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VIII

Summary 
 

This thesis presents a study of using artificial neural networks in predicting 

stock index increments. The data of five major stock exchange indices, DAX, 

DJIA, FTSE-100, HSI and NASDAQ, are applied to test our network model. 

Unlike other financial forecasting models, our model directly uses the 

component stocks of the index as inputs for the prediction. For the neural 

network training, a trust region dogleg path algorithm is applied. For 

comparison purposes, other neural network training algorithms are also 

considered, in particular, optimization techniques with line searches are 

applied for solving the same class of problems. Computational results from five 

different financial markets show that the trust region based neural network 

model obtained better results compared with the results obtained by other 

neural networks. In particular, we show that our model is able to forecast the 

sign of the index increments with an average success rate above 60% in all the 

five stock markets. Furthermore, the best prediction result in our applications 

reaches the accuracy rate of 74%.  Another major contribution of the thesis is 

the development of artificial neural network models, including component-

based input selection, internal architecture and preprocessing of the sample 

data. Based on individual and interactive sensitivity analysis on the three major 

factors in network modeling, our results generalize some valuable 

recommendations on neural network constructions.  

 

The novel features of the model are the component-based prediction scheme 

and the introduction of trust region learning algorithms for the network training, 



 
 
 
 

 
 

IX

both of which are becoming the key issues in the neural network based 

financial forecasting. This research may be helpful for both the stock market 

practitioners and investors.  
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Chapter 1  
 
Introduction and Thesis Overview 

 
In Chapter one, we provide the motivation for this research and define its 

scope. Specifically, it addresses the following questions: 

1. Are financial markets predictable? 

2. What are the currently available technologies for financial market 

prediction? 

3. What are the advantages of artificial neural network in financial 

forecasting? 

4. What is the scope of this thesis? 

 

1. 1 Predictability of Financial Markets  

 

Financial time series forecasting continues drawing considerable attention both 

within the academic community and from the financial market practitioners. 

Whether financial market is predictable has been a hot research topic for many 

years. Generally, there are two main schools of thought in terms of the ability 

to profit from the equity market. The first school believes that no investor can 

achieve above average trading advantages based on the historical and present 

information. In another words, the financial market is unpredictable. The major 

theory includes the Random Walk Hypothesis and the Efficient Market 

Hypothesis. The Random Walk Hypothesis states that price on the financial 

market wanders in a purely random and unpredictable way. Each price change 
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occurs without any influence by past prices. The Efficient Market Hypothesis 

states that the markets fully reflect all of the freely available information and 

prices are adjusted fully and immediately once new information becomes 

available. If this is true then there should not be any profit for prediction, 

because the market will react and compensate for any action made from this 

available information. In the actual market, some people do react to 

information immediately after they have received the information while other 

people wait for the confirmation of information. The waiting people don’t react 

until a trend is clearly established. Because of the efficiency of the markets, 

returns follow a random walk. If these hypotheses come true, it will make all 

prediction worthless. While, Taylor provides compelling evidence to reject the 

random walk hypothesis and thus offer encouragement for research into better 

market prediction [48]. In fact, even the stock market price movements of 

United States and Japan have been shown to confirm only to the weak form of 

the efficient market hypothesis. Also, Solnik studied 234 stocks from eight 

major European stock markets and indicated that these European stock 

markets exhibited a slight departure from random walk [6]. My research 

conducted here would be considered a violation of the above two hypotheses 

for short-term trading advantages in financial markets. The second school’s 

view is that the security prices cannot adjust rapidly to new information. In 

another words, the current price of a security in financial markets can’t fully 

reflect all the information currently available about the security, thus it’s 

possible to get excess profit above average market return by financial 

forecasting under technique or fundamental analysis.  
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1. 2 Artificial Neural Networks for Financial Forecasting  

 

Over the past four decades, the field of artificial intelligence has made great 

progress toward computerizing human reasoning. Nevertheless, the tools of AI 

have been mostly restricted to sequential processing and only certain 

representations of knowledge and logic. A different approach to intelligent 

systems involves constructing computers with architectures and processing 

capabilities that mimic the processing characteristics of the brain. The results 

may be knowledge representations based on massive parallel processing, fast 

retrieval of large amount of information, and the ability to recognize patterns 

based on experience. The technology that attempts to achieve these results is 

called neural computing, or artificial neural networks (ANN).  

 

As an emerging and challenging computational technology, neural networks 

offer a new avenue to explore the dynamics of a variety of financial 

applications. Primarily offering time series forecasting and pattern-recognition 

capabilities, neural networks complement algorithmic, statistical and other 

artificial intelligence approaches for supporting financial decision-making and 

problem solving. Their ability to model non-linear dynamics, to deal with noisy 

data and their adaptability are potentially useful for a wide range of financial 

decision-making. In recent years, numerous financial applications based on a 

neural network approach have been developed in various areas such as stock 

market forecasting, foreign exchange market forecasting, bankruptcy 

prediction, credit scoring, investment screening and loan underwriting. My 
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research work is mainly focused on the application of artificial neural networks 

on financial time series forecasting.  

 

In many financial decision making areas, ANN are supplementing or taking the 

place of statistical and conventional expert systems (ES) approaches, as the 

artificial neural networks approach provides features and performance 

advantages not available in the other types of systems.  

 

The non-linear characteristics of neural networks make them a promising 

alternative to traditional linear and parametric methods. Generally, one 

chooses a non-linear model over a linear model when the underlining 

relationships between the variables are either known to be non-linear, or are 

not known. Conventional linear techniques cannot capture non-linear patterns 

and trends in the relationships between and within stock and bond price 

movements as well as cannot distinguish between random noise and non-

linear relationships. Financial markets, such as stock and foreign exchange 

markets, are affected by many highly interrelated economics, political and even 

psychological factors, and these factors interact with each other in a very 

complex manner. Therefore, the movements of financial markets are nonlinear 

and full of noisy and complex relationships between the variables. So, when 

comparing with conventional linear statistical models, neural networks may 

provide a better model to capture the underlying relationships between the 

financial ratios and the dependent variables.  
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Neural networks also provide many advantages when comparing with the 

conventional non-linear parametric models, such as multiple regression and 

ARIMA: (1). Distributional assumptions are required for error terms for all the 

parametric models, and regression model in particular. However, as non-

parametric models, neural networks can easily incorporate multiple sources of 

evidence without simplifying assumptions concerning the functional form of the 

relationship between output and predictor variables. When such statistical 

assumptions (distribution, independence of multiple features, etc.) are not 

valid, NNs that do not rely on these assumptions provide better generalization 

properties and seem to be better suited to handle small sample problems. (2). 

Parametric statistical models require the developer to specify the nature of the 

functional relationships between dependent and independent variables. NNs 

use the data to develop an internal representation of the relationship between 

the variables so that a priori assumptions about underlying parameter 

distributions are not required. (3). Most parametric statistical models require 

that the input variables be linearly separable. When financial ratios and 

aggregate account balance are used as inputs, this requirement can be easily 

violated. So, in financial applications, NNs are more suitable to be used than 

conventional statistical models. (4). Within a parametric model, outliers in a 

data set influence the size of the correlation coefficient, the average value for a 

group, or the variability of scores within a group. Those multivariate outliers are 

even harder to detect since the value for each individual variables are within 

bounds. There are numerous aspects of NNs that make them more robust with 

respect to outliers. Research has shown that NNs are more robust than 
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regression when outliers are present in the data (Marques et al., 1991; 

Subramanian et al., 1993) [35, 51] 

 

In summary, NNs applied as non-parametric models are not constrained by 

distribution-related requirements as most traditional statistical models. The 

non-parametric NNs model may be preferred over traditional parametric 

statistical models in those situations where the input data does not meet the 

assumptions required by the parametric model, or when large outliers are 

evident in the dataset.  

 

Artificial neural networks outperform expert systems in the following four 

aspects: (1). An expert system (ES) depends on the representation of the 

expert’s knowledge as a series of IF-THEN conditions or rules, known as the 

rule based approach. The extracting knowledge and rules from the experts 

presents a very serious bottleneck. While, neural network systems do not 

exhibit these same shortcomings, primarily they do not require a predefined 

knowledge base. (2). Furthermore, once the expert system is functional, 

making even minor changes to the knowledge base can be a complex and 

expensive process because of the intricate relation between the rules forming 

the knowledge base. Thus expert systems are generally cost effective only for 

frequent recurring problems of a very narrow scope that can be solved by a 

knowledge base that is essentially static. While for neural networks, changes in 

the problem do not require reprogramming; the system simply retrains itself 

based on the new information by adjusting nodal weights. Best of all, neural 

network is fundamentally a dynamic, rather than a static system. The ability of 
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neural networks to self-organize and to function without a pre-programmed 

knowledge base gives it an important additional advantage in financial 

applications – protection of sensitive information. (3). Another problem with 

expert systems is that ES can’t really deal with erroneous, inconsistent, or 

incomplete knowledge because most ES rely on rules that represent 

abstracted knowledge of the domain and thus the ES are not able to reason 

from basic principles. It is also unable to perform effectively when the input 

information is incomplete, ambiguous (noisy), or partially erroneous. It is in this 

area that neural networks may offer the clearest advantage over expert 

systems. Much of the information in real world financial market is noisy, 

incomplete, and full of error. Neural networks, however, can work with noisy 

and incomplete inputs and produce the correct output by using the particular 

ability of generalization. (4). Neural networks are also capable of abstraction –

i.e., inferring the “ideal set” from a non-ideal training set. This process involves 

determining the most prominent characteristics of the training set, then using 

those characteristics to construct an internal representation of the idea or 

archetypical pattern.  In fact neural networks, unlike ES, can potentially exceed 

the ability of human experts.  

 

Though neural networks have many advantages that make them outperform 

other conventional methods, they also have some disadvantages on which we 

must also pay much attention. (1) A major and inherent problem of artificial 

neural network is that the internal structure of the neural network makes it 

difficult to trace the steps by which the output is reached. In other words, NNs 

can’t tell the user how it processes the input information or reach a conclusion. 
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The output cannot be decomposed into discrete steps or series operations, as 

would be possible with an ES rule base or any conventional statistical 

methods. The only way to test the system for consistency and reliability is to 

monitor the output. (2). The absence of a clearly identifiable internal logic could 

be a severe stumbling block in the acceptance of neural networks, at least for 

some applications. Many important business decisions made by human suffer 

from the same shortcoming. (3). On the other hand, the NNs learning process 

requires a large number of training examples, hence can involve substantial 

time and effort. For most conceivable financial applications, especially financial 

forecasting, ample training examples would be readily available, so relatively 

little time or effort would be involved in data collection. Furthermore the time 

and effort required to train NNs would be much less than that required to 

extract and translate an expert’s knowledge base for an ES, as well as less 

than required to set up a suitable conventional nonlinear statistical model. So, 

for my particular research area, this disadvantage of NNs seems to be their 

advantages compared to other methods, for time series data is very 

convenient to available for financial markets applications.  

 
1. 3 Current Securities Markets for Forecasting   

         

Securities markets, such as stock markets and bond markets, are where 

buyers and sellers are brought together to transfer securities. Capital market 

instruments are fixed-income obligations that trade in the secondary market. 

Bond is the major category of capital market instruments. Common stock 

represents ownership of the listed firms on the equity markets. Owners of the 
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common stock of a firm share in the company’s successes and failures. On the 

other hand, many other economics, industrial, political and even psychological 

factors may also affect the stock prices in an interactive and very complex 

manner. Thus stock markets are relatively more unpredictable and more risky 

to invest compared with fix-income securities markets. From this point of view, 

the research of financial forecasting in the stock markets will be of great 

significance for both of the market investor and practitioners.   

 

This thesis is mainly focused on the five major stock exchange markets in the 

world, including four major National Security Exchanges of New York Stock 

Exchange (NYSE), London Stock Exchange (LSE), Frankfurt Stock Exchange 

(FSE), Hong Kong Stock Exchange (HKSE) and the largest over-the-counter 

(OTC) security market in the world, NASDAQ. Security market indices are 

used to track performance of segments of the market and are commonly used 

as benchmarks to measure portfolio performance. A good prediction of the 

indices may do great help for the prediction of the performance of the segment 

of the corresponding stock markets. The details about indices corresponding to 

the above five major stock exchange markets are listed in Table 1.   

 

Figure 1 shows the five major stock market indices (including DAX, DJIA, 

FTSE-100, HSI and NASDAQ) daily close prices from 04-Jan-1994 to 30-Sep-

2002. Figure 2, shows the return of these indices daily close prices during the 

same period. Of this period, the range of daily returns of the five different 

indices is shown in Table 2. From both of the Table 2 and Figure 2, it’s obvious 

for us to discover that HSI and NASDAQ indices have greater volatilities in 
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daily return fluctuations than those of DAX, DJIA and FTSE 100. Averagely, 

both HSI and NASDAQ have about 30% volatilities in returns during the past 8 

years, while FTSE 100 having only about 10% during the same time. For 

stocks and securities that move together with their corresponding index, a 

reliable predictor of that index would benefit investors and financial institutions 

in many aspects. 

Index 
Code 

Index Full 
Name  

Stock 
Exchange 

Market 
Location 

Market 
Type 

Dominant 
Weighting 
Schemes 

Number of 
Component 
Stocks 

DAX 
Deutsche 

Aktienindex 
Index 

Frankfurt 
Stock 

Exchange 
Germany 

National 
Security 
Exchang

es 

Value-
Weighted 

Series 
30 

DJIA 
Dow Jones 
Industrial 

Average Index 

New York 
Stock 

Exchange 

United 
States 

National 
Security 
Exchang

es 

Price-
Weighted 

Series 
30 

FTSE10
0 

Financial 
Times Stock 

Exchange 100 
Index 

London 
Stock 

Exchange 

Great 
Britain 

National 
Security 
Exchang

es 

Value-
Weighted 

Series 
100 

HSI Hang Seng 
Index 

Hong 
Kong 
Stock 

Exchange 

Hong 
Kong 

National 
Security 
Exchang

es 

Value-
Weighted 

Series 
33 

NASDA
Q 

National 
Association of 

Security 
Dealers 

Automated 
Quotation 

/ United 
States 

Over-
the-

Counter 
Market 

Value-
Weighted 

Series 
100 

 

Table 1, Details of Major Stock Indices for Forecasting 

 

 DAX DJIA FTSE100 HSI NASDAQ 

From 
-9.13144% -7.18304% -5.43548% -13.7004% -9.8574%

To  
7.845208% 6.348753% 4.998544% 18.82361% 18.77132%

Volatility  
16.97665% 13.53179% 10.43402% 32.52405% 28.62871%

 

Table 2, Daily Returns Range of DAX, DJIA, FTSE-100, HSI and NASDAQ 
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Figure 1, Five Stock Markets Indices Daily Close Prices from 4/1/1994 to 
30/9/2002  
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Figure 2. The Returns of the Indices Daily Close Prices from 04-Jan-1994 to 
30-September-2002 (From Up to Down the Returns are: DAX, DJIA, FTSE, 
HSI, NASDAQ)  
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1. 4 Univariate & Multivariate Models   

 

Practically, financial markets are normally predicted based on fundamental and 

technical analysis. Neural networks are often trained by both technical and 

fundamental indicators to produce trading signals. Fundamental and technical 

analysis could be simulated in neural networks. For fundamental methods, 

retail sales, gold prices, industrial production indices, and foreign currency 

exchange rates, etc. could be used as inputs. For technical methods, the 

delayed time series data could be used as inputs. Depending on what kind of 

prediction indicators are used, technical, fundamental or both, the existing 

neural network models could be classified as univariate or multivariate models. 

A univariate model uses only the technical indicators or past value of the time 

series for building a forecaster. The disadvantage of the univariate model is 

that it doesn’t consider the environmental effects and interactions among 

different factors other than outputs. A multivariate model uses both of the 

technical and fundamental indicators as inputs. In another words, besides the 

past value of the time series, additional relevant information such as financial 

ratios/leverage of the company, other securities / foreign exchange market 

indices, interest rate, etc. are all used to build a forecaster. The disadvantage 

of the multivariate model is that the selection of inputs has always been a 

difficult task [24]. To overcome the above difficulties, our research constructs a 

simple univariate model, which uses only the past values of the component 

stocks’ price time series to forecast the corresponding stock market index 

increments.  
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1. 5 Scope of the Thesis    

 

In this thesis, we would investigate the impact of prediction scheme, training 

algorithm, input selection method, network internal architecture and pre-

processing of the sample data on the neural network performance in order to 

construct a better model for financial forecasting. Specifically, we seek to 

address the following research questions:  

 

(i) Is it a good way to forecast the stock index increments by directly 

using the past value of its selected component stocks’ price time 

series? 

(ii) What kind of optimization algorithms is more suitable for the neural 

network training in financial forecasting, the trust region optimisation 

algorithms or the line search based optimisation algorithms?   

(iii) What is the individual impact of each of these three major factors in 

neural network construction on the network performance? 

(iv) Are there any interrelationships between these major factors in 

network construction? If such interrelationships exist, how do they 

affect the impact of each factor on the network performance?   

 

To provide some insights into these questions as well as to obtain better 

prediction accuracy in financial forecasting, we build up a component-based 

neural network model training by trust region optimization algorithms and 
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compare it with neural network models training by other kinds of optimization 

algorithms.  

 

Our proposed model is novel in some aspects. First, we introduced a 

component-based univariate neural network model to predict the stock index 

increments. The idea is prompted by the fact that no matter whether the stock 

index is calculated by value-weighted or price-weighted methods, its price 

changes are heavily affected by its component stock price’s changes. Thus, 

using the past value of its components stock’s time series in addition to its own 

to build a forecaster is an innovative way for stock index prediction. Secondly, 

we use a class of trust region algorithms to train the neural networks. Unlike 

other trust region algorithms, this class of curvilinear search algorithms are 

applied to solve the trust region problems arising from the unconstrained 

optimization. 

 

This research aims to make some contributions in the following aspects: 

 

• In addition to a comprehensive survey in neural network applications in 

finance, we provide an integrated review of the theory and practice in two 

streams of literature: 1) training algorithms for neural networks, 2) financial 

market prediction analysis scheme.  

• Introducing a component-based neural network forecasting model. Unlike 

other financial forecasting models, our model directly uses the component 
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stocks of the index as inputs for the prediction. We show that impressive 

results could be obtained by this kind of model.  

• Applying a class of trust region dogleg path algorithms for neural network 

training process. Computational results from five different financial markets 

show that the trust region based neural network model obtained better 

results compared with the results obtained by neural networks training by 

other kinds of algorithms. In particular, we show that our model is able to 

forecast the sign of the index increments with an average success rate that 

is statistically significant.  

• Investigating the impact of three major factors on the network performance 

by individual and interactive sensitivity analysises.  We also generalize 

some valuable recommendations on the artificial neural network 

constructions.  

 

This thesis is organized as follows. In chapter 2, we review the literature in 

neural network based financial forecasting, particularly in the two streams of 

learning algorithms and prediction schemes. We also give a brief introduction 

on trust region optimization algorithms and conventional gradient decent 

optimization methods. In chapter 3, we begin with the basic feedforward neural 

network model, which is the most commonly used neural network model for a 

variety of applications in finance and accounting [25]. We develop the model 

into a component-based financial forecasting model by directly using the 

component stocks of the index as inputs for the prediction. In chapter 4, we 

determine the optimal network topology for the purposed model by plenty 

experiments in five stock markets. Variable sensitivity analysises are also 
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conducted and some recommendations on neural network constructions are 

generalized. Computational results and comparisons are given in chapter 5 

and it follows by conclusions in chapter 6. 
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Chapter 2  

Literature Review  

In chapter 2, we first provide a comprehensive survey on the literature of 

neural network applications in finance over the last decade. Furthermore, we 

make a survey on two major streams of literature related to the neural network 

based stock index forecasting: selection of learning algorithms for network 

training and stock index prediction analysis scheme.  

 
 
2.1 General Review of Neural Network Applications in Finance 
 
 
Artificial neural network is an information processing technology inspired by 

studies of the brain and nervous systems. After falling into disfavor in the 

1970’s, the field of neural networks experienced a dramatic resurgence in the 

late 1980s. The renewed interest developed because of the need for brainlike 

information processing, advances in computer technology, and progress in 

neuroscience toward better understanding of the mechanisms of the brain. It 

was the development of back-propagation in 1986 that enable neural networks 

to solve everyday business, scientific, and industrial systems and from then on 

neural networks have been widely applied to many real-world situations. Since 

the 1990’s, the drastic breakthrough of the computing technology has led to an 

increasing amount of neural network research in the specific field of financial 

functional applications. 

 



 
 
 
 

 
 

18

In order to understand the current research situations, as well as the future 

research trend in neural network applications in finance, we did a 

comprehensive survey of research works conducted in this field during the last 

decade (1988 ~ 2002). There are about 253 research articles (123 journal 

articles, 121 conference proceedings and 9 working papers and doctor 

dissertations) included in this survey. Of the total of 54 international journals 

surveyed, five journals published the most papers on neural network 

applications in finance: Journal of Management Science, European Journal of 

Operational Research, Decision Support System, IEEE Transactions on Neural 

Networks and Computer and Operational Research. On the other hand, the 

proceedings included in this survey are all come from IEEE international 

conferences (See Appendix A and B for details). A classification of these 

articles by year reveals that an increasing amount of neural network research 

has been conducted for a diverse range of financial applications over the last 

decade. Most of these research findings point out that neural network 

technology could be successfully used in finance and most of the time is 

superior to other techniques or technologies. 

 

Figure 3 shows the distribution of articles published by year in the last decade. 

Overall the amount of research has been increasing in the last decade. It was 

noted that the number of research studies has increased significantly from 

1988 to 1994 and has slightly decreased from 1994 to 1997. On the other hand, 

after the significant drop in 1998, the applications began to increase 

continuously again after 1999. The possible explanation for the suddenly drop 

in 1998 is that researchers are beginning to have more interest to conduct 
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research in other artificial intelligence techniques, such as genetic algorithm 

and fuzzy logic. And the new trend of increase appeared after 1999 may be 

caused by the newly developed interest to integrate neural networks with other 

techniques such as other artificial intelligence techniques, conventional 

statistics methods, and Grey theory or Chaos theory.  
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Figure 3 Distributions of Articles by Year 

 

In our research, financial applications of neural networks are classified into 7 

main categories: bank management, corporation finance, financial markets, 

insurance, real estate, risk management and financial regulation. Our survey 

disclosed that, over the last decade, almost two thirds of the financial 

applications by neural networks are conducted in the particular field of financial 

markets forecasting (see figure 4).  Furthermore, figure 5 shows that stock 

market application is the most popular application field among all the six sub 
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categories in financial market applications, as well as the most popular 

application field among all the sub applications in finance area.  
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Neural network applications in the field of finance are mainly focused on either 

time series forecasting or classification, while time series forecasting is more 

popular in neural network financial applications over last decade. Time series 

forecasting models assume that there is an underlying process from which 

data are generated and that the future values of a time series are solely 

determined by the past and current observations. Neural networks are able to 

capture the autocorrelation structure in a time series even if the underlying law 

governing the series is unknown or too complex to describe. Numerous neural 

network models have been proposed and used for forecasting (Zhang et al., 

1998).  The most popular and successful model in financial forecasting is the 

feedforward multilayer network or the multilayer proceptron (MLP). Our 

research work also makes financial time series forecasting using the 

feedforward multilayer network.  

 

It seems that the development of neural networks application in finance 

experienced two main development stages over the last decade. The first 

stage ranges from 1988 to 1997; during which period, most of the financial 

application areas are established. Articles published in this period mainly 

focused on introducing neural networks as a new practical approach in each 

potential area in financial field, as well as to demonstrate that neural network 

techniques improve the accuracy or effectiveness of the application, superior 

to other conventional statistical technologies or at least give some insight in 

some new/potential areas. In short, researches conducted in this stage are 

mainly focused on whether neural network technique on its own is superior to 

other conventional techniques. All the neural networks properties, advantages 
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and disadvantages are discussed and research in detail.  Regression analysis, 

discriminant analysis, human judgement, logit and ARMA/ARIMA model are 

the five most common techniques compared with neural networks in financial 

applications. A very large portion of research has confirmed that the 

performance of a neural network is better than that of other techniques. The 

second stage starts from 1998 to now and the trend is still going on. 

Researches conducted in the second stage are mainly focused on setting up 

new architectures or training algorithms for the neural networks or even 

integrating neural networks with various other techniques in the financial 

applications. For example, networks of many sub neural networks in various 

structures, fuzzy neural networks and genetic adaptive neural networks are all 

developed in this period. Though improved accuracy could be obtained by 

integrating neural networks with other techniques, the hybrid forecasting 

models or systems are normally too complex or impractical to use. A rule of 

thumb for obtaining good generalization from a forecasting system is to use the 

simplest model that will fit the data (Reed, 1993). Under this consideration, our 

research work introduces a new training algorithm as well as a new scheme for 

index forecasting in order to improve the network performance instead of 

setting up a more complex hybrid system.  

 

2.2 Learning Algorithms in Finance Applications 

 

In neural network literature, learning algorithm has attracted considerable 

attention. Once the decision to use neural network is made, the researcher 
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must decide which learning algorithm to use. Neural networks effectively filter 

input to produce output. More specifically, a neural network looks for patterns 

in a set of examples applied to the input layer of the network, and learns from 

those examples to produce new patterns, the output. Knowledge within the 

neural networks is maintained in the weights. The process of learning is 

implemented by changing the weights until the desired response is attained at 

the output nodes.  In a NN with linear transfer functions, the weights can be 

derived using matrix manipulation. In a NN with non-linear transfer functions, 

two learning mechanisms can be used to derive the weights: unsupervised 

learning and supervised learning. Unsupervised learning is analogous to a 

cluster analysis approach and is mainly used in classification applications of 

NNs. Supervised learning accepts input examples, computes the output 

values, compares the computed output values to the desired output values or 

target values, and then adjusts the network weights to reduce the difference. 

The learning process is repeated until the difference between the computed 

and target output values are an acceptably low value.  

 

The most common supervised learning algorithm is back-propagation (BP) 

(Rumelhart, 1986). Back-propagation employs a gradient-descent search 

method to find weights that minimize the global error from the error function. 

The error signal from the error function is propagated back through the network 

from the output layer, making adjustments to the connection weights that are 

proportional to the error. The process limits overreaction to any single, 

potentially inconsistent data item by making small shifts in the weights. The 

commonly cited disadvantages of the back-propagation learning algorithm are 
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that the training time usually grows exponentially as number of nodes 

increases and there is no assurance that a global minimum will be reached.  

To overcome the convergence problem, a very small step size or learning rate 

must be used to guarantee asymptotic convergence to a minimum point. But 

small learning coefficients lead to slow learning. The momentum factor was 

added to back-propagation algorithm to act as a low-pass filter on the weight 

adjustment terms. It allows a low learning coefficient with faster learning. But 

incorrect specifying of learning rate and momentum term can lead to either 

extremely slow convergence or to oscillatory behaviour without convergence. 

Thus further researches are conducted to improve the back-propagation 

algorithms under two directions; either speed up the converging procedure or 

assist in constructing globally convergence.   

 

The majority of the accelerating techniques can be classified as conjugate-

gradient (CG) methods or quasi-Newton (QN) algorithms. Leonard and Kramer 

improved the BP algorithm with conjugate gradient methods in 1990 [32]. This 

algorithm uses the second derivative of the error function to exploit information 

regarding both the slope and curvature of the response surface. When 

compared to BP, the conjugate-gradient algorithm has been shown to produce 

comparable results with much faster training times (Charitou and 

Charalambous, 1996; Wong 1991) [12, 53]. Ballo also speedup the training 

procedure of BP algorithm by using a nonlinear least-square optimization 

algorithm enhanced by a quasi-Newton (QN) algorithm in 1992 [8]. QN 

methods were criticized because they require more computation time and 

memory space to update the Hessian matrix (Watrous 1987; Nahas 1992). 



 
 
 
 

 
 

25

Various modified QN methods are therefore proposed recently for training 

neural networks in order to speed up the rate of the convergence and/or to 

reduce the required memory space (Sectiono and Hui 1995; Robitaille 1999; 

Denton and Hung 1996; McLoone and Irwin 1999). Most recently, Phua and 

Ming (2000) proposed a class of parallel nonlinear optimization techniques 

based on QN methods to improve the rate of convergence of the training 

procedure for neural networks. Besides accelerating the convergence speed, 

computational results also show that this parallel QN method outperforms 

other existing methods by far. Our research work will taken this class of 

parallel QN methods as benchmark to compare with our proposed learning 

algorithms in neural network training process for real financial time series 

forecasting.   

 

A major drawback of the gradient descent algorithm is that there is no way of 

determining in advance whether the architecture and selected methods will 

converge. Real error surfaces, with multiple weight dimensions, tend to have 

very complex features including dents and ravines. Although the gradient-

descent method always follows the steepest path towards the bottom of the 

error surface, it may get a stuck within a large dent or ravine on the side of the 

surface. Numerous methods are available to compensate for this tendency to 

find local minima. Some methods adjust the weight derivation process to 

maintain the momentum established by previous adjustments. Other methods 

involve starting from a different point on the error surface by using a different 

set of initial weights and ensuring that the results are similar. Still other 
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methods involve the dynamic adjustment of the network architecture by 

trimming modes or connections between nodes.  

 

Evolutionary programming is a stochastic optimization technique that has been 

used in finance problems as an alternative to the conventional gradient 

methods. Evolutionary programming involves two processes – mutation and 

selection. The algorithm starts with an original population of weight sets that 

are evaluated by examining the corresponding outputs. Random mutation of 

the parents creates new solutions. Specifically, a Gaussian random variable 

with mean zero and variance equal to mean squared error of the parent 

perturbs each weight and bias term. Each offspring is evaluated, and the n 

‘best’ solutions are retained as parents for the next iteration.  

 

Genetic algorithms extend this mutation and selection process by adding a 

recombination phase to create the child notes that are evaluated. Each child is 

formed as a cross between two parents. Goldberg (1994) cites numerous 

advantages of genetic algorithms: they can easily solve problems that have 

many difficult-to-find optima, they are noise tolerant, and they use very little 

problem-specific information. They work with the coding of parameter set, not 

the specific value of the parameters. The major disadvantage of cited for 

genetic algorithm is the difficulty in specifying the optimal parameter settings 

for the model. A genetic algorithm was used by Huang (1994) to predict 

financially distressed firms. Levitan and Gupta (1996) applied a genetic 

algorithm to the cost driver optimization problem in activity-based costing. By 
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far, genetic algorithms have been demonstrated as possible techniques to aid 

in the development of the neural network model (Back, 1996; Hansen 1998).  

 

Optimal Estimation Theory has also been applied to finance problems as an 

alternative learning algorithm to back-propagation. Optimal Estimation Theory 

introduced by Shepanski (1988), uses a least squares estimator to calculate 

the optimal set of connection weights for the presented training set. This 

method significantly reduces the time required to train a network, but it is not 

known whether it achieves similar performance (Boucher 1990; Boritz 1995) 

 

Our review of the previous literature suggests that much of the literature on 

neural network learning algorithm in last decade are mainly focused on line 

search based optimization algorithms such as BP, modified BP, CG and QN 

methods. To our knowledge, there has been no research introducing the class 

of trust region optimization algorithms in the neural network training process for 

financial forecasting. As an alternative to the conventional line search based 

gradient methods, trust region methods are a class of algorithms for the 

solution of nonlinear nonconvex optimization problems that covers both 

unconstrained and constrained problems. In this study, we seek to bridge the 

gap between the literature on the trust region optimization algorithm and the 

financial forecasting by neural networks.  Performance comparison will be 

conducted between the neural network models training by trust region 

algorithms and conventional gradient descent algorithms.  

 

2.3 Stock Index Forecasting with Neural Networks  
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Reference [3] indicates that conventional statistical techniques for forecasting 

have reached their limitation in applications with nonlinearities in the dataset. 

Artificial neural network, a computing system containing many simple nonlinear 

computing unites or nodes interconnected by links, is a well-tested method for 

financial analysis on the stock markets [55]. Neural networks have been shown 

to be able to decode nonlinear time series data which adequately describe the 

characteristics of the stock markets [2]. In the past decades, neural networks 

have been explored by many researchers for financial forecasting. Among 

them, some researches are conducted particularly on forecasting the value of 

a stock index [1, 3, 5, 23, 29, 39, 40, 44-46, 49, 50, 52, 54].  

 

Wittkemper (1996) conducted a comparative study between seven traditional 

forecast models based on regression and averages with two different types of 

neural network models in forecasting the systematic risk as well as the market 

index of German stock markets. In the analysis, 67 most traded stocks in the 

German markets are considered. For each stock the daily stock market data or 

yearly financial statements from the period 1967 to 1986 are used. From the 

financial statements of the companies, totally 32 financial statement variables, 

such as operation/financial leverages, debt/equity ratios, growth rate, etc, are 

considered as the inputs for the neural network forecasting. Neural networks 

outperformed all the traditional models in the one-step-ahead forecasting. For 

the general regression neural network models, the one using the historical 

price data as the only input variable performed better than the other one using 

all fundamental financial variables. But, when genetic algorithms are used to 
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choose the optimal inputs from the fundamental variables for the network 

model, the resulting model outperformed all other existing models in 

comparison.  

 

Antonio and Claudio (1996) applied neural networks to forecast the general 

index of share prices at the Santiago de Chile Stock Market. Time series with 

daily values of the index and of total amount of transactions were used to train 

the neural networks. A complex multilayer architecture containing two kinds of 

memories was used to design the neural network. Compared to traditional 

simple architectured neural network model as well as other statistical methods, 

this model produced better results in stock index forecasting. They also show 

that a time delay of ten labor days was sufficient to forecast.  

 
Yao and Poh (1998) reported the results for Kuala Lumpur Stock Exchange 

indices forecasting by popular used backpropagation neural networks. Time 

series of both stock index value and technical indicators were used as the 

inputs for the neural network forecasting. Based on the out-of-sample results, 

they found that for daily data, neural networks were much better than 

conventional ARIMA models. However, if weekly data were used, the neural 

networks did not show much improvement over the ARIMA model. The 

experiment shows that useful predictions can be made without the use of 

extensive market data or knowledge.  

 

Steven and Chun (1998) examined the out-of-sample performance of 

feedforward, recurrent and probabilistic neural networks in forecasting the 
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Singapore Stock Exchange index. Besides stock index price, total return index, 

dividend yield, turnover by volume and price/earnings ratio are all considered 

as the inputs for the network forecasting. The daily values consisting of 3056 

observations were used in their investigation; with the last 186 data points 

retained as out-of-sample testing periods. Their results showed that the 

arrayed probabilistic network tended to outperform recurrent and back 

propagation networks. However, case based reasoning tends to outperform 

the arrayed probabilistic network as well as the other techniques when 

mistakes were taken into consideration.  

 

Renate and Joaquin (2000) assessed the short-term predictive ability of the 

feedforward time delay neural networks in forecasting the Standard & Poor’s 

500 index. The S&P 500 index data used in this study covers 22 years, from 

1973 to 1994. Different time delayed time series of stock indices are used 

together as inputs for the neural network forecasting. This study suggested 

that there are no short-term correlations in this stock market time series, which 

is consistent with conventional statistical analysis.  

 

In order to increase the forecastability in terms of profit earning, Yao and Tan 

(2000) developed a profit based adjusted weight factor for backpropagation 

network training. Instead of using the traditional least squares error, they add a 

factor which certains the profit, direction and time information to the error 

function. Four major Asian stock market indices, Hong Kong Heng Seng Index, 

Malaysia Kuala Lumpur Composite Index, Japan Nikkei-225 and Singapore 

Straits Times Industrial Index together with the world economic benchmark 
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American Dow Jones Industrials Index are applied to this profit based adjusted 

network model. For each stock index, only the time series of historical index 

price are fed into the neural network model to make the one-day-ahead index 

forecasting. The results show that this new approach does improve the 

forecastability of neural networks.  

 

In a recent time series prediction application, the data sets used were series of 

S&P 500, NASDAQ and Dow Jones Industrial Average Indices for the period of 

1990-2000. Filippo (2000) reported the experience of forecasting the price 

value increments of these time series with backpropagation neural networks. 

One-step-ahead forecasting was made by feeding only the delayed index price 

time series to the network model.  They show that a neural network able to 

forecast the sign of the price increments with a success rate slightly above 

50% can be found.  

 

Liu and Yao (2001) developed an evolutionary neural network approach for 

Hong Kong Heng Seng stock index forecasting. In this approach, a 

feedforward neural network is evolved using an evolutionary programming 

algorithm. Both the weights and architectures are evolved in the same 

evolutionary process. The network may grow as well as shrink. Only the 

historical time series data of Heng Seng index are used for the one-step-ahead 

index forecasting. Experimental results show that the evolutionary neural 

network approach can produce very compact neural networks with good 

prediction.  
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Several observations are warranted. First, none of the previous studies in 

stock index forecasting considered the component stock prices as the inputs 

for the neural network based index forecasting. Besides the delayed value of 

the stock index itself, fundamental indicators (such as various financial 

statement variables, total trading volume of the markets and general economic 

indicators, etc) and technique indicators are often considered as the additional 

inputs for the network index prediction in the previous researches. Our study 

would show that component-based prediction scheme could also produce 

impressive results in the neural network based stock index forecasting. Second, 

both multi- and one-step-ahead forecasting methods with different forecast 

horizons are examined in the literature. Multistep forecasts are useful for long-

term forecasting and for the identification of major turning points in the stock 

index data. Single-step predictions are desirable for making short term buy or 

sell decisions. Single-step forecasting is also a good instrument for evaluating 

the adaptability and robustness of a forecasting technique (Refenes, 1993). 

Finally, the neural network out-of-sample performance is mixed, though most 

of previous studies show that neural network outperformed other techniques in 

dealing with nonlinear time series forecasting. We also notice that in the 

literature that there is no universally agreed upon set of performance measures. 

Both absolute and relative forecasting measures of performance have been 

employed.  
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Chapter 3  

Component-Based Forecasting Models 

 
In this chapter, we begin with the basic feedforward neural network model. We 

outline the basic structure, the computational scheme as well as the objective 

function of this model.  In the consideration that indices are always directly or 

indirectly affected by its component instruments even under different kinds of 

stock market indicator weighting schemes, we further extend the basic model 

to a component-based financial forecasting model. It different from the basic 

model in several ways: First, this model is particularly designed for financial 

indices forecasting. Second, we directly use the component instruments of the 

index to forecast the future index value. Third, a class of trust region algorithms 

that can solve both definite and indefinite optimisation problems are used for 

the network training. 

 

3.1 Basic Feedforward Neural Network Model  

 

For the purpose of conducting experiments, we choose a three-layered feed 

forward neural network architecture as the basic financial forecasting model, 

which is most commonly used in finance and accounting applications. The 

Figure 6 shows the structure of a basic feedforward neural network model. The 

input, hidden and output layers are noted as {X, H, Z} respectively. Here the 

input layer X has (m+1) neurons with X0=1, the hidden layer H have (n+1) 
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neurons with H0=1, and the output layer Z has k output values. Let w(L) denoted 

the weights at Level L.   

  
Let (Xp, Yp), p=1,2…P be the set of given input/output vectors for training the 

neural network. For each input Xpi (i=0,1…m), the neurons Hpj and Zpk are 

calculated according to the following equations:  
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Here, the transfer function f(1)  from the input to the hidden layer is the sigmoid 

function y=1/(1+e-x), and the transfer function  f(2)  from the hidden layer to the 

output layer is the linear function y=x. The training of the neural network is 

done by feeding the set of input-output vectors (Xp, Yp) to the neural networks 

and by minimizing the following objective function:       
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where w=w(1)∪w(2), represents the weights of the neural network. The error 

function g defined by (3) is the Mean-Squared Error (MSE). 
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Figure 6. The Basic Structure of the Feedforward Neural Networks 

 

3.2 Types of Stock Market Indices 

 

The three predominant stock market indicator series weighting schemes are: 

price weighted, value weighted, and unweighted. 

 

1). Price-Weighted Series. A price-weighted series is an arithmetic average of 

current prices; thus index price movements are directly influenced by the 

differential prices of the components. Computationally, a price-weighted index 

adds together the market price of each stock in the index and then divides this 

total by the number of stocks in the index. Because the index is price-

weighted, a high-priced stock carries more weight than a low-priced stock. The 
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divisor must be adjusted for stock splits and other changes in the portfolio. Let 

( )t PWI  be the price-weighted stock market index at time t, and m be the number 

of component stocks of ( )t PWI .  Then ( )t PWI  can be computed by  

 

                                           ( )
1

m

t PW j tj
j

I w p
=

= ∑                                             (4)  

where Ptj  is the price of the component stock j (Cj) at time t, and wj is the price 

weighting coefficient for Cj. The major price-weighted index is the Dow Jones 

Industrial Average index (DJIA).  

 

2). Market Value-Weighted Series. A market value-weighted series is 

calculated by summing the total value (current stock price times the number of 

shares outstanding) of all the stocks in the index. This sum is then divided by a 

similar sum calculated during the selected base period. This ratio is then 

multiplied by the index’s base beginning value. Let ( )t VWI  be the market value-

weighted stock market index at time t, and m be the number of component 

stocks of ( )t VWI .  Then ( )t VWI  can be computed by  
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where Ptj is the price of the component stock j (Cj) at time t, PBj  is the 

component stock j (Cj) at base year, and Nj is the number of shares 

outstanding at time t. IB is the base beginning value of the index. DAX, 

FTSE100, HSI and NASDAQ are all the major market-weighted indices.   
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3). Unweighted Price Indicators Series. In an unweighted price indicator series, 

all stocks carry equal weight regardless of their price or total market value. A 

$20 stock is just as important as a $400 stock and a small-size company is just 

as important as a large-sized company. Here it is assumed the investor makes 

and maintains an equal dollar investment in each stock in the index. In effect, 

you are working with percentage price changes. The price of an unweighted 

index may be calculated using two methods of arithmetic average or geometric 

average.  

 

3.3 Component-Based Feedforward NN Forecasting Model 

 

It’s obviously to notice that no matter what kind of indicator series weighting 

scheme are used, stock indices are always computed directly or indirectly from 

the values of their component instruments. So, when internal/external 

information related to a particular component stock is perceived, the price of 

that stock will change, and this will cause the corresponding index to change 

as well. Taken the National Association of Securities Dealers Automated 

Quotation System (NASDAQ) index as example, figure 7, shows the 

relationship between the index and its component stocks. Hence it is natural 

and logical to predict a market index by considering the prices of its component 

stocks. For predicting a general financial market index, we propose the 

following component-based forecasting model:  

                                            1 1 2( , ,..., , )t t t mt tI f C C C I+ =                                       (6) 
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where C1t, C2t,…, Cmt  are the closing prices of the component stocks C1, C2, 

….., Cm at time t, while It and It+1 are values of the market indices computed at 

time t and t+1, respectively.  The component-based forecasting model based 

on the basic structure of feedforward neural networks is called the Component-

Based Feedforward Neural Network Forecasting Model. Such model directly 

uses the past value of the selected component stock prices time series as 

inputs for the feedforward neural network model to predict the corresponding 

index. Figure 8 illustrates the structure as well as the particular input scheme 

for this model.  

 

As an application of the component-based neural network forecasting model, 

we apply the one-day ahead prediction for the five different stock market 

indices: DAX, DJIA, FTSE-100, HSI and NASDAQ. For each market index, we 

consider all stocks that served as component stocks of that index during the 

period of 4 January 1994 to 30 September 2002. Although some stocks served 

as component stocks for the corresponding index for only a part of the period, 

we also treat these stocks as potential candidates of inputs to our model.   

 
In this thesis, our proposed neural network model is trained by applying the 

Trust Region Indefinite Single Dogleg Path (TRISDP) algorithms proposed in 

[28]. Unlike other trust region algorithms, this class of curvilinear search 

algorithms are applied to solve the trust region problems arising from the 

unconstrained optimization. The curvilinear paths set by this algorithm are 

dogleg paths, generated mainly by employing Bunch-Parlett factorization for 

general symmetric matrices, which may be indefinite. These algorithms are 



 
 
 
 

 
 

39

easy to use and they are shown to be globally convergent. It is proved that 

these algorithms satisfy the first- and second-order stationary point 

convergence properties and that the convergence rate is quadratic under some 

common conditions [27]. We will show that this kind of trust region algorithm is 

robust and efficient in solving all the test problems. We refer the neural 

networks training by this class of algorithms as Trust Region Neural Networks 

(TRNN). 

         

For comparison purposes, we adopt another class of training algorithm for 

MLP neural networks, known as Self-Scaling Parallel Quasi-Newton (SSPQN) 

algorithms, proposed in [39], for solving the same set of test problems. 

Computational results are presented in Chapter 5.  

 

 
 
Figure 7, Relationship between the NASDAQ Index and its components     
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Figure 8, Structure of the Component-Based Feedforward Neural Networks 
Forecasting Model         
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Chapter 4  

Determining Optimal Network Topology 

 

Once the decision to use a neural network model is made, the researcher 

faces numerous decisions in the network constructions. In this Chapter, we 

first determine the optimal number of iterations on each stock market under 

different forecasting models and then determine the optimal network topology 

based on the variable sensitivity analysis in the network constructions.    

 

Besides the training algorithms, three major factors that may have great impact 

on the neural network performance are carefully considered in the process of 

neural network construction: component-based input selection, internal 

architecture and pre-processing of the sample data.  First, we would conduct 

the individual sensitivity analysis in order to learn the impact of each of these 

factors on the network performance. Then, interactive sensitivity analysises are 

introduced in order to learn whether interrelationships between these factors 

may affect their impact on the network performance. Based on the results 

getting from both of the sensitivity analysises, we would draw some general 

recommendations on the network constructions.  

 

4.1. Determining optimal number of iterations 
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Besides considering MSE results, the secondary mark for measuring the 

model performance in our research is the Directional Symmetry (DS). 

Following Caldwell (1995), [11], the directional symmetry metric is defined as:  

                                          1

100
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p
p

d
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n
==

∑
                                                        (7) 
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if Y Z
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≥⎧

= ⎨
⎩

                                            (8) 

As mentioned in Section 3.1, the variable Yp is the set of given output vector 

for training the neural network. Zp is the corresponding predicted return 

computed by the network. As the inputs we used are all stock or index returns, 

the DS shows the percentage of correctly predicted directions with respect to 

the stock index. It has more value than MSE in the application field of financial 

forecasting. Normally, institute investors and individual practitioners in financial 

markets have more interest and pay more attention on the accuracy of the 

direction prediction on the market index instead of MSE, because accurate 

direction prediction may do great help on making correct and profitable 

investment decisions. Most financial trading strategies in practice are mainly 

based on the prediction of direction up or down in the coming stage [17].   

         

From our experiments, we noticed that the MSE (or DS) results for testing 

would reverse its trends from decreasing to increasing (or increasing to 

decreasing) at some particular iteration number in the training process. Thus 

the training process of our network will be terminated when the MSE (or DS) 

results for testing reverse its trends. In practical, 30 different number of 
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iterations (Iter = 5, 10,…, 95, 100, 110 , 120,…, 210) are considered for 

training in five different stock markets by TRNN and SSPQN component-based 

forecasting models. Thus in total 300 experiments (30×5×2) are conducted to 

determine the optimal number of iteration for different markets and neural 

network models.  

 

Experiment results from TRNN model in figure 9 (a)-(d) show how the MSE 

and DS vary for different number of iterations both in the training and testing 

process. Theoretically, if the iteration number is sufficiently high and there are 

enough hidden neurons, the MSE on training data could be very low and even 

reach zero. Research suggests that an architecture with n input data streams 

will require at most (2n+1) processing nodes per hidden layer to achieve the 

desired accuracy. It is also possible to approximate a continuous function that 

may achieve the desired accuracy with a single hidden layer (Cybenko, 1989; 

Hecht Nielsen, 1990; Hertz et al., 1991; Hornik et al., 1989). Generally 

speaking, as the number of hidden nodes in a network is increased, the 

number of variables and terms are also increased. If the network has more 

degrees of freedom (the number of connection weights) than the number of 

training samples, it’s easy for the network to accurately simulate the training 

samples. This is similar to fitting a small number of points by a high-order 

polynomial. Training of the neural network involves propagating the error to 

adjust the set of weights to minimize the error function. The Trust Region 

Dogleg Algorithm we proposed in this thesis guarantees that total error in the 

training set will continue to decrease as the number of iterations increases and 

this method is globally convergent. With each iteration, the weights are 
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modified to decrease the error on the training patterns. As training processes, 

the amount of change in the error function becomes smaller. Training with 

repeated applications of the same data set may result in exactly fitting the 

limited set of points. So, in short, the MSE on the training data can finally go to 

zero if the iteration number is sufficiently high and there are enough hidden 

neurons. While, in practice, researchers or practitioners always set a desired 

accuracy for the training process as a stop criterion in order to avoid the 

phenomenon of overfitting or overtraining. That is, when change in the error 

function is less than a specified threshold or when the error function value 

reaches the desired accuracy, the convergence occurs and the training 

process will be stopped. Simply pursuing zero MSE or error function results in 

training process has no meaning for the prediction or testing process. A good 

balance between accurately fitting the training set examples and still providing 

a reasonable good interpolation capability should be determined by 

experiments. As shown in Figure 9(b), our experimental results show that as 

iteration number increases in training process, the MSE results decrease 

continually.  While we also noticed that with the increment of iteration number, 

the testing MSE results not decrease continually, instead, it always reverse its 

trend from decreasing to increasing at some particular point of training 

iterations (see Figure 9 (a)). Overtraining occurs when neural network attempts 

to exactly fit the limited set of points and loses its ability to interpolate those 

points. In the first stage of training, the network learns the underlying 

relationships in the data samples and with the increase of iteration number, in 

the second stage of training, the network begins to learn the noise in the 

training samples, which will lead to exactly fitting the limited sample data while 
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losing the capacity for accurate prediction for out-of-sample data in testing 

process. Thus, it’s necessary to stop the training process after the MSE results 

reverse its trends in testing process. As shown in figure (c) and (d), DS results 

for training always increase. However, DS results for testing have some 

fluctuations. For all the 5 stock markets, the DS results for testing usually 

increase first, and then decrease after certain number of iterations, which is 

different for different markets. Our experiments show that the best iteration 

number for testing MSE results is usually not the best one for testing DS 

results for the same stock market.  

 

By experiments, we find out the optimal iteration number for both the neural 

network models under the two criteria of MSE and DS. Table 3 shows the 

results of the optimal iteration numbers. From the results, we can see that on 

average the optimal iteration numbers for TRNN model are larger than those 

for the SSPQN model under both the MSE and DS criteria. These results may 

show that, on average, SSPQN neural networks model have faster 

convergence speed than the TRNN model. The following experiments to 

determine the optimal network topology in this study are all conducted with 

these optimal numbers of iterations for corresponding models and stock 

markets. For all the MSE results shown in the following many figures in 

Chapter 4, the number of iterations in training process is based on the 

corresponding optimal iteration number, which is pre-determined in this 

section. As both the training sample size and network architecture will 

determine the optimal iteration number in training process, we averaged the 

optimal results for different combination of these variables by experiments to 
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determine the optimal iteration number for each stock market under different 

models. So the optimal iteration numbers listed in Table 3 are all the averaged 

optimal results. A very interesting finding is that the optimal iteration numbers 

show great difference for different network model as well as for different stock 

markets. It seems that the optimal iteration number is very sensitive on the 

sample data and training algorithms for neural network based financial 

forecasting. Why the experimental results show so much difference would a 

very interesting research issue in our future research.  

 

 

 

Table 3. Optimal Number of Iteration for Each Market and Neural Network 
Model Based on Two Criteria 
 
 

TRNN SSPQN Markets 

MSE DS MSE DS 

DAX 65 10 100 10 

DJIA 150 180 120 95 

FTSE-100 140 95 95 15 

HSI 150 120 65 75 

NASDAQ 140 55 55 160 

Average Result 129 92 87 71 
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Normalized Avg_MSE_Testing for Different Iter_Numbers & 
Markets 
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Figure 9(a), MSE Results in Testing Process for 5 Markets during the Increase 
of Iterations  
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Figure 9(b), MSE Results in Training Process for 5 Markets during the 
Increase of Iterations  
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Normalized Avg_DS_Testing for different Iter_Number & 
Markets 
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Figure 9(c), DS Results in Testing Process for 5 Markets during the Increase of 
Iterations  
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Figure 9(d), DS Results in Training Process for 5 Markets during the Increase 
of Iterations  
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4.2. Determining the optimal network architecture  

         

To train the proposed neural network model, about nine years of daily trading 

data are captured for the period of 4 January 1994 to 30 September 2002, 

which give us a total of 2204 training patterns. To avoid the problem of over-

training, we study the effects of employing different sizes of dataset in network 

training. We use the date of 30 September 2002 as the ending point, five 

different datasets are chosen for training our network models; these datasets 

include: 600, 800, 1000, 1500 and 2000 daily trading data. For each dataset, 

the latest 100 patterns are used for testing and the remaining patterns are 

used for training. As shown in Figure 10, five different sizes of samples are 

used in the neural network model based financial forecasting for the same 

period of 9 May 2002 to 30 September 2002.  

 

To better understand the effects of the number of input neurons on the training 

and testing results, three kinds of component stock selection methods are 

considered in our experiments. To select the inputs for the neural network, we 

choose the component stocks whose correlation coefficient with their 

corresponding index ranks within the highest 5th, 10th and 15th respectively. 

However, even for the same particular market, the component stocks’ 

correlation coefficients with the index depend on different sample sizes. For 

different sample sizes, the combination of those component stocks whose 

correlation coefficient ranks within the highest 5th, 10th or 15th may be 
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different. Thus we have to re-calculate as well as re-rank the correlation 

coefficient of the component stocks with their corresponding indices when 

sample sizes are different. So, a total of m component stocks (m = 5, 10, 15) 

are selected under these criteria for each particular market in conjunction with 

some specified sample size. (see Table 4.)  
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Figure 10 Five Different Datasets for Training and Testing 
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Table 4 Component Stocks with the Highest Correlation Coefficient with the 
Corresponding Indices for Each Market and for Different Dataset Size.   
 
S=60
0 

DAX  DJIA  FTSE  HSI   NASDAQ  

Rank  Code Score Code Score Code Score Code Score Code Score 
1 DBKGN 0.810 C 0.747 HSBA 0.563 941.000 0.782 CSCO 0.831 
2 SIEGN 0.805 GE 0.739 III 0.559 13.000 0.770 MXIM 0.824 
3 ALVG 0.782 AXP 0.718 AVZ 0.553 1.000 0.751 LLTC 0.823 
4 DCXGN 0.752 JPM 0.698 VOD 0.552 5.000 0.738 XLNX 0.796 
5 MUVGN 0.721 MMM 0.686 RTR 0.544 16.000 0.690 AMCC 0.789 
6 DTEGN 0.711 UTX 0.672 BP 0.536 12.000 0.664 QLGC 0.789 
7 HVMG 0.708 GM 0.659 RBOS 0.515 267.000 0.617 PMCS 0.784 
8 VOWG 0.705 CAT 0.651 BARC 0.513 17.000 0.613 VRTS 0.784 
9 BAYG 0.693 DD 0.640 LLOY 0.507 4.000 0.601 ALTR 0.780 

10 BASF 0.687 HD 0.623 HBOS 0.505 20.000 0.597 SEBL 0.776 
11 IFXGN 0.665 HON 0.605 PRU 0.504 11.000 0.593 AMAT 0.775 
12 SAPG 0.640 MSFT 0.605 BSY 0.500 83.000 0.587 MOLX 0.772 
13 EPCGN 0.637 AA 0.600 SDRT 0.488 992.000 0.574 FLEX 0.760 
14 CBKG 0.636 IBM 0.587 SGE 0.487 23.000 0.540 INTC 0.756 
15 BMWG 0.608 IP 0.580 OML 0.478 179.000 0.522 KLAC 0.754 

S=80
0 

DAX  DJIA  FTSE  HSI   NASDAQ  

Rank  Code Score Code Score Code Score Code Score Code Score 
1 SIEGN 0.783 C 0.743 HSBA 0.545 941.000 0.797 CSCO 0.825 
2 ALVG 0.725 GE 0.735 VOD 0.535 13.000 0.777 MXIM 0.801 
3 DBKGN 0.722 AXP 0.709 AVZ 0.526 1.000 0.759 LLTC 0.797 
4 DTEGN 0.720 JPM 0.681 III 0.506 5.000 0.699 XLNX 0.793 
5 DCXGN 0.685 MMM 0.650 PRU 0.495 16.000 0.665 AMCC 0.781 
6 MUVGN 0.668 UTX 0.639 RTR 0.477 12.000 0.594 VRTS 0.776 
7 BAYG 0.655 GM 0.623 SGE 0.466 20.000 0.583 ALTR 0.771 
8 HVMG 0.647 CAT 0.610 OML 0.465 11.000 0.581 AMAT 0.771 
9 VOWG 0.633 HD 0.604 BSY 0.460 17.000 0.580 PMCS 0.767 

10 SAPG 0.619 DD 0.593 BARC 0.454 83.000 0.580 QLGC 0.762 
11 IFXGN 0.616 HON 0.589 CW 0.449 23.000 0.543 SEBL 0.762 
12 BASF 0.613 WMT 0.561 RBOS 0.447 4.000 0.540 INTC 0.753 
13 CBKG 0.598 AA 0.558 STAN 0.445 267.000 0.509 KLAC 0.749 
14 BMWG 0.527 INTC 0.554 LLOY 0.444 14.000 0.501 BRCM 0.748 
15 TKAG 0.505 IP 0.553 BP 0.439 992.000 0.501 JDSU 0.746 

S100
0 

DAX  DJIA  FTSE  HSI   NASDAQ  

Rank  Code Score Code Score Code Score Code Score Code Score 
1 SIEGN 0.624 C 0.730 HSBA 0.561 941.000 0.735 CSCO 0.829 
2 DTEGN 0.613 GE 0.727 AVZ 0.529 1.000 0.697 MXIM 0.787 
3 ALVG 0.596 AXP 0.712 VOD 0.528 13.000 0.694 XLNX 0.777 
4 DBKGN 0.562 JPM 0.675 PRU 0.496 5.000 0.661 LLTC 0.777 
5 MUVGN 0.537 UTX 0.623 BARC 0.493 16.000 0.613 INTC 0.754 
6 DCXGN 0.532 MMM 0.602 III 0.492 17.000 0.546 VRTS 0.753 
7 SAPG 0.511 GM 0.593 STAN 0.473 12.000 0.545 ALTR 0.748 
8 VOWG 0.493 HD 0.590 LLOY 0.471 20.000 0.542 SUNW 0.747 
9 BAYG 0.482 HON 0.577 RBOS 0.467 83.000 0.533 AMCC 0.745 

10 HVMG 0.478 DD 0.572 RTR 0.466 11.000 0.524 AMAT 0.744 
11 CBKG 0.453 WMT 0.561 BT 0.457 14.000 0.486 PMCS 0.737 
12 BASF 0.421 CAT 0.560 CW 0.455 4.000 0.478 SEBL 0.735 
13 BMWG 0.412 INTC 0.544 AV 0.448 23.000 0.471 JDSU 0.731 
14 TUIG 0.393 MSFT 0.541 LGEN 0.437 363.000 0.461 KLAC 0.723 
15 LHAG 0.374 IBM 0.539 SGE 0.434 19.000 0.460 QLGC 0.720 

S150
0 

DAX  DJIA  FTSE  HSI   NASDAQ  

Rank  Code Score Code Score Code Score Code Score Code Score 
1 ALVG 0.628 GE 0.744 HSBA 0.586 1.000 0.529 CSCO 0.824 
2 SIEGN 0.621 C 0.720 VOD 0.532 13.000 0.524 INTC 0.763 
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3 DBKGN 0.599 AXP 0.711 LLOY 0.526 5.000 0.518 MXIM 0.754 
4 DTEGN 0.592 JPM 0.675 PRU 0.517 16.000 0.483 LLTC 0.751 
5 MUVGN 0.579 UTX 0.631 BARC 0.514 12.000 0.454 XLNX 0.739 
6 DCXGN 0.578 HD 0.597 STAN 0.509 17.000 0.447 SUNW 0.729 
7 SAPG 0.543 MMM 0.589 RBOS 0.489 20.000 0.439 MSFT 0.724 
8 VOWG 0.534 GM 0.588 III 0.483 11.000 0.413 AMAT 0.720 
9 BAYG 0.527 HON 0.586 CW 0.469 291.000 0.411 ALTR 0.716 

10 HVMG 0.512 DD 0.582 LGEN 0.469 101.000 0.392 DELL 0.698 
11 CBKG 0.504 WMT 0.580 AV 0.467 83.000 0.390 KLAC 0.695 
12 BASF 0.484 CAT 0.571 RTR 0.460 23.000 0.375 VRTS 0.694 
13 BMWG 0.476 IBM 0.564 SDRT 0.458 267.000 0.372 PMCS 0.685 
14 LHAG 0.444 MSFT 0.545 ANL 0.449 14.000 0.369 VTSS 0.678 
15 TUIG 0.426 INTC 0.534 BT 0.448 4.000 0.367 JDSU 0.673 

S200
0 

DAX  DJIA  FTSE  HSI   NASDAQ  

Rank  Code Score Code Score Code Score Code Score Code Score 
1 ALVG 0.620 GE 0.736 HSBA 0.590 1.000 0.516 CSCO 0.814 
2 SIEGN 0.610 C 0.702 BARC 0.519 13.000 0.507 INTC 0.763 
3 DBKGN 0.592 AXP 0.693 VOD 0.516 5.000 0.495 LLTC 0.726 
4 DCXGN 0.575 JPM 0.655 PRU 0.514 16.000 0.467 MSFT 0.725 
5 VOWG 0.531 UTX 0.622 STAN 0.505 12.000 0.451 SUNW 0.715 
6 BAYG 0.526 HON 0.577 LLOY 0.498 17.000 0.439 XLNX 0.715 
7 HVMG 0.503 MMM 0.575 RBOS 0.484 20.000 0.424 MXIM 0.711 
8 CBKG 0.499 DD 0.575 III 0.480 11.000 0.396 AMAT 0.706 
9 BASF 0.491 HD 0.572 AV 0.469 101.000 0.383 ALTR 0.701 

10 BMWG 0.474 GM 0.566 LGEN 0.469 291.000 0.381 KLAC 0.676 
11 LHAG 0.443 CAT 0.556 CW 0.463 267.000 0.369 ORCL 0.672 
12 TUIG 0.426 WMT 0.549 RTR 0.463 83.000 0.368 DELL 0.668 
13 TKAG 0.411 IBM 0.543 ANL 0.457 97.000 0.367 NVLS 0.647 
14 EONG 0.397 MSFT 0.525 BP 0.454 14.000 0.366 PMCS 0.645 
15 MANG 0.385 INTC 0.512 SDRT 0.449 4.000 0.365 ATML 0.644 

         

 

To reflect the gains and losses of investors, the daily prices of component 

stocks are converted to their respective daily returns. In fact, we compute the 

daily returns Rit of each component stock Ci as follows:  

 
                                         1
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where Cit and Cit-1 are close prices of the component stocks Ci for day t and 

day t-1, respectively. Similarly, the daily returns RIt of the stock indices are 

calculated from index prices of It and It-1 in the same way.   

         



 
 
 
 

 
 

53

In this study, the correlation coefficient, ri(I) of the component stock Ci, is 

computed as follows:           
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Consequently, taking DJIA stock index as example, the one-day ahead 

prediction function for daily returns can be constructed as follows.  

                                         1 2( ) ( ( 1), ( 1), ( 1),..., ( 1))DJIA DJIA mR t R t R t R t R t=Φ − − − −            (11) 
 
where, Ri(t-1),i=1,2…m is the daily return of the component stock Ci computed 

at day t-1. The prediction function (11) will be generated by the proposed 

neural network models. 

         

Random initial weights are generated to our network simulations. As we are 

going to determine the optimal neural network structure and optimal data size 

by experiments with minimal potential influence caused by initial weights, each 

experiment in this section is repeated five times with different random initial 

weights. Thus the results reported in each experiment in this section are in fact 

the average results obtained from 5 independent experiments.   

 

Besides inputs selection, we also investigate the effects of the hidden neuron 

number on the training and testing results, so, four kinds of neural networks 

with NN=5, 10, 15 and 20 neurons at the hidden layer are considered in our 

experiments. Thus a total of twelve kinds of neural network architectures (3×4) 
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are chosen in this thesis for the optimization experiments and further study. 

Since the size of dataset also affects the training and testing results, each 

network architecture is tested with the above-mentioned five kinds of datasets. 

Besides datasets, experiments are conducted in five stock markets by two 

different neural network models and repeated five times with different initial 

weights. Thus, as shown in Figure 11, totally 3000 independent experiments 

(3×4×5×2×5×5) are performed in order to study the combined effects of the 

datasets and the neural network architectures in both the input and hidden 

layers.  

 

 

 
              Figure 11, The Structure of the Experiments Conducted to Study the 

Combined Effects of the Network Structure & Dataset Sizes on Training and 
Testing    
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4.3. Variable sensitivity analysis on network modeling  

 

4.3.1. Individual analysis 

 

In our research, three important variables that have influence on the 

performance of the neural network models in both training and testing 

processes are considered: Dataset Size, Input Neural Number and Hidden 

Neuron Number. The sensitivity analysis of the neural network performance on 

these three major factors is a very important issue on network modeling. These 

major variables are noted as {D, I, H} respectively. As mentioned in Section 

4.2, five different Dataset Sizes (M=5), three kinds of Input Neuron Number 

(N=3) and four Hidden Neuron Numbers (K=4) are considered for each of 

these variables in this study respectively. Table 5 illustrates the sensitivity 

calculation methods for each of these variables. 

( , , ), 1,.. , 1,.., , 1,..,i j kf D I H i M j N k K= = =  represents the neural network 

performance function in MSE or DS results depends on three major variables. 

For a particular class of { , , }i j kD I H there is a unique ( , , )i j kf D I H function 

results corresponding to it. In the case that some particular variable in the 

class changes, the performance function result will also change accordingly. 

The purpose of the study in this section is just to learn how sensitive the 

network performance is on the variance of these three major variables. Both 

the sensitivities of the neural network performance based on total variance and 

unit variance of these major variables are considered. Take the variable of 

Dataset Size as example, the sensitivity on total variance of Dataset Size 
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represents the largest possible influence of D, { ( , , )}, 1,...,
iD iMax f D I H i M∆ = , 

on the network performance during D’s variance from 1D  to MD , while the 

sensitivity on unit variance of Dataset Size representing the averaged influence 

of D, 
{ ( , , )}

, 1,...,
1

iD iMax f D I H
i M

M
∆

=
−

, on network performance when D changed 

in unit space (changed from XD  to 1XD ± ).      

                    

The sensitivity results of the network performance on both total variance and 

unit variance of each variable are illustrated in table 6. The network 

performances in five stock markets by two models are evaluated in two criteria 

of MSE and DS. Take the influence of variable of Dataset Size on the testing 

results in Frankfurt stock exchange market as example, for there are totally 5 

different sizes of dataset considered in our experiments (600, 800, 1000, 1500, 

2000), “V=0.1635333” represents the largest possible change in the network 

performance during the variance of Dataset Size within its all possible values; 

while “∆V=0.040883” (which is calculated by V/4 in this case) represents the 

averaged volatility effects on the neural networks performance by the unit 

variance of the variable (for example, the average influence on results when 

dataset size change from 600 to 800 or change from 800 to 1000). As 

obviously reflected in table 6, the sensitivity of the network performance on 

each of these three variables is different. Some variables may have greater 

influence on the performance of neural networks than other variables in some 

particular cases while having less influence in other cases.  
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It’s a good idea to set M=N=K, especially when we compare the variable 

sensitivities based on the total variance of variables. But, there are two main 

considerations that make setting M=N=K in this thesis unnecessary. The first 

reason is for comparison with former researches. Many former researches in 

neural network based financial forecasting studied the different effects of 

training sample, input and hidden neuron number on the prediction 

performance and based on these analyses to determine the optimal network 

topology for final prediction. For a more objective comparison on the prediction 

results, we followed the way of former researches in determining the optimal 

network architecture and training samples for final prediction.  For example, 

former researches considered five different kinds of sample sizes (600, 800, 

1000, 1500 and 2000) for network training and considered four kinds of hidden 

neuron number (5, 10, 15 and 20) for proposed network architecture. 

Secondly, as we are more concerned with ∆V, the sensitivity on prediction 

based on the averaged unit variance of variables, the number of possible value 

for each variable (M or N or K) won’t affect ∆V and thus won’t affects the 

ranking results as well. Table 7, rank of variable sensitivity on network 

performance, is totally based on ∆V. From this point of view, the sensitivity 

ranking results in Table 7 based on averaged unit variance of variables do not 

depend on the number of N, M or K.  Thus it’s not necessary to set M=N=K, if 

we are just concerned with the sensitivity based on averaged unit variance of 

these variables.  
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Table 5 Calculation on the Sensitivity of Variables Based on Both the Total and 
Unit Variance of Variables  
 

 
 

 
 
 
 

Variable 
Name 

Dataset Size Input Neuron 
Number  

Hidden Neuron 
Number 
 

Variable 
Note 

D I H 

Number of 
possible 
value for 
each 
variable 

M=5 N=3 K=4 

All possible 
values for 
each 
variable  

Di = 
600,800,1000,1500, 
2000 
i=1,2,..,M 

Ij= 6,11,16  
 
j=1,.., N 

Hk=5,10,15,20 
 
k=1,2,..K 
 
 

V,  
 
Sensitivity 
of neural 
network 
performanc
e on each 
variable 
(based on 
total 
variance)  

1 1 1 1
( , , ) ( , , )

[ ] [ ], 1,2,..
i i

N K N K

i j k i j k
j k j k

D D D

f D I H f D I H
V Max Min i M

N K N K
= = = =
∑∑ ∑∑

= − =
× ×

          (12-1) 

1 1 1 1
( , , ) ( , , )
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j j

M K M K

i j k i j k
i k i k
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V Max Min j N

M K M K
= = = =
∑∑ ∑∑

= − =
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          (12-2) 

1 1 1 1
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i j i j

H H H
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V Max Min k K

M N M N
= = = =
∑∑ ∑∑

= − =
× ×

        (12-3) 

 
∆V ,  
 
Sensitivity 
of neural 
network 
performanc
e on each 
variable 
(based on 
unit 
variance) 

1 1 1 1
( , , ) ( , , )

[ ] [ ]
, 1,2,..

1
i i

N K N K

i j k i j k
j k j k

D D

D

f D I H f D I H
Max Min

N K N KV i M
M

= = = =
∑ ∑ ∑ ∑

−
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−
    (13-1) 

1 1 1 1
( , , ) ( , , )

[ ] [ ]
, 1,2,..

1
j j

M K M K

i j k i j k
i k i k

I I

I

f D I H f D I H
Max Min

M K M KV j N
N

= = = =
∑∑ ∑∑

−
× ×∆ = =

−
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Table 6, Average Individual Effects of 3 Variables on the NN Performance 
 

 
Trust Region Neural Networks  SSPQN Neural Networks  Based on Testing 

Results  MSE  DS MSE DS 
Markets  Variables  V*  ∆V*  V  ∆V  V  ∆V  V  ∆V  

Dataset Sizes 0.164 0.041 4.865 1.216 0.127 0.032 5.498 1.375 

Inputs Number  0.411 0.206 0.202 0.101 0.468 0.234 1.005 0.503 DAX 

Hidden Neurons  2.123 0.708 1.564 0.521 2.263 0.754 1.019 0.340 

Dataset Sizes 0.036 0.009 1.565 0.391 0.024 0.006 1.437 0.359 

Inputs Number  0.420 0.210 0.478 0.239 0.441 0.220 0.681 0.341 DJIA  

Hidden Neurons  1.980 0.660 1.456 0.485 2.098 0.699 0.855 0.285 

Dataset Sizes 0.097 0.024 3.963 0.991 0.052 0.013 5.793 1.448 

Inputs Number  0.395 0.198 0.516 0.258 0.453 0.226 0.409 0.205 FTSE 

Hidden Neurons  2.124 0.708 0.972 0.324 2.267 0.756 0.812 0.271 

Dataset Sizes 0.056 0.014 5.013 1.253 0.031 0.008 7.135 1.784 

Inputs Number  0.441 0.220 1.725 0.863 0.468 0.234 1.891 0.946 HSI 

Hidden Neurons  1.883 0.628 0.927 0.309 1.992 0.664 1.404 0.468 

Dataset Sizes 0.106 0.026 1.880 0.470 0.165 0.041 2.737 0.684 

Inputs Number  0.350 0.175 0.654 0.327 0.408 0.204 0.907 0.454 NASDAQ 

Hidden Neurons  2.086 0.695 0.589 0.196 2.194 0.731 0.428 0.143 
  

Trust Region Neural Networks  SSPQN Neural Networks  Based on Training 
Results  MSE  DS MSE DS 
Markets  Variables  V*  ∆V*  V  ∆V  V  ∆V  V  ∆V  

Dataset Sizes 0.547 0.137 2.082 0.520 0.492 0.123 2.614 0.653 

Inputs Number  0.424 0.212 0.148 0.074 0.475 0.238 0.290 0.145 DAX 

Hidden Neurons  2.123 0.708 0.524 0.175 2.253 0.751 0.430 0.143 

Dataset Sizes 0.390 0.097 1.231 0.308 0.335 0.084 1.964 0.491 

Inputs Number  0.448 0.224 0.215 0.108 0.477 0.239 0.342 0.171 DJIA  

Hidden Neurons  2.120 0.707 0.417 0.139 2.268 0.756 0.133 0.044 

Dataset Sizes 0.330 0.082 0.554 0.138 0.286 0.071 0.437 0.109 

Inputs Number  0.467 0.234 0.306 0.153 0.509 0.254 0.297 0.148 FTSE 

Hidden Neurons  2.150 0.717 0.598 0.199 2.277 0.759 0.354 0.118 

Dataset Sizes 1.859 0.465 2.199 0.550 1.851 0.463 2.592 0.648 

Inputs Number  0.455 0.228 0.414 0.207 0.475 0.238 0.127 0.064 HSI 

Hidden Neurons  2.101 0.700 0.756 0.252 2.226 0.742 0.289 0.096 

Dataset Sizes 4.709 1.177 1.254 0.314 4.658 1.164 1.995 0.499 

Inputs Number  0.481 0.240 0.178 0.089 0.511 0.255 0.219 0.110 NASDAQ 

Hidden Neurons  2.300 0.767 0.594 0.198 2.388 0.796 0.228 0.076 

 
* V represents the sensitivity of neural network performance on total variance of the 
variables  
* ∆V represents the sensitivity the neural network performance on unit variance of the 
variables 
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Table 7 Rank of Variable Sensitivity on Network Performance  
 

For Training  The Extent of Variables Influencing the Performance of 
Neural Networks in Financial Forecasting  

MSE Criteria   
Most sensitive 
variable  

More sensitive 
variable  Not sensitive variable 

DAX Hidden Neuron Number  Input Neuron Number  Dataset Size  

DJIA Hidden Neuron Number  Input Neuron Number  Dataset Size  
FTSE Hidden Neuron Number  Input Neuron Number  Dataset Size  
HSI Hidden Neuron Number  Dataset Size  Input Neuron Number  

NASDAQ Dataset Size  Hidden Neuron Number  Input Neuron Number  

  

DS Criteria   
Most sensitive 
variable  

More sensitive 
variable  Not sensitive variable 

DAX Dataset Size  \ \ 
DJIA Dataset Size  \ \ 
FTSE \ \ Dataset Size  

HSI Dataset Size  Hidden Neuron Number  Input Neuron Number  
NASDAQ Dataset Size  \ \ 
  

For Testing   The Extent of Variables Influencing the Performance of 
Neural Networks in Financial Forecasting  

MSE Criteria   
Most sensitive 
variable  

More sensitive 
variable  Not sensitive variable 

DAX Hidden Neuron Number  Input Neuron Number  Dataset Size  

DJIA Hidden Neuron Number  Input Neuron Number  Dataset Size  

FTSE Hidden Neuron Number  Input Neuron Number  Dataset Size  
HSI Hidden Neuron Number  Input Neuron Number  Dataset Size  
NASDAQ Hidden Neuron Number  Input Neuron Number  Dataset Size  

  

DS Criteria   
Most sensitive 
variable  

More sensitive 
variable  Not sensitive variable 

DAX Dataset Size  \ \ 

DJIA \ \ \ 
FTSE Dataset Size  Hidden Neuron Number  Input Neuron Number  
HSI Dataset Size  Input Neuron Number  Hidden Neuron Number  

NASDAQ Dataset Size  Input Neuron Number  Hidden Neuron Number  
 

As shown in table 7, the sensitivities of the network performance on three 

variables in each particular market are ranked in three levels: the most 

sensitivity, more sensitivity and least sensitivity. We should note that, only 

when the two ranking results obtained from both network models are 
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consistent; the consistent ranking results could be concluded. If the ranking 

results for the same particular market obtained from different models are 

different, then no conclusion could be drawn and in this case the results are 

reflected by the mark of  “/”.  The variable that ranks as the “most sensitive” 

should be given more attention by researchers in network forecasting for it has 

greater influence on the network performance than other two variables. It’s 

very interesting that, based on testing MSE results, the ranking orders for all 

the five markets are absolutely consistent: that the variance of Hidden Neural 

Number gives the most influence on the network performance, while the 

variance of Dataset Size gives the least influence on it, leaving the variance of 

Input Neural Number at the middle point. This results shows that in neural 

network based financial forecasting, the prediction accuracy depends more on 

the specification of the network architecture than on the sample data selection. 

Based on training MSE results, the ranking orders for DAX, DJIA and FTSE 

are also consistent with what is concluded from the testing MSE results. But for 

the HSI and NASDAQ indices, the ranking orders are different: in both 

implementations the Dataset Size ranks with higher sensitivity than it does in 

other cases, leaving the ranking orders between the two architecture variables 

remain unchanged. Comparing with other three stock market indices, HSI and 

NASDAQ indices data are obviously noisier, which may be the main reason 

that causes the difference in ranking orders in the training process. Tough, 

many ranking results based on DS obtained from two different network models 

are not consistent; we still can draw some conclusions on the importance of 

some variables on the influence of DS performance of neural networks. One 

most impressive finding under the DS criteria is that sample data selection 
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impacts the network DS performance more than network architecture variables 

do in all consistent cases except for London stock exchange market both in 

training and testing processes.  As we have introduced in chapter one, the 

FTSE index data is the least noisy one among all the five indices. In the FTSE 

case, the network DS performance is least sensitive on the variance of Dataset 

Size.  

         

Based on the individual sensitivity analysis on the three major factors in neural 

network modeling for financial forecasting, some important conclusions could 

be drawn from the findings: 

(1). The network prediction accuracy evaluated under MSE criterion 

depends more on the specification of network architecture than on the 

sample data size, while such relationship will reverse when prediction 

accuracy is evaluated under DS criterion.  

(2). In the aspect of network architecture, the Hidden Neural Number usually 

has more impact on the network performance than Input Neuron 

Selection.  

(3). The sensitivity of the network performance on sample data size is 

positively correlated with the extent of noise or volatility of the sample 

dataset being studied. The noisier or more volatility the sample dataset 

is, the more attention should be paid on determining the optimal sample 

data size in order for a good network performance. In the case that the 

sample data is not noisy, sample dataset selection is comparatively less 

important than specification of network architecture in the aspect of the 

impacts on network performance.  
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As shown in Table 7 that under MSE evaluation criterion, the entire ranking 

results in five different stock markets are consistent by different network 

models both in training and testing processes, while under DS evaluation 

criterion, many ranking results are inconsistent when different network models 

are used. For example, under DS criterion, the network performance is more 

sensitive on the Input Neurons than on the Hidden Neurons when TRNN 

model is used, while the network performance is more sensitive on the Hidden 

Neurons than on the Input Neurons if SSPQN model is used. As we know that 

evaluation criteria of MSE and DS are just different ways to measure the 

neuron network performance on prediction accuracy. Why under different 

performance evaluation criteria, the consistency of the sensitivity ranking 

results under different models is different? A main possible reason may lead to 

such difference, that is the difference between the definitions of these two 

criteria themselves. Mean Squared Error (MSE) is the average of the square of 

the difference between the desired response and the actual system output (the 

error), while, in this thesis, Directional Symmetry (DS) reflects the percentage 

of correctly predicted directions with respect to the stock index return. In our 

research, only MSE is used as the error function for both of the network 

models. Thus, the learning process is implemented by changing the weights in 

order to reduce the MSE value. The learning process is repeated until the MSE 

between the computed and target output values are at an acceptably low 

value. Though, a low (or high) MSE value often in conjunction with a 

corresponding high (or low) DS value, their relationship is not always 

consistent. Low (or high) MSE value cannot guarantee a high (or low) DS 
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value, because mean squared error cannot reflect the prediction accuracy in 

the aspect of direction. Thus a sensitivity ranking based on MSE criterion may 

not always consistent with the ranking results based on the DS criterion. Also, 

in the case when MSE based sensitivity rankings are consistent for different 

models, it still possible for the inconsistency in the ranking results for different 

models when DS evaluation criterion is used. The key point here is that the 

error function for the network training is MSE, thus we cannot guarantee the 

DS value to be optimized steadily during the process of minimizing MSE value 

in the training process, especially when different training algorithms are used.   

 

The sensitivity analysis, especially the ranking results can be regarded as a 

valuable reference on neural network modeling for financial forecasting both in 

training and testing processes. Particularly, the analytical results for the five 

major stock markets are more valuable for the future researches conducted in 

these particular markets based on neural networks.          

    

4.3.2. Interaction analysis  

 

The above research analysis is mainly focused on ranking variable influences 

on the network performance individually without paying much attention on the 

interrelationship between these three factors as well as how these 

interrelationships affect the network performance. Understanding more about 

the interrelationships of these major factors between each other and how they 
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affect the network performance may generalize more valuable 

recommendations on network modeling, especially in financial forecasting.  

         

In this research work, we classify the influence of one variable on the impact of 

other variable on the network performance into three levels: “High”, “Medium” 

and “Low” influences.  If the impact of variable A on the network performance 

(either MSE or DS result) is not sensitive on the variance of variable B, then 

variable B is said to have “Low” influence on the impact of variable A on the 

network performance. On the contrary, if the impact of variable A on network 

performance is obviously sensitive on the variance of variable B, then such 

influence is said to have “High” effect on the impact of A on network 

performance. In the case that the extent of influence of variable B on A ranks 

between “High” and “Low”, such influence is said to be “Medium”. In this thesis, 

we use the chart analysis method to identify the three levels of 

interrelationships between the major variables as mentioned above. In the 

chart analysis (see figure 12), if the shape of the chart that reflects the 

relationship between variable A and MSE (or DS) results keeps consistent in 

all cases of variable B, then it was said that there is a “Low” influence of 

variable B on A in the aspect of the impact of A on network performance. 

While, when the chart shape changes for each case of variable B, the 

influence of B on the impact of A on network performance is classified into the 

category of “High”. The influence in situations that ranks between “High” and 

“Low” are classified into “Medium”, that is when the chart shape only changes 

in some cases of variable B, instead of changing in all cases. Under this 

classification method, the interrelationships between these variables are 
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ranked into three levels of “High”, “Medium” and “Low”. The summarized 

results reflected under this way are shown at the end of this subsection.  

 

 

Figure 12. The Classification of Interrelationship between Two Variables Based 
on Chart Analysis 
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In this section, we will first take Hong Kong Heng Seng Stock Index 

(forecasting by TRNN model) as example to show how we analyse the 

interrelationships between these three variables in detail and then summarize 

the analyzing results obtained from all the five stock markets under two neural 

network models. Figure 13 to 20 analyse the interrelationships between these 

three variables in the training process based on both the MSE and DS results, 

while figure 21 to 28 mainly focused on the similar analysis in the testing 

process. For there are totally three major variables that may have influence on 

the network performance, in order to know more clearly about the 

interrelationship of the variables between each other, it’s wise for us to fix one 

particular variable and see what’s the relationship between the remaining two.          

         

Under this consideration, figure 13 (a) to (e) illustrate the relationship between 

dataset size and input number when the number of hidden neuron is fixed at 5, 

10, 15 and 20 respectively and the averaged results are also plotted for 

reference. As we can see that in all cases, the charts are in the quite similar 

shape for all different hidden neuron numbers. That is, the MSE result for 

training keeps rising gradually as the dataset size changes from 600 to 1500 

and drops suddenly from 1500 to 2000, leaving the chart reaches its global top 

at 1500. This observation could demonstrate that the changes of input number 

and hidden neuron number have little or “Low” influence on the impact of 

dataset size on the training MSE results. On the basis of the above analysis, 

the best dataset size is obtained when dataset size is 600.  Besides the 

obvious influence of dataset size on the training MSE results, we also could 

notice that as the hidden neuron number changes from 5 to 20 the impact of 
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input number on the training MSE results becomes more obvious. From figure 

(b) to (e) we could easy to find that the best MSE result was obtained when 

input number is 6 and the worst one was get when input number is 11. These 

phenomena could show that the hidden neuron number could influence the 

impact of input number on the training MSE results. Figure 14 (a) to (e) also fix 

the hidden neuron number to 5, 10, 15, 20 and average value respectively, but 

focused on illustrating the impact of input number on the performance of MSE 

results on training.  When hidden neuron number fixed at 5, the variance of 

input number seems have no impact on training MSE. But, under remaining 

conditions when hidden neuron number is larger than 5 and on average, the 

impact of input number becomes obviously that for different dataset sizes the 

relationships between input number and training MSE are all in the shape of 

reversed “V”, that means the model gets the highest MSE result when input 

number is 11 and gets lower ones when input number being 6 or 16. On the 

other hand, the best training MSE is always obtained when input number is 6.  

These results demonstrate again that the hidden neuron number influences the 

impact of input number on training MSE results in “Medium” level.  
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Figure 13-a. (N2=5) Training MSE for different datasizes & 
input number 
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Figure 13-b. (N2=10) Training MSE for different datasizes 
& input number
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Figure 13-c. (N2=15) Training MSE for different datasizes & 

input number 
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Figure 13-d. (N2=20)Training MSE for different datasizes 
& input number
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Figure 13-e.  (Average results from 4 N2) Training MSE for 
different datasizes & input number 
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Figure 13 (a) to (e), Effects of Dataset Sizes as Measured by Average MSE for 
Training (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 15, 
20 and Average respectively)  
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Figure 14-a. (N2=5) Training MSE for different 
input & datasizes
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Figure 14-b. (N2=10)Training MSE for different 
inputs & datasizes
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Figure 14-c. (N2=15) Training MSE for different 
inputs & datasizes 
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Figure 14-d. (N2=20) Training MSE for Different 
Inputs & Datasizes 
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Figure 14-e. (Average results from 4 N2)Training MSE for 

different Inputs & Datasizes 
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Figure 14 (a) to (e), Effects of Inputs Number as Measured by Average MSE 
for Training (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 
15, 20 and Average respectively)  
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After fixing the number of input neurons to 6, 11 and 16 respectively, the 

effects of dataset size on training MSE as well as the interrelationship between 

dataset size and hidden neuron number are illustrate in figure 15 (a) to (c). It is 

obviously that the impact of dataset size on training MSE is consistent in all 

cases. It seems that the neuron network structure has “Low” influence on the 

impact of dataset size on the training MSE results in neuron network based 

forecasting.       

        

As for the number of hidden neurons, there are many studies in the literature to 

guide the architecture selection. Generally, too many nodes in the hidden layer 

produce a network that memorize the input data and lack the ability to 

generalize. However, besides that there is no general guidance that is suitable 

for all situations. Some methods are time-consuming and impractical, such as 

cascade-correlation method proposed by Fahlman [16] and pruning approach 

[4, 26]. While the others seems do not work well for all problems, which include 

some rule of thumb in the literature. In summary, the specification of the 

internal architecture involves tradeoffs between fitting accuracy and 

generalization ability and the best way to find the optimal number of hidden 

neurons for a particular application is through experiments [25]. The effects of 

hidden neurons on training MSE are illustrated in figure 16. It’s interesting to 

find that the training MSE result keeps rising gradually as the hidden neuron 

number increases from 5 to 20 and this trend keeps consistent for all different 

dataset sizes and input numbers. It demonstrates that the other two variables 

have “Low” influence on the impact of hidden neuron number on training MSE.  
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Figure 15-a. (Input=6) Training MSE for different 
datasizes & hidden neurons 
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Figure 15-b. (Input=11) Training MSE for different 

Datasizes & hidden neurons 
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Figure 15-c. (Input=16) Training MSE for different 

Datasize & hidden neurons 
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Figure 15 (a) to (c), Effects of Dataset Size as Measured by Average MSE for 
Training (TR) on HSI Experiments (Input Number fixed to 6, 11, 16 
respectively)  



 
 
 
 

 
 

73

Figure 16-a. (Input=6) Training MSE for different hidden 
neuron number & Datasizes 

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5

5 10 15 20

Different number of Hidden Neurons 

MS
E V

alu
e 

600
800
1000
1500
2000
Average

 
Figure 16-b. (Input=11)Training MSE for different # of Hidden 

Neurons & Datasizes 
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Figure 16-c. (Input=16) Training MSE for different # of hidden 

neurons & datasizes 
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Figure 16 (a) to (c), Effects of Hidden Neuron Number as Measured by 
Average MSE for Training (TR) on HSI Experiments (Input Number fixed to 6, 
11, 16 respectively)   
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In our research work, both of the criteria are considered and analysed in 

details. Figures 17 to 20 analyse the interrelationships between the three 

variables in the training process based on DS results. Figure 17 (a) to (e) 

illustrate the effect of dataset size on the training DS as well as the 

interrelationship between dataset size and input number by fixing the hidden 

neuron number to 5, 10, 15, 20 and average value respectively. On average, 

the training DS result first increases from 600 to 800 and, after reaching its 

high point at 800, it keeps decreasing after 800 until 2000.  As shown in figure 

17 (d), when hidden neuron number is 20, we could see that the relationships 

between dataset size and the DS results are obviously different under different 

input numbers. But, the impact of dataset size on training DS is not obviously 

sensitive to the variance of the other two variables in all other situations, thus 

we can say that hidden neuron number and input number have no obvious 

influence on the impact of dataset size on training DS. Their influence on the 

impact of dataset size on network performance could be regard as “Medium”. 

The effects of input neuron number on the training DS results are illustrated in 

the figure 18. It’s obviously that for each particular fixed hidden neuron 

number, the impact of input neuron number on training DS is different for 

different dataset sizes. Taken N2=5 as example, the DS results for all three 

input number have no obvious differences when dataset size is 800, while 

obvious difference could be observed when dataset size changes to 1000. 

These results show that the dataset size has “High” influence on the impact of 

input number on the training DS. On the other hand, it’s also easy to notice 

that for different number of hidden neurons the relationship between input 

number and DS result changes obviously. Thus, hidden neuron number can 
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also influence the impact of input number on training DS in “High” level. Figure 

19 illustrates the effects of dataset size on training DS by fixing the input 

neuron numbers respectively. By the variance of input number, the 

interrelationships between the dataset size, hidden neuron number and the 

training DS seem consistent without obvious changes, which shows that input 

neuron number has “Low” influence on the impact of dataset size on training 

DS results. While for each particular fixed input number, when hidden neuron 

number changes, the corresponding relationships between DS and dataset 

size may also change, which shows that the hidden neuron number has 

influence on the impact of dataset size on network performance, but this 

influence is “Medium”.  By the similar analysing methods, we discovered that 

there is no consistent relationship between the hidden neuron number and the 

training DS results. And on the other hand, both the input number and the 

dataset size have obviously “High” influence on the impact of hidden neuron 

number on the training DS, which is illustrated in the Figure 20. Based on the 

analysing results obtained under two criteria, we can see that the 

interrelationships between the three variables are more obviously reflected 

when DS criterion is used. While in the case of using DS criterion, the 

interrelationships between the three major factors become obviously and the 

variance of each variable may cause obvious influence on the impact of other 

variables on the network performance. Thus, we should pay more attention on 

the impact of interrelationship between the major variables on network 

performance when DS is used as the evaluation criterion.    
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Figure 17-a. (N2=5) Training DS for 
Different Datasize & Inputs 

44

46

48

50

52

54

56

58

600 800 1000 1500 2000

Different Datasizes 

D
S 

Va
lu

e 

Input:6 Input:11 Input:16

Figure 17-b.  (N2=10) Training DS for 
Different Datasize & Inputs 
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Figure 17-c.  (N2=15) Training DS for 

Different  Datasize & Inputs
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Figure 17-d. (N2=20) Training DS for 
Different Datasize & Inputs 
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Figure 17-e. (Average of 4N2) Training DS for Different 

Datasizes & Inputs 
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Figure 17 (a) to (e), Effects of Dataset Sizes as Measured by Average DS for 
Training (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 15, 
20 and Average respectively)  
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Figure 18-a. (N2=5) Training DS for 
Different Datasizes & Inputs 
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Figure 18-b. (N2=10) Training DS for 
Different Datasizes & Inputs 
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Figure 18-c. (N2=15) Training DS for 

Different Datasize & Inputs
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Figure 18-d. (N2=20) Training DS for 
Different Datasize & Inputs 
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Figure 18-e. (Average of 4N2) Training DS for Different 

Datasize & Inputs
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Figure 18 (a) to (e), Effects of Input Number as Measured by Average DS for 
Training (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 15, 
20 and Average respectively)  
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Figure 19-a. (Input=6) Training DS for Different Number of Hidden 
Nuerons & Datasizes 
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Figure 19-b. (Inputs=11) Training DS for Different Number of Hidden 
Neurons & Datasizes 
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Figure 19-c. (Input=16) Training DS for Different Number of Hidden 
Neurons & Datasizes
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Figure 19 (a) to (c), Effects of Dataset Size as Measured by Average DS for 
Training (TR) on HSI Experiments (Input Number fixed to 6, 11, 16 
respectively)   
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Figure 20-a. (Input=6) Training DS for Different Number of Hidden 
Neurons & Datasizes 
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Figure 20-b. (Input=11) Training DS for Different Number of Hidden 
Neurons & Datasizes 
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Figure 20-c. (Input=16) Training DS for Different Number of Hidden 
Neurons & Datasizes 
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Figure 20 (a) to (c), Effects of Hidden Neuron Number as Measured by 
Average DS for Training (TR) on HSI Experiments (Input Number fixed to 6, 
11, 16 respectively) 
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After analysing the effects and interrelationships of each variable based on 

both the MSE and DS results in the training process, we now move to the 

analysis in the testing process.  Compared to the training process analysis, the 

analysis in the testing process is more important for us, because the 

performance of the neuron network model is mainly evaluated from the results 

in testing or real forecasting process.  Figure 21 to 24 analyse the effects and 

interrelationships based on the MSE results in testing process, while Figure 25 

to 28 based on the DS results in testing process.  For the analysing methods 

used in testing process is the same with those used in training process, we just 

make a summary description for what are reflected from each figure in this 

process briefly. Figure 21 illustrates the effects of dataset size on the testing 

MSE results as well as the interrelationships between it and the other two 

variables. There is no consistent relationship exist between the dataset size 

and the testing MSE result. The relationship is influenced by other two 

variables obviously in “High” level. Figure 22 illustrates the effects of input 

number on the MSE results in testing process. For the conditions when hidden 

neuron number larger then 5, the inputs number has a relationship with the 

testing MSE results in the shape of reversed “V”. (When hidden neuron 

number is 5, the relationship is in the shape of “V”). Hidden neuron number 

obviously influences the impact of input number on the testing MSE result 

when hidden neuron number is small and influences weakly when hidden 

neuron number increases.  On the other hand, dataset sizes have slight 

influence on the impact of input number on network performance.  
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Figure 21-a. (N2=5) Testing MSE for different 
datasizes & input number 
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Figure 21-b. (N2=10) Testing MSE for different 
datasizes & input number
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Figure 21-c. (N2=15) Testing MSE for different 
datasizes & input number 

1.6

2.1

2.6

3.1

3.6

4.1

4.6

600 800 1000 1500 2000

Different Datasizes

M
S

E
 V

a
lu

e
 

Input:6 Input:11 Input:16

Figure 21-d. (N2=20)Testing MSE for different 
datasizes & input number
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Figure 21-e.  (Average results from 4 N2) Testing MSE for 
different datasizes & input number 
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Figure 21 (a) to (e), Effects of Dataset Sizes as Measured by Average MSE for 
Testing (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 15, 
20 and Average respectively)  
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Figure 22-a. (N2=5) Test MSE for different input 
number & Different datasizes
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Figure 22-b. (N2=10)Test MSE for different inputs & 
datasizes
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Figure 22-c. (N2=15) Test MSE for different inputs 
& datasizes 
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Figure 22-d. (N2=20) Test MSE for Different Inputs 
& Datasizes 
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Figure 22-e. (N2)Test MSE for different Inputs & Datasizes 
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Figure 22 (a) to (e), Effects of Inputs Number as Measured by Average MSE 
for Testing (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 
15, 20 and Average respectively)  
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Figure 23 and figure 24 focus on illustrating the impact of dataset size and 

hidden neuron number on the MSE results in testing process. It is obviously 

that the dataset size has influence on the testing MSE results, but there are no 

consistent relationships between the dataset size and the MSE results. Both 

the input and hidden neuron number have “High” influences on the impact of 

dataset size on the testing MSE results.  There are obvious relationship 

between the testing MSE results and the hidden neuron number and this 

relationship is consistent in all cases when other variables are different. The 

testing MSE result keeps rising gradually as the hidden neuron number 

increases, and the increase is very fast during the whole process. Thus it could 

be said that both the inputs number and dataset size have “Low” influence on 

the impact of hidden neuron number on testing MSE.  

       

The effects of dataset size on the testing DS results are illustrated in figure 25. 

On the whole, the relationship between dataset size and DS results could be 

regard as consistent without obvious fluctuation. That is, the DS results for 

testing decrease gradually and reach the global minimum point as the dataset 

size changes from 600 to 1000. It increases from 1000 to 1500 and reverses to 

decrease again after 1500. Both the other variables have “Medium” influence 

on the impact of data size on network performance. As shown in figure 26 the 

input number has impact on the testing DS but this relationship is not 

consistent and is highly sensitive to the other two variables. But, on average, 

the best DS is obtained when input number is the smallest one.  
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Figure 23-a. (Input=6) Test MSE for different 
datasizes & hidden neurons 
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Figure 23-b. (Input=11) Test MSE for different 

Datasizes & hidden neurons 
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Figure 23-c. (Input=16) Test MSE for different 

Datasize & hidden neurons 
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Figure 23 (a) to (c), Effects of Dataset Size as Measured by Average MSE for 
Testing (TR) on HSI Experiments (Input Number fixed to 6, 11, 16 respectively)   
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Figure 24-a. (Input=6) Test MSE for different 
hidden neuron number & Datasizes 
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Figure 24-b. (Input=11)Test MSE for different # of 

Hidden Neurons & Datasizes 
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Figure 24-c. (Input=16) Test MSE for different # of 

hidden neurons & datasizes 
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Figure 24 (a) to (c), Effects of Hidden Neuron Number as Measured by 
Average MSE for Testing (TR) on HSI Experiments (Input Number fixed to 6, 
11, 16 respectively)   
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Figure 25-a. (N2=5) Testing DS for 
Different Datasize & Inputs 
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Figure 25-b. (N2=10) Testing DS for 
Different Datasize & Inputs 
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Figure 25-c. (N2=15) Testing DS for 
Different Datasize & Inputs
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Figure 25-d. (N2=20) Testing DS for 
Different Datasize & Inputs 
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Figure 25-e. (Average of 4N2) Testing DS for Different 
Datasizes & Inputs 
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Figure 25 (a) to (e), Effects of Dataset Size as Measured by Average DS for 
Testing (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 15, 
20 and Average respectively)  
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Figure 26-a. (N2=5) Testing DS for Different 
Datasizes & Inputs 
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Figure 26-b. (N2=10) Testing DS for 
Different Datasizes & Inputs 
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Figure 26-c. (N2=15) Testing DS for 

Different Datasize & Inputs
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Figure 26-d. (N2=20) Testing DS for 
Different Datasize & Inputs 
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Figure 26-e. (Average of 4N2) Testing DS for Different 
Datasize & Inputs
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Figure 26 (a) to (e), Effects of Input Number as Measured by Average DS for 
Testing (TR) on HSI Experiments (Hidden Neuron Number fixed to 5, 10, 15, 
20 and Average respectively)  
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Figure 27 and figure 28 illustrate the impact of dataset size and hidden neuron 

number on the testing DS results respectively.  It’s obviously that the dataset 

size has influences on the testing DS results and the relationship between 

dataset size and DS results are almost consistent in all cases. In another 

words, both the variables of input number and hidden neuron number give 

“Medium” influence on the impact of dataset size on testing DS results. The 

hidden neuron number has obvious effects on the DS performance of network 

model in the testing process, but the relationship is not consistent. As we can 

see clearly that for any particular fixed number of inputs, the effect of hidden 

neuron number on DS results changes substantially when dataset size 

changes. On the other hand, the relationship between hidden neuron number 

and DS results also changes substantially when the variable of input number 

changes. Thus it has no doubt that both the variable of dataset size and input 

number highly influence the impact of hidden neuron number on the testing DS 

results.   

         

From the detailed analysis on the interrelationships between the three factors 

in neural network modeling, we notice that in most situations such interactive 

relationships may have obvious influence on the network performance. In 

some cases, particular variable may have great influence on other variables, 

while, in other cases, such influences may be weak.   
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Figure 27-a. (Input=6) Testing DS for Different Number of 
Hidden Nuerons & Datasizes 
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Figure 27-b. (Inputs=11) Testing DS for Different Number of 
Hidden Neurons & Datasizes 
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Figure 27-c. (Input=16) Testing DS for Different Number of 
Hidden Neurons & Datasizes
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Figure 27 (a) to (c), Effects of Dataset Size as Measured by Average DS for 
Testing (TR) on HSI Experiments (Input Number fixed to 6, 11, 16 respectively)  
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Figure 28-a. (Input=6) Testing DS for Different Number of 
Hidden Neurons & Datasizes 
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Figure 28-b. (Input=11) Testing DS for Different Number of 
Hidden Neurons & Datasizes 
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Figure 28-c. (Input=16) Testing DS for Different Number of 
Hidden Neurons & Datasizes 
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Figure 28 (a) to (c), Effects of Hidden Neuron Number as Measured by 
Average DS for Testing (TR) on HSI Experiments (Input Number fixed to 6, 11, 
16 respectively)   
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Understanding such kind of effects of variables on each other in different stock 

markets may have great value for both the researchers and practitioners in 

financial markets. For there are totally 160 charts obtained from 5 different 

markets under two neural network models, we are unable to plot all the charts 

in this thesis even in the appendix, but we can briefly summarize all the 

important findings about the interrelationships between the three variables in 

all cases. Table 8 and table 9 summarize the interrelationships between these 

three major variables in five stock markets by TRNN and SSPQN models 

respectively. Though the analysing results getting from different neural network 

models are not consistent in all cases, some consistent general findings from 

both models could be drawn as below:  

 

(1). On average, the interrelationships between these three variables 

measured under DS criterion are obviously stronger than those 

measured under MSE criterion in both training and testing processes. 

Most interrelationships under the DS criterion are “high” or “medium”, 

while most such relationships under MSE criterion are “Low”.  

(2). All interrelationships between variables are “low” under training MSE 

results, besides Hidden Neuron Number having above average 

influence on the impact of Input Neuron Number on network 

performance.  

(3). The interrelationships under testing MSE results are quite similar with 

those under training MSE results, besides, under testing MSE results, 

both of the network architecture factors have stronger influence on the 

impact of Dataset Size on network performance.   
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(4). The differences of the analysing results among different stock markets 

are smaller under MSE results and larger under DS results. In another 

word, the stronger the average interrelationships between the variables, 

the wider the differences between the results getting from different stock 

markets.  

 

In this thesis, there are two kinds of criteria used for the network performance 

evaluation. The Mean Squared Error and Directional Symmetry. By comparing 

between Table 8 and Table 9, we can notice that under MSE evaluation 

criterion, the analysis results (hence the conclusions) by two different training 

algorithms are very similar. In all the 60 items under MSE criterion, only few 

analysis results by different training algorithms are different. Under DS 

criterion, more obvious differences are observed under different models. It 

seems that when variables like network topology and data set are same, the 

interrelationships between these variables should be consistent even when 

different training algorithms are used. But, there may be some slight effects of 

training algorithms on the interrelationships between those variables like 

network topology and data set. The slight effects maybe caused by the 

difference between different training algorithms, for example, the different stop 

criteria for the training process. The two training algorithms in this thesis use 

different convergence thresholds to stop the training process. Maybe the 

interrelationships between these variables are sensitive on the different stop 

criteria of the training algorithms. Whether such difference between different 

training algorithms may have some slight effects on the interrelationships 

between these variables is a very interesting issue. Maybe under some 
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particular training algorithms, the interrelationships could be more obviously, 

while under other training algorithms, the interrelationships would be less 

obviously.  Anyway, training algorithm itself is also a very important factor that 

may affect the network performance. Different training algorithms may lead to 

different network performance. As we know, the network topology determines 

the number of weights (thus the number of variables and terms) for the 

network model and the data set determines the points the model simulates in 

the training process. For number of weights represent the complexity of the 

network model, and data set represent the property of the points to be 

simulated by the model, it’s no strange that there are some interrelationship 

between these variables on the network performance. Training the neural 

network involves propagating the error to adjust the set of weights to minimize 

the error function.  Different training algorithms involve different way to adjust 

the set of weights to accurately simulate the sample points. From this point of 

view, training algorithm is the link between these variables under the 

framework of network model, thus different kinds of algorithms may have 

different effects on the interrelationships between these variables. How and on 

what extent the training algorithm affects the interrelationships between the 

variables could be a very interesting topic in our further research.   

 

In my opinion, though, the analysis results on training process may not give a 

direct reference on the later practices in financial forecasting, it provide us a 

deeper insight on the process of network training. By comparing the results 

from training and testing processes, we found some interesting findings. For 

example, our MSE results show that, in training process, the network 
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architecture variables (input and hidden neurons) have low influence on the 

impact of Data Size on network performance. While, in testing process, such 

influence become more obviously and the choice of network architecture 

obviously influence the relationship between data size and network 

performance. As training process is the repeated applications of the same data 

set, as long as the network architecture is complex enough for the desired 

accuracy, it won’t have obvious effects on the impact of data set on network 

performance. It is possible to approximate a continuous function that may 

achieve the desired accuracy with a single hidden layer (Cybenko, 1989; 

Hecht-Nielsen, 1990; Hertz, 1991; Hornick, 1989). Specification of the internal 

architecture involves tradeoff between fitting accuracy and generalization 

ability. The architecture of the network in testing process is very important for 

determining the generalization ability of the network, thus affecting the data set 

impact on network performance.  

 

Of course, the most important things we discovered from these results are 

those unique characteristics that each particular stock market has, which are 

different from each other. These unique characteristics are valuable for our 

further research in that particular market. Based on the interactive sensitivity 

analysis between these major factors in neural network modeling, we 

discovered that the network performance is not only sensitive to each of these 

major factors individually, but also affected by the interrelationships between 

these factors. From this study, we could see that in some cases such 

interrelationships may have obvious influence on the network performance, 

thus the issue on how such interrelationships will affect the network 
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performance must also be considered during the neural network constructing 

for financial forecasting. For example, in the case that Hidden Neuron Number 

has great influence on the impact of Dataset Size on network performance, we 

should consider both the direct and indirect roles that Hidden Neuron Number 

act in the neural network constructing. The general findings from two different 

models as well as the unique interrelationships between these three major 

variables under five different stock markets could be a valuable reference for 

both the academic researchers and the investment practitioners in neural 

network constructing for these particular markets.  
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Table 8 Summary of the interrelationships between major variables in each 
particular market by TRNN model 
 
 
 
 
 
 
 

Summary of the interrelationship between variables in each particular 
market by TRNNs  
(1).For Training Process  

Based on MSE results  Dataset Sizes  
Hidden Neuron 

Number  
Input Neuron 

Number  

Extent of other variables 
affecting the specified Variable   

Hidden Neuron 
Number  

Input 
Neuron 
Number  

Dataset 
Sizes  

Input 
Neuron 
Number  

Dataset 
Sizes  

Hidden 
Neuron 
Number  

DAX  Low* Low Low Low Low Medium 
DJIA Medium* Low Low Low Low Medium 
FTSE Low Low Low Low Low Medium 
HSI Low Low Low Low Low Medium 
NASDAQ Low Low Low Low Low Low 
Based on DS results    

DAX  Low Medium Low Medium High  High 
DJIA Medium Medium High High High  High 
FTSE High* High High High High  High 
HSI Medium Low Medium Medium High  Medium 
NASDAQ High High High High Medium Medium 
(2).For Testing Process  

Based on MSE results  Dataset Sizes  
Hidden Neuron 

Number  
Input Neuron 

Number  

Extent of other variables 
affecting the specified Variable   

Hidden Neuron 
Number  

Input 
Neuron 
Number  

Dataset 
Sizes  

Input 
Neuron 
Number  

Dataset 
Sizes  

Hidden 
Neuron 
Number  

DAX  High High Low Low Low Medium 
DJIA High High Low Low Low Medium 
FTSE Medium Medium Low Low Low Medium 
HSI Medium Medium Low Low Low Medium 
NASDAQ High High Low Low Low Medium 
Based on DS results    
DAX  Medium High High High High  High 
DJIA High High Medium High High  High 
FTSE Medium Medium High High High  High 
HSI Low Low High High Medium Medium 
NASDAQ Medium High High High High  High 
*H, *M and *L represents other variables has high, medium or low influence on the impact of target variable on network 
model performance respectively  
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Summary of the interrelationship between variables in each particular 
market by SSPQN  
(1).For Training Process  

Based on MSE results  Dataset Sizes  
Hidden Neuron 

Number  
Input Neuron 

Number  

Extent of other variables affecting 
the specified Variable   

Hidden 
Neuron 
Number  

Input 
Neuron 
Number  

Dataset 
Sizes  

Input 
Neuron 
Number  

Dataset 
Sizes  

Hidden 
Neuron 
Number  

DAX  Low Low  Low Low  Low Medium 
DJIA Low Low  Low Low  Low Medium 
FTSE Low Low  Low Low  Low Medium 
HSI Low Low  Low Low  Low Medium 
NASDAQ Low Low  Low Low  Low Low 
Based on DS results    
DAX  Low Medium High Medium Medium Medium 
DJIA Low Medium High Medium Medium Medium 
FTSE Medium High High High High High 
HSI Low Medium  Medium Medium  High High 
NASDAQ Low Medium  High High High High 
(2).For Testing Process  

Based on MSE results  Dataset Sizes  
Hidden Neuron 

Number  
Input Neuron 

Number  

Extent of other variables affecting 
the specified Variable   

Hidden 
Neuron 
Number  

Input 
Neuron 
Number  

Dataset 
Sizes  

Input 
Neuron 
Number  

Dataset 
Sizes  

Hidden 
Neuron 
Number  

DAX  High High Low Low  Low Medium 
DJIA Medium High Low Low  Low Medium 
FTSE Medium High Low Low  Low Medium 
HSI Low Low  Low Low  Low Medium 
NASDAQ Medium High Low Low  Low Medium 
Based on DS results    
DAX  Medium Medium High High High Medium 
DJIA Medium High High High High High 
FTSE Low Medium High High High Medium 
HSI Low Medium High High Medium Low 
NASDAQ Medium High High High High Medium 
*H, *M and *L represents other variables has high, medium or low influence on the impact of target variable on network 
model performance respectively 

 

Table 9 Summary of the interrelationships between major variables in each 
particular market by SSPQN model 
 
 
 
4.4. Proposed network topology  
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Table 10 illustrates the optimal neural network structures and optimal dataset 

sizes for the five different stock markets based on the training MSE and DS 

performances. A very interesting finding from MSE results is that, besides the 

optimal dataset size of HSI by SSPQN, the optimal network topologies (both in 

network structure and dataset size) for all the five markets are absolutely the 

same: the optimal number of input neuron, hidden neuron and optimal dataset 

size are 11, 5 and 2000 respectively for both models in the training process. 

These results seem demonstrate that, in training process, the larger the 

dataset size the better. Particularly, in the case of HSI index forecasting, the 

best dataset size is 600 in training process. For the hidden neuron number, 

there seems no doubt that the lesser the hidden neuron number the better the 

results in training process. Based on the training DS results, the optimal 

number of hidden neurons is still 5 in all cases. This finding re-confirm that the 

lesser the hidden neurons the better the training results.  It’s also no strange 

that based on training DS results, stock markets show some differences in the 

optimal number of input neurons and optimal dataset sizes. However, it is just 

such kind of difference that provides us a nice way to distinguish the particular 

financial time series characteristics among those different stock markets being 

studied.  

        

Although the study of the optimal topology in training process may provide us 

some valuable references and hints on neural network modeling, what we 

really care about in this thesis is the optimal network topology for each 

particular market in the testing process. The optimal network topologies in the 

testing process will finally determine the ultimate proposed neural network 
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models for performance comparison in the next chapter. For the problem of 

overtraining exists in neural network training process, a good performance in 

training may not guarantee a comparable good results in testing process or in 

real forecasting, thus the optimal topologies for training are normally different 

from those for testing. Table 11 illustrates the optimal network topologies for 

different stock markets under both models based on the testing results, which 

will be the proposed network architectures for the stock index increments 

forecasting in next chapter. Based on the average testing MSE results, the 

optimal hidden neuron numbers in all cases are still 5. Thus our experiments 

show that for both the training and testing processes, the lesser the hidden 

neuron number the better the network performance in MSE results. On the 

other hand, the optimal numbers of input neurons are all 11 by TRNN model 

for all stock markets except DAX.  The optimal dataset sizes are not consistent 

for different markets and models.  There are no obvious conclusion could be 

drawn from the optimal topology based on testing DS results, besides that the 

best input neuron number in most cases by SSPQN model are 6, that is the 

smaller the input neuron number the better. Taken NASDAQ index as 

example, figure 29 illustrates the optimal network structures for one-day-ahead 

prediction by TRNN model under the criteria of both MSE and DS.  
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(1). Based on the Criteria of Average MSE on Training    
Optimal Structure for Trust Region Dogleg Method Based Neural 
Networks  
  DAX DJIA FTSE HSI NASDAQ 

Optimal Number of Input Neuron 11 11 11 11 11
Optimal Number of Hidden Neuron 5 5 5 5 5
Optimal Dataset Size 2000 2000 2000 2000 2000
Optimal Structure for Parallel Quasi-Newton Method Based Neural 
Networks 
  DAX DJIA FTSE HSI NASDAQ 

Optimal Number of Input Neuron 11 11 11 11 11
Optimal Number of Hidden Neuron 5 5 5 5 5
Optimal Dataset Size 2000 2000 2000 600 2000

(2). Based on the Criteria of Average DS on Training   
Optimal Structure for Trust Region Dogleg Method Based Neural 
Networks  
  DAX DJIA FTSE HSI NASDAQ 

Optimal Number of Input Neuron 6 6 6 6 16
Optimal Number of Hidden Neuron 5 5 5 5 5
Optimal Dataset Size 2000 2000 1500 800 600
Optimal Structure for Parallel Quasi-Newton Method Based Neural 
Networks 
  DAX DJIA FTSE HSI NASDAQ 

Optimal Number of Input Neuron 16 6 16 16 16
Optimal Number of Hidden Neuron 5 5 5 5 5
Optimal Dataset Size 2000 2000 600 800 2000

 
 
Table 10 Optimal Network Topology Based on Training Results for Each 
Market 
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(1). Based on the Criteria of Average MSE on Testing   
Optimal Structure for Trust Region Dogleg Method Based Neural 
Networks  
  DAX DJIA FTSE HSI NASDAQ 

Optimal Number of Input Neuron 16 11 11 11 11
Optimal Number of Hidden Neuron 5 5 5 5 5
Optimal Dataset Size 600 800 800 1500 600
Optimal Structure for Parallel Quasi-Newton Method Based Neural 
Networks 
  DAX DJIA FTSE HSI NASDAQ 

Optimal Number of Input Neuron 16 6 11 6 16
Optimal Number of Hidden Neuron 5 5 5 5 5
Optimal Dataset Size 600 800 600 600 800

(2). Based on the Criteria of Average DS on Testing   
Optimal Structure for Trust Region Dogleg Method Based Neural 
Networks  
  DAX DJIA FTSE HSI NASDAQ 

Optimal Number of Input Neuron 6 6 11 6 16
Optimal Number of Hidden Neuron 15 20 10 15 20
Optimal Dataset Size 600 800 800 600 800
Optimal Structure for Parallel Quasi-Newton Method Based Neural 
Networks 
  DAX DJIA FTSE HSI NASDAQ 

Optimal Number of Input Neuron 11 6 6 6 6
Optimal Number of Hidden Neuron 5 20 20 5 20
Optimal Dataset Size 600 800 600 600 1000

 
Table 11 Optimal Network Topology Based on Testing Results for Each Market   
 

         

The optimal neural network internal architecture is an important issue that 

affects the network performance in forecasting. Despite the importance, there 

is no standard criterion on the number of hidden neurons. However, some 

“rules of thumb” can be found in the literature. Following are some examples:  
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• The number of hidden neurons should be less then twice of the input 

nodes [9] 

• For a three layer network with n input neurons and m output neurons, 

Masters [36] proposes n m×  neurons for the hidden layer 

• Katz [30] states that the optimal number of hidden layer neurons will 

generally be found between 0.5 to 3 times of the number of the input 

neurons.  

• Baily and Thompson [7] suggest that for a three layer neural networks, 

the number of neurons for the hidden layer should be 75% of the 

number of the input neurons.  

 

Our experiment results on the optimal number of hidden neurons are not 

consistent with what Masters, Katz and Baily had suggested, but consistent 

with the first suggestion that the number of hidden neurons should be less than 

twice of the input nodes. On the other hand, our results show that for different 

optimal input neuron numbers, the optimal hidden neuron numbers in all cases 

are the same, which, on some extent can reflect that the optimal hidden neural 

number may not influenced by the number of input neurons in the networks.  

 

As for each particular stock market, the proposed optimal network topologies 

for forecasting are different for TRNN and SSPQN models. The prediction 

performance comparison between these two models is based on their 

corresponding optimal network topologies in five stock markets determined 

from testing process. For example, for DS performance comparison in 
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NASDAQ index prediction, the TRNN model with 16 inputs, 20 hidden neurons 

and dataset size of 800 are compared with the SSPQN model with 6 inputs, 20 

hidden neurons and dataset size of 1000. The performance comparison 

between the TRNN and SSPQN models based on their corresponding optimal 

network topologies in five stock markets is analysed in the next Chapter.  

 

 
 
Figure 29 Optimal NN-Structures for One-Day Ahead Forecasting for NASDAQ 
Index by Trust Region Neural Network Model 
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Chapter 5  

Comparisons and Performance Analysis  

 

In Chapter 5, we conduct stock index increments prediction by both 

component-based neural network forecasting models trained by trust region 

algorithms and SSPQN algorithms.  Computational results obtained from five 

stock markets are disclosed. We then analyze which kind of model gives better 

prediction accuracy in the aspect of one-step sign prediction rate.   

 

Furthermore, additional performance analysis would be conducted on the trust 

region algorithms based neural network model. Performance comparisons 

between our purposed forecasting model and models proposed by other 

researchers in the similar markets would be conducted in order to know 

whether our purposed model improve the network forecasting accuracy.  

  

5.1. Stock Index Increments Forecasting  

          

After determining the optimal network topologies for both the TRNN and 

SSPQN models, further experiments are conducted to compare the neural 

network models’ performance in forecasting index increments in five major 

stock markets. Each experiment is trained 50 times with random selected 

different sets of starting arc weights. The final set of training arc weights that 

give the best result in training is then applied in the testing process.   
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The final estimation of the performance in forecasting is made by means of the 

one-step sign prediction rate ξ defined on T as follows: 

                                         1 [ ( ) 1 ( )]t t t t
t T

HS C G HS C G
T

ξ
∈

= ∆ •∆ + − ∆ + ∆∑              (14) 

 
where ∆Ct=Ct-Ct-1= Ct-1 × Rt is the actual price change at time t∈T and ∆Gt=Gt-

Ct-1= Ct-1 × GRt is the guessed price change at the same time step, where GRt 

is the guessed return at time t. Note that we assume to know the value of Ct-1 

to evaluate ∆Gt. HS is a modified Heaviside function, HS(x)=1 for x>0 and 0 

otherwise. The argument of the summation in (14) gives one if ∆Ct and ∆Gt are 

non-zero and with same sign, or if ∆Ct and ∆Gt are both zero. For our model 

uses both the index and component stock returns as network inputs, thus the 

sign prediction rate ξ can also be expressed without change in value as 

follows: 

                                         1 [ ( ) 1 ( )]t t t t
t T

HS R GR HS R GR
T

ξ
∈

= • + − +∑                   (15) 

 
In other words, ξ is the probability of a correct guess on the sign of the price 

increment estimated on T.  In fact, the probability to make a correct guess on 

the sign of the increment seems independent from the magnitude of the 

increment ∆C itself.  

        

 To check and compare the performance of our proposed network models, the 

optimal network topology is applied to perform one-day ahead prediction of five 

different indices (DAX, DJIA, FTSE, HSI, and NASDAQ) daily increments from 

14 May 2002 to 30 September 2002. Table 12 illustrates the prediction 

performance of the two models in one-step sign prediction rate. 
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Average Accuracy Best Accuracy Models 
TRNN  SSPQN  TRNN  SSPQN  

DAX 60.27% 57.30% 68% 61% 
DJIA 61.46% 58.56% 70% 67% 
FTSE 65.51% 57.87% 73% 64% 
HSI 64.39% 63.35% 74% 70% 
NASDAQ 64.86% 62.03% 73% 67% 
Average 63.30% 59.82% 71.60% 65.80% 

 
 
Table 12, Performance Comparison between Two Models  
 
 
It is easy to notice that, in all the five markets predictions, the Trust Region 

Neural Networks always outperform the SSPQN neural networks. The average 

one-step sign prediction rates by TRNN model are higher than 60% in all the 

five stock markets forecasting. Forecasting accuracy values at or above 60% 

are statistically significant [50]. Furthermore, the average accuracy in FTSE-

100, HSI and NASDAQ even reaches as high as 65.51%, 64.39% and 64.86% 

respectively. For SSPQN model, only two prediction results are more than 60% 

accuracy. In the aspect of best testing one-step sign prediction, the accuracy 

rate of TRNN model even exceed 70% in four markets of DJIA, FTSE, HSI and 

NASDAQ. For the SSPQN model, only in HSI index prediction, the best 

accuracy reaches 70%. In fact, the best prediction result obtained by the 

TRNN model is 74%, both for network training and testing. The proposed Trust 

Region Neural Networks deliver impressive results for forecasting the financial 

indices, especially in the aspect of index price increments.   
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Figure 30 Performance Comparison based on Average and Best Prediction 
Results between Two Models        
 

Figure 30 compares the average and the best index price increments 

prediction results obtained by the Trust Region Neural Networks and the 

SSPQN neural networks in five stock markets. In all the stock markets 

presented, the Trust Region Neural Network model outperforms the SSPQN 
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neural network model. On the other hand, the MSE results obtained by the 

TRNN model also obviously outperform than those of SSPQN model both in 

training and testing process. These outcomes strongly demonstrate that the 

neural networks training by Trust Region Dogleg Path Algorithms have better 

convergence capacity than neural networks training by line search based 

optimization methods, especially in solving complex and high nonlinear 

optimization problems in real financial forecasting applications. 

         

There seems to be a scarcity of research works on predictions of the indices of 

DJIA, NASDAQ, FTSE, DAX and HSI while comparable many such works can 

be found for S & P 500. Some researchers have evaluated their works based 

on results of directional symmetry (DS). We quoted some of these works here 

for comparison purposes. They include: Azoff (1994), Dorsey and Sexton 

(1998) [15], Landasse et al. (2000) [31] and Phua and Ming (2000) [39]. Table 

13 summarizes DS results obtained by various network models. Based on DS 

results, Table 13 shows that our proposed network model outperforms all the 

other network models considered here. In fact, the best DS obtained by our 

model even reach the rate as high as 74%, in the testing process.  

 

The figures in table 13 are not computed on the same data. There seems to be 

a scarcity of former research works on predictions of the indices of DJIA, 

NASDAQ, FTSE, DAX and HSI, and in these forecasting researches even few 

evaluated their works based on the results of directional symmetry (DS). So, 

we quoted all the few works here for comparison purposes. For each former 

research work evaluated in DS results, we only quoted the best DS results 
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they could obtain by their proposed models. Thus we just compared the best 

possible DS results that each models could obtain from the applied data. 

Though the DS results obtained by different models are not computed on the 

same data, the comparison results still can show that the best prediction 

accuracy by our proposed model outperforms all the best prediction results by 

other models. On the other hand, though the comparison results computed on 

different data cannot demonstrate that our trust region based neural network 

model always outperforms other models proposed by former researchers, the 

results still could show that our model can obtain the best prediction accuracy 

evaluated in DS by far.  

 

Similar Research Works  
Average 
DS for 
Training  

Average DS 
for Testing   

The Best 
DS for 
Training  

The Best DS 
for Testing  

Our Results  68.85% 65.51% 75.12% 74%
Phua, P K H & D H 
Ming(2000)  68.50% 65.75% 71.11% 70.00%

Landasse et al (2000)  60.30% 57.20%  ×  × 
Dorsey & Sexton (1998)  58.68% 53.97%  ×  × 
Azoff (1994)  56.50% 54.50% 58.50% 56.00%
 
Table 13 Comparison of Stock Index Direction Prediction by Different 
Researches 
 
 
5.2. Performance Analysis on TRNN model 

 

To check the convergence performance of our proposed Trust Region Neural 

Networks in more detail, the optimal network structure is applied again to 

perform one-day ahead prediction of DJIA daily returns on another time series: 

from 1/24/95 to 6/15/95. The actual and predicted values of DJIA daily returns 
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for this period are shown in figure 31. Figure 32 shows the actual and 

predicted daily prices of DJIA. These figures show that our prediction results 

by trust region neural network model agree with actual value of DJIA 

impressively. Furthermore, our predicted results show that the common 

problem of the laziness of neural networks has been overcome, see figure 32 

for instance.          
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Figure 31, Actual and Predicted Daily Returns of DJIA   
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Figure 32, Actual and Predicted value of DJIA daily close prices 
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Chapter 6  

 
Conclusions and Discussions   

       

This thesis presents a comprehensive study of applying artificial neural 

networks in predicting stock index increments. The data of five major stock 

exchange indices, DAX, DJIA, FTSE-100, HSI and NASDAQ, are applied to 

test our network models. Unlike other financial forecasting models, our model 

directly uses the component stocks of the index as inputs for the prediction. 

For the neural network training, a trust region dogleg path algorithm is applied. 

For comparison purposes, other neural network training algorithms are also 

considered; in particular, optimization techniques with line searches are 

applied for solving the same class of problems. Optimal neural network 

topologies are determined for each model by experiments. Computational 

results from five different stock markets show that the trust region based neural 

network model obtained better results compared with the results obtained by 

other neural network models. In particular, we show that our model is able to 

forecast the sign of the index increments with an average success rate above 

60% in all the five stock markets. Furthermore, our prediction results for FTSE-

100, HSI and NASDAQ are exceeding an average accuracy of 64%.  

 

Besides the issue on learning algorithms, a major challenge faced by neural 

network researchers is that there are no formal theories for determining the 

optimal network model. Neural network modelling is a complex process that is 
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currently more art than science. Thus for an artificial neural network applied to 

a specific problem, experiments must be conducted to determine the 

performance differences between alternative models. In our research, three 

major factors that have influence on the network performance are considered 

in the process of neural network modelling. Both the individual and interactive 

sensitivity analysises are conducted in order to study how these major factors 

as well as their interrelationships influence the neural network performance, 

especially in financial forecasting. Based on the analysis results, the following 

general guidelines on network modelling in financial forecasting are suggested:  

 

(1). Sample size in the training set affects the network prediction accuracy.   

Our result shows that it’s not the larger sample size in training set the 

better the network performance. The optimal sample size for training set 

should be determined by experiments. On the other hand, the sensitivity 

of the network prediction accuracy on sample size depends on the noise 

within the data.  The noisier the data the more sensitive the network 

performance is on the sample size. In this thesis, we exams the effects 

of different in-sample time periods and sample size on the network 

performance. We considered five different sample sizes of 600, 800, 

1000, 1500 and 2000 in the experiments and the results show that it’s 

not the larger the training sample size the better the prediction results. 

In fact, our experiments show that the optimal sample sizes for 

prediction are the latest 600 or 800 sample data in most cases. After 

determining the optimal training samples for each model, we make the 

final prediction. Though some data used in this thesis is as old as dated 



 
 
 
 

 
 

114

in 1994, they are just used to determine the optimal training sample and 

to exam the effects of training sample on network performance. In fact, 

none of these very old data are used in the real financial forecasting for 

the period of May 2002 to September 2002. The sample data in the 

most recently two or three years are finally used for the financial 

forecasting for the 100 days in 2002. Our experiments also show that 

the recent data is better than old data in making financial forecasting.  

 

(2). Although numerous heuristics have been suggested for determining the 

number of nodes in the hidden layer, they do not apply across all the 

reported studies. Our result shows that in financial forecasting, the less 

the number of nodes in the hidden layer the better the network 

prediction accuracy. The main reason for this result is that the financial 

time series data are highly noisy and highly nonlinear, thus smaller 

networks should be used to increase generalization ability and avoid 

overfitting to the noise.  

 

(3). Under the component-based index forecasting method, the number of 

component stocks that should be used as inputs for the networks also 

affects the network prediction accuracy.  There is no clear guidance on 

the selection of the inputs number under the component-based 

forecasting scheme. Determining the number of inputs nodes is still part 

of the ‘art’ of neural networks.  
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(4). Our research shows that there exist interrelationships between these 

major factors in network modelling and such interrelationships also 

affect the network performance. For such impact could be obvious in 

some cases, we must consider both the direct and indirect impacts of 

each particular factor on the network prediction accuracy in the process 

of network modelling. Our results show that both of the network 

architecture factors (input and hidden nodes) have obvious influence on 

the impact of sample size on network performance and hidden nodes 

number also has above average influence on the impact of input nodes 

on network performance.  

 

(5). Under different evaluation criteria for the network performance, the 

effects of each factor as well as the interrelationships between these 

major factors on the network performance are usually different. Thus it’s 

no strange to find that the optimal network topologies for the same 

particular time series data under different evaluation criteria are usually 

different. Under MSE criteria, the network architecture factors normally 

have more impact on the network performance than the sample size 

does and the interrelationships between all these factors are usually low 

on average, while all these relationships will reverse under the DS 

criteria.  

         

Particularly, as the experimental results in this thesis are valid only for 

prediction of stock returns for the 100 days in 2002, if one is to use the 

methods presented in the thesis to predict stock returns in 2003, our 
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recommendations on determining the network training algorithms, training 

samples, network topology and number of iterations would be as following:  

 

• Though the results are only valid for prediction of stock returns for the 

100 days in 2002, computational results obtained from five different 

stock markets demonstrate that the trust region based algorithms 

always outperform the line search based SSPQN algorithms in the 

aspect of prediction accuracy on the one-step sign prediction rate.  And 

our experiments conducted on five different financial time series data 

show that the average one-step sign prediction rates by trust region 

algorithm based network model are higher than 60% in all markets, 

which is statistically significant. The main difference between the 

predictions in 2002 or in 2003 is the different time series data being 

used for the prediction. As we have shown that for different financial 

time series data in different stock markets, the trust region algorithms 

based model always outperform the other model, we would strongly 

recommend the trust region based network training algorithms 

presented in the thesis if someone is to use the component-based 

neural network model for the stock index increments forecasting in 2003.  

• Sample size in the training set affects the network prediction accuracy. 

Our experiment results for 2002 prediction have shown that it’s not the 

larger sample size in training set the better the network performance. 

The optimal sample size for training set should be determined by 

experiments. On the other hand, the sensitivity of the network prediction 

accuracy on sample size depends on the noise within the data. The 
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noisier the data the more sensitive the network performance is on the 

sample size. Particularly, our experiments show that for DAX index 

forecasting the optimal sample size is always 600 for both models under 

two criteria of MSE and DS. For DJIA index forecasting, the optimal 

sample size is always 800. In the case of FTSE forecasting, the optimal 

sample size is different when different models are used: 800 for TRNN 

model and 600 for SSPQN model. While in the cases of HSI and 

NASDAQ, the difference between optimal sample sizes for different 

criteria or different models becomes very obviously when comparing 

with the former three cases: the optimal sample size is 1500 for HSI 

forecasting when TRNN model is used and is 600 when SSPQN model 

is used; the optimal sample size is 600 for NASDAQ index forecasting 

under MSE criterion while be 1000 under DS criterion. As we have 

shown in Chapter one that the data in HSI and NASDAQ indices are 

obviously more noisy than the data in DAX, DJIA and FTSE indices. 

That’s why the optimal samples sizes for HSI and NASDAQ indices 

forecasting show obvious diversity for different models or different 

criteria. For 2003 stock index forecasting, we would recommend 600 

data samples for DAX index forecasting and 800 data samples for DJIA 

index forecasting. For FTSE forecasting, we would recommend 600 or 

800 data samples depending on different models. But for HSI and 

NASDAQ indices forecasting, we strongly recommend practitioners to 

determine the optimal sample size by experiments. For noisy data the 

optimal sample size is affected by many factors thus the optimal sample 

size would be inconsistent for different cases. 
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• Although numerous heuristics in former researches have been 

suggested for determining the number of nodes in the hidden layer, they 

do not apply across all the reported studies. Our results in 2002 

prediction shows that in financial forecasting, the less the hidden 

neurons the better the prediction accuracy in MSE. The main reason for 

this result is that the financial time serious data are highly noisy and 

highly nonlinear, thus smaller networks should be used to increase 

generalization ability and avoid overfitting to the noise. If someone 

would predict the stock returns in 2003, we will recommend them not to 

use too many nodes in the hidden layer, for too many hidden nodes will 

produce a network that memorizes the input data and lacks the ability to 

generalize. By our experiments, around 5 hidden nodes will lead to the 

best results in MSE. While under DS criterion, the optimal number of 

hidden nodes is unconstant for different stock markets. The possible 

explanation for such difference for different criteria maybe that MSE is 

the objective function for the network training algorithm while DS is not 

the objective function and just reflects the percentage of correctly 

predicted directions with respect to the stock index. Our experiments 

show that larger architectures are normally required for complex 

response surfaces, thus optimal hidden nodes under DS criterion don’t 

always follow the rule of “ the less the hidden nodes the better the 

prediction accuracy in DS”. If researchers were to predict the stock 

returns under DS criterion in 2003, we would recommend them to 

determine the optimal hidden nodes by experiments.  
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• Under our proposed component-based index forecasting method, the 

number of component stocks that should be used as inputs for the 

networks also affects the network prediction accuracy. As the optimal 

inputs are sample data based under both criteria of MSE and DS, there 

is no clear guidance on the selection of the inputs under the component-

based forecasting scheme. Determining the number of input nodes is 

basically problem-dependent and requires an experimental trial-and-

error approach.  

• Our experiments show that it’s not the more iterations the better the 

prediction results. Though training algorithms guarantee that total error 

in the training set will continue to decrease as the number of iteration 

increases, training with repeated applications of the same data set may 

result in the phenomenon of overtraining. Overtraining occurs when the 

neural network attempts to exactly fit the limited set of points and loses 

its ability to interpolate between those points (Hecht-Nielsen 1990). In 

practice, our experiments show that the MSE (or DS) results for testing 

will reverse its trends to decreasing to increasing (or increasing to 

decreasing) at some particular iteration number in the training process. 

In theory, as training processes, there is always an intermediate stage 

at which the algorithm reaches a good balance between accurately 

fitting the training set examples and still providing a reasonable good 

interpolation capability. The problem created from overtraining is 

determining when sufficient iterations have been accomplished to 

achieve the desired prediction accuracy. The “best” predictive 

performance should be obtained with the set of weights that produces 
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the minimum value for the error function in the testing set of data. 

Iterations beyond that point will not improve predictive performance. 

Thus the training process of our network should be terminated when the 

MSE (or DS) results for testing reverse its trends. The internal 

architecture (nodes in hidden and input layers) of network will determine 

the number of connection weights of the neural network model, thus 

finally determine the degrees of freedom of the network (the variables 

and terms of the model). On the other hand, the sample data size will 

determine the points to be fitted by the neural network model. Thus, all 

these variables of training samples and network topology will determine 

the optimal iteration number for network training. In our prediction 

experiments in 2002, we obtained the optimal iteration number for some 

particular stock market and training algorithm by averaging all the 

possible results from the combination of the three variables of training 

samples (600, 800, 1000, 1500, 2000), inputs (5, 10, 15) and hidden 

nodes (5, 10, 15, 20).  The average results of optimal iteration number 

for network training under two criteria are listed in the Table 3 of the 

thesis. All the computations and comparisons between the two models 

in the thesis are all based on the averaged optimal iteration numbers 

listed in Table 3.  Though researchers could take the average results in 

table 3 as reference if they are to predict the stock indices in 2003, we 

would recommend them to re-determine the optimal iteration number 

under the new training sample data by the method we proposed in this 

thesis. In my opinion, the difference sometimes may be large, because 
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the variable of training sample is a key element for determining the 

optimal iteration number for training, which could be reflected in Table 3.  

 

Our research conducted detailed sensitivity analysis on several design factors 

that significantly impact the accuracy of neural network forecasts and the 

proposed optimal network topology is determined by such analysis. 

Furthermore, a trust region dogleg path algorithm is applied to train the 

proposed neural network model and this TRNN model has been shown to give 

an impressive result in financial forecasting. Though the forecasting accuracy 

values by TRNN model have been statistically significant, more researches 

could be conducted in the following areas in order to improve the network 

performance even further:  

 

(1). The component-based input selection method in this paper is mainly 

based on the correlation coefficient between the returns of the index 

and the component stock prices. The m  component stocks that highest 

correlated with the corresponding index in addition with the index itself 

are selected as the inputs ( 1m + ) for the network forecasting. Several 

other input selection schemes should also be considered: (a). Based on 

the correlation coefficient between the returns of the index and the 

component stocks, only the m component stocks that highest correlated 

with the corresponding index are selected as the inputs ( m ); (b). Based 

on the correlation coefficient between the prices of the index and the 

component stocks, the m component stocks that highest correlated with 
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the corresponding index in addition with the index itself are selected as 

the inputs ( 1m + ); (c). Based on the correlation coefficient between the 

prices of the index and the component stocks, only the m component 

stocks that highest correlated with the corresponding index are selected 

as the inputs ( m ). Experiments must be conducted to determine the 

network performance differences between alternative inputs selection 

schemes.  

 

 (2). Artificial neural network training usually requires two main sets of data:  

the training set which must be representative of the entire domain and 

the test set which is used to evaluate the prediction accuracy of the 

model. There are many alternative ways of dividing the whole time 

series data into the two parts. For example, 90% whole data could be 

used as the training set and the remaining 10% were used as the test 

set. Further researches should be conducted to see whether alternative 

sample data dividing method could improve the network prediction 

accuracy. How do we choose an appropriate sample dividing method 

especially for ANN financial forecasting is an interesting issue for further 

research. 

 

(3). Besides one-step-ahead forecasting, multi-step-ahead forecasting 

should also be considered for further research in order to see whether 

neural networks could also produce impressive better results than 
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traditional statistical methods, as well as whether the TRNN model still 

could significantly outperform than other neural network models.  
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APPENDIX A 

Distributions of Journals Publishing NNs Applications in Finance 
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APPENDIX B 
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APPENDIX C 

 

A Brief Introduction of Trust Region Dogleg Path (TRDP) Algorithm  

 

        In this appendix, we give a brief introduction to the Trust Region Dogleg 

Path (TRDP) algorithm proposed by [27, 28] for solving unconstrained 

minimization problems. Consider the solution of the problem 

 

                                   ( ){ }( )
2

1min
2

Tdef
k T

k k k kq f g Bδ δ δ δ δ= + + ≤ ∆                 (I.1) 

in trust region methods for minimizing a smooth function  ( )f x , nx R∈ , where 

( )( )k
kf f x= , ( ) ( )( )k kg f x= ∇ , ( )k

k x xδ = − , kB is either 2 ( )( )kf x∇ or its 

approximation and k∆ is the trust region radius. The solution of problem (I.1) 

generally satisfies the system 

 

                                  ( ) ( ) ( )

2
( ) ( ) , ,k k k

kB I gµ δ µ δ+ = − = ∆  

where 0µ ≥  such that kB Iµ+ is at least positive semi-definite, except that if 

kB is positive definite and 1 ( )

2

k
k kB g− ≤ ∆ , the solution is ( ) 1 ( )k k

kB gδ −= − . 

However, there is no definite method to determine such a µ . Most algorithms 

find an approximate solution of (I.1). Shultz et al. [18, 42] proposed an 

approximate solution of (I.1) by performing a two-dimensional quadratic 

minimization:  

                                    { }2
min ( ) ,k kq δ δ ς δ∈ ≤ ∆                                          (I.2) 
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where ς  is a two dimensional subspace.  

        Let k∆ vary, the solution points of (I.1) form a curvilinear path in the 2-

dimensional space, called the optimal path which minimizes ( )kq k within the 

trust region. Most practical two-dimensional curvilinear paths work well when 

kB  is positive definite, but they are unable to deal with the non-positive definite 

case. To improve this situation, TRDP algorithm proposes some indefinite 

single dogleg paths for the solution of (I.1). These paths are obtained by 

considering negative curvature directions for indefinite kB . Bunch-Parlett 

factorization of a symmetric matrix is employed to factorize kB  

 

                                      T T
kPB P LDL=                                                           (I.3) 

where P is a permutation matrix, L a unit lower triangular matrix and D a block 

diagonal matrix with 1×1 and 2×2 diagonal blocks.  If kB is positive definite, D 

is diagonal. Without loss of generality, it is assumed in the sequel that P I= . It 

is known from [22] that the elements of L are bounded with bounds 

independent of the matrix kB , i.e. there exist positive constants 1 2 3, ,c c c and 

4c such that 1
1 2 3 42 2

,c L c c L c−≤ ≤ ≤ ≤ . Positive definiteness of kB is implied 

from that of D, whose eigenvalues are easy to calculate and Newton directions 

are generated. 

        In the case, kB is indefinite, then the most negative eigenvalues 1µ and 1d of 

kB and D satisfy relations  

                                    
22 1

1 1 12 2
d L d Lµ −≤ ≤                                                   (I.4) 
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        Let 1 2 nd d d≤ ≤ ⋅⋅⋅ ≤ be eigenvalues of D and 1 2, ,..., nu u u be the 

corresponding orthonormal eigenvectors. Let { 0}ii d−ℵ = ≤ . The direction 

 

                                  ( )sgn( ) , { , }
Tdef

k T T i
i i

i
d g L L u Rυ υ υ ς υ υ

−

− −

∈ℵ
= − ∈ = = ∀ ∈∑ l l  (I.5) 

is a direction of negative curvature of kB , since 2( ) 0.T T
k i i

i
d B d D dυ υ

−∈ℵ
= = <∑ l   

        The model algorithm presented in this section locates a minimizer of a 

smooth function ( )f x . At each iteration, the gradient ( )kg and the matrix kB are 

evaluated. A dogleg path, denoted by ( )kΓ , is formulated from Bunch-Parlett 

factorization of kB  and the problem  

                                  ( ) ( )
2

1min{ ( ) , }
2

Tk T k
k k k kq f g Bδ δ δ δ δ δ= + + ∈Γ ≤ ∆        (I.6) 

is solved to get ( )kδ . Then either ( ) ( )k kx δ+  is accepted as a new point or k∆  is 

reduced, depending upon a comparison between the actual 

reduction ( )( )kared δ  of the objective function and the predicted reduction 

( )( )kpred δ by the quadratic model 

                                 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1( ) ( ), ( )
2

T Tdef def
k k k k k k k k

k kared f f x pred g Bδ δ δ δ δ δ= − + =− −  

if the reduction in the objective function is satisfactory, we start a new iteration 

at ( 1) ( ) ( )k k kx x δ+ = + with the updated trust region radius; otherwise, the iteration 

continues at point ( )kx with a reduced k∆ . The model of these algorithms is as 

follows.  

  

Trust Region Dogleg Path (TRDP) Algorithms         
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1. Given (0) ,n
masx R∈ ∆  and 0 ( )mas∆ < ∆ . Set 1 2 1 20 1,0 1 ,η η γ γ< < < < < < and 

0k =  

2. Evaluate ( )( )k
kf f x=  and ( ) ( )( )k kg g x=  

3. Convergence test. If not determined, generate kB and form a dogleg 

path ( )kΓ .                                             

4. Determine ( ) ( )
2

arg min{ ( ) , }k k
k kqδ δ δ δ= ∈Γ ≤ ∆  

5. Calculate ( ) ( )( ) ( )k k
k ared predθ δ δ= . If 1kθ η< , then 1k kγ∆ = ∆ . Go to step 

4.  

6. ( 1) ( ) ( )k k kx x δ+ = +  and 2 2 2
1

min{ , },

,
k mas k k k

k
k

if and

otherwise

γ θ η δ
+

⎧ ∆ ∆ ≥ = ∆⎪∆ = ⎨
∆⎪⎩

  set 

1k k← + and go to step 2.  

 

        In the following, ( ) ( )[ , , ] [ , , )k kx y w or x y w denote a single dogleg path starting 

from ( )kx  and turning direction at y. The former is a finite single dogleg path 

with end point w, while the latter is an infinite single dogleg path where the 

second piece is a ray starting at point y along the direction w. the single dogleg 

path ( )kΓ in step 3 is formulated in the following ways:  

(1). If kB  is positive definite, ( )kΓ is Powell’s single dogleg path: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( )[ , , ], , ,k k k k k k k k k k k k k k
ps cp np cp cp k np np kx x x x x x g x x x B gδ β δ −Γ = = + = − = + = −  

where ( ) ( ) ( ) ( )T Tk k k k
k kg g g B gβ = .  
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(2). If kB is indefinite, we give four choices for ( )kΓ . Let kB be factorized into the 

form (I.3) and a negative curvature direction d be generated from (I.5) 

withυ ∈£ .  

(a) In the case ( ) ( ) 0
Tk k

kg B g > , if ( ) 0
Tk Tg L υ− ≥ or  

                                  ( ) 0
Tk Tg L υ− <  and

( ) ( ) ( )

( ) ( )
,

T T

T

k k k

Tk k
kk

g g g d
d B dg B g

<                     (I.7) 

            the path is chosen to be ( ) ( ) ( )
1 [ , , ).k k k

s cpx x dΓ =  

(b) In the case ( ) ( ) 0
Tk k

kg B g > , ( ) 0
Tk Tg L υ− < but the second part of (I.7) dose 

not hold, or in the case ( ) ( ) 0
Tk k

kg B g ≤  , we 

set ( ) 1 ( ) ( ) ( ) ( )( ) ,k k k k k
B k B BB I g x xδ µ δ−= − + = + , where                     

'
1 1 1( ( ) , max{ ( ) , ( )}),k k n kB B Bµ µ ω θ µ µ∈ +                          (I.8) 

'
10 1andω θ> > is a constant such that it makes the right end of the 

interval greater        than the left end. Notice that for such a choice of µ , 

kB Iµ+ is positive definite and 12 2
(1 )k kB I Bµ θ+ ≤ +                     

(I.9) when ( ) ( ) 0
Tk k

kg B g > , if 
2 2( ) ( ) ( ) ( ) ( )

2 2 2

Tk k k k k
B k B B cp cpandδ δ δ δ δ≥ ∆ > >          

(I.10) the path is ( ) ( ) ( ) ( )
2 [ , , ].k k k k

s cp Bx x xΓ = ; otherwise, the path 

is ( ) ( ) ( )
3 [ , , ),k k k

s Bx x dΓ =
)

 ( )sgn( ) .T k
Bd d dδ=

)
  When   ( ) ( ) 0

Tk k
kg B g ≤ ,if     

( ) ( )

( ) ( )
,

T

T

k k T
k

Tk k

g B g d Bd
d dg g

<         (I.11)  

(c) the path is   ( ) ( ) ( ) ( )
4 [ , , )k k k k

s Bx x gΓ = − ; otherwise, ( )kΓ is the path ( )
3
k

sΓ .                                 
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APPENDIX D 

 

A Brief Introduction of SSPQN Algorithm  

 

        In this appendix, we give a brief introduction to the self-scaling parallel 

Quasi-Newton (SSPQN) algorithm proposed by [7] for solving unconstrained 

nonlinear optimization problems. Consider minimizing the following objective 

function: 

 

                                             2

1 1

1( ) [ ( )]
P K

pk pk
p k

f w Y Z w
PK = =

= −∑∑                           (I.1) 

 

Where (1) (2)w w w= ∪ represents the weights of the neural network, ( )pkZ w  are 

the output values of the networks, and{( , ) : 0,1,..., ; 1, 2,..., }pi piX Y i m p P= = is the 

set of given input/output vectors for training the neural network.   

 

        In solving the above minimization problem, Quasi-Newton methods 

proceed to generate a sequence of solution points:  

 

                                              1k k k kW W dα+ = +                                                (I.2) 

 

Where kd is the search direction used for iteration k and kα is the step-size of 

the iteration k. The Search direction is computed by:  
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                                              k k kd H g= −                                                        (I.3) 

 

Where kH  is the current approximation to the inverse Hessian matrix, and 

( )k kg f w= ∇  is the current gradient vector. The matrix kH is obtained through a 

recursive process of updating the previous inverse Hessian matrix 

approximation, and 0H  is generally chosen to be the identity matrix I. In fact, 

the updating matrix 1kH +  is chosen to satisfy the so-called Quasi-Newton 

equation:  

 

                                             1k k kH y S+ =                                                         (I.4) 

 

Where 1k k ky g g+= − and 1k k ks w w+= − . To improve the performance of QN 

methods, we propose to use the following three parameter family of updates 

(see [14]):  

 

           1( , , ) [ ( ) ]
T T

T Tk k k k k k
k k k k k k k k k k k kT T

k k k k k k

H y y H s sH H y H y v v
y H y s y

φ θ λ φ θ
λ+ = − + +             (I.5) 

 

Where  

 

                                               k k k
k T T

k k k k k

s H yv
s y y H y

= −                                        (I.6) 
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        Here, kφ  is the parameter proposed by [15], kθ  is a scaling parameter 

proposed by [16], and kλ  is the parameter proposed by [17] to improve the 

performance of BFGS updates proposed independently by Broyden in [15], 

Fletcher in [19], Goldfarb in [20] and Shanno in [21]. Note that the update 

formula given in Equation I.5 combines the features and merits of the above 

three classes of updates. In practice, we note that a particular class of QN 

methods may be ‘good’ in solving certain types of optimization problems 

efficiently, however, their efficiencies may degenerate when they are applied to 

solve other categories of problems (see [23], for instance).  

 

        Based on the above observations, the ideal situation would be that 

relative merits of different QN methods are adopted into the design and 

development of new algorithms. This lead us the introduction of the following 

self-scaling parallel Quasi-Newton (SSPQN) methods.  

 

 

 Self-Scaling Parallel Quasi-Newton (SSPQN) Algorithms  

 

1. Initialization  

            Set initial values:  

           0w   = the initial random value of the weights; 

           0H  = the initial Approximation Inverse Hessian, say I;  

            ε   = the accuracy requirement; 510− for instance; 

            k   = the iterations; k=0 initially;  
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2. Compute the function and gradient values  

Let ( )k kf f w= and ( )k kg f w= ∇   

 

3. Compute the parallel search directions  

Let J be the number of processors available for computing the search 

directions simultaneously. Compute in parallel,  

 

                                                ( , , )kj k kj kj kj kd H gφ θ λ= −                          (I.7) 

 

4. Perform the parallel line searches 

Along each search direction kjd , perform inexact line searches to 

determine the step-size in parallel to satisfy the following Wolfe 

conditions:   

 

                                         1( ) ( ) T
k jk kj k jk kj kjf w d f w g dα ρ α+ ≤ +              (I.8) 

and 

                                                    2( )T T
k jk kj kj k kjg w d d g dα ρ+ ≥                

(I.9) 

 

Where 10 0.5ρ< < and 1 2 1ρ ρ< < are some positive small quantities. 

Points satisfying conditions of equation (I.8) and (I.9) are called 

‘successful points’.  
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5. Choose the minimum point  

If Successful points are found from more than one search directions, let 

*
kd  denoted the direction that attained the minimum function value, and 

*
kα  is the step size. That is   

 

                                                * *

1
( ) min ( )k k k k kj kjj m

f w d f w dα α
≤ ≤

+ = +         (I.10) 

 

6. Generate the new iteration points  

                        Let * *
1k k k kw w dα+ = + , 1 1( )k kf f w+ +=  and 1 1( )k kg f w+ += ∇   

 

7. Test for Convergence 

Apply the following convergence criterion:  

 

                                                    1 1max{1, }k kg wε+ +≤ •                   (I.11) 

If condition (1.11) is satisfied, then stop; otherwise proceed to step 8.  

 

8. Compute the approximate inverse Hessian 

Compute 1kH +  according to equation I.5.  

 

9. Repeat the process 

Set k=k+1 and repeat the process from step 3 

 


