ +≤ • (I.11)

If condition (1.11) is satisfied, then stop; otherwise proceed to step 8.

8. Compute the approximate inverse Hessian

Compute 1kH + according to equation I.5.

9. Repeat the process

Set k=k+1 and repeat the process from step 3

