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Abstract

This study aims to make predictions about the Australian All Ordinary Index (AORD).

The following two types of predictions are considered: (1) predicting the direction (up or

down) of the Close price; and, (2) predicting whether it is best to buy, hold or sell. A

novel approach, which heavily involves global optimization, is adopted for predictions.

This thesis investigates different methods of incorporating intermarket influences for

predictions. It proposes a novel method for quantifying stock market influences from a

set of potential influential markets on a given dependent market, by maximising the rank

correlation between the markets of interest. The possible intermarket influence from the

world’s major stock markets on the AORD was quantified using this method. The ways

of using quantified intermarket influence for predictions were investigated.

The direction of the Close price of the AORD was predicted using feedforward neural

networks (FNNs). When predicting whether it is best to buy, hold or sell, to overcome the

difficulties caused due to the imbalanced distribution of data (as a result of considering the

hold class), this thesis introduces some neural network algorithms. These new algorithms

use modified error functions and were trained with a global optimization algorithm.

The results relevant to both types of predictions suggest that the quantified inter-

market influences on the AORD can be effectively used. This is an indication of the

effectiveness of the proposed approach for prediction.
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Chapter 1

Introduction

1.1 Background

The background of this study is presented under two subsections: stock market prediction

and intermarket influences.

1.1.1 Stock Market Prediction

The profitability of investing and trading in the stock market is directly proportional to

its predictability. Therefore, predicting the direction of stock market indices is one of

the most important issues in finance. Regarding the possibility of forecasting in this area

there have been two major hypotheses widely adopted by financial academicians: the

Efficient Market Hypothesis and the Random Walk Hypothesis.

The Efficient Market Hypothesis implies that in liquid markets, where prices are the

result of unconstrained demand and supply equilibria, the current price should accurately

reflect all the information that is available to the players in the market [2]. Future changes

in prices can only be the result of ‘news’, which by definition is unpredictable.

The Random Walk Hypothesis states that price movements will not follow any patterns

or trends and past price movements cannot be used to predict future movements [9].
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According to these hypotheses, the possibility of predicting the movements in financial

markets is very low. However, Fama [19] suggested that stock market price movement

may show a weak form of efficient market hypothesis. Furthermore, many recent studies

(for example [12, 16, 22, 45, 64, 67, 70, 74, 75, 100]) aimed at predicting the movements

of stock market indices.

Until recently, the major forecasting methods used for financial prediction have been

either technical or fundamental. Fundamental analysis studies the effect of supply and

demand on the value of security while technical analysis believes that the stock market

moves in trends and these trends can be found and exploited [9]. Fundamental meth-

ods rely on fundamental economic data such as retail sales, gold price, the industrial

production index, and foreign currency exchange rates etc. as input variables to predict

stock market indices whereas, technical methods rely mainly on market activity data and

derivatives such as moving averages, momentum, relative strength index, etc. as input

variables [59].

However, many of the techniques used by financial analysts are empirical in nature.

These techniques have not been shown to be statistically valid, and may lack a rational

explanation for their use [100]. Stock markets are influenced by many interrelated factors

including the effects of economic, political and even psychological factors. These varied

and diverse factors interact with each other in a complex fashion, and it is therefore very

difficult to accurately forecast the movement of stock markets.

Recently, Murphy [58] suggested that intermarket technical analysis is a promising

method for stock market prediction. If the performance of two markets are interrelated,

then one market will be termed an intermarket of other [73].

1.1.2 Intermarket influences

In the last two decades, many changes such as, liberalisation of financial markets, im-

provements of information and communication technologies, and developments of trading

facilities, have taken place in the world. Due to these changes, the scope of selection for fi-
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nancial investors and traders is increased. This enlargement of the scope of selection causes

an integration of financial markets of many different countries of the world [25, 55, 66, 99].

As a result of this integration, the behaviour of the world’s major stocks are interrelated.

As mentioned in the previous section (Section 1.1.1), when the performance of two markets

are interrelated, one market is called an intermarket of other [73].

If the lagged prices (or a derivative thereof) of a stock market index have a significant

impact on the current price (or derivative of price) of a given stock market, then we define

such an impact as the influence from the former market on the latter. Furthermore, if one

market influences another, we call such an influence an intermarket influence. There may

be a set of intermarkets that influence the behaviour of a target market. Therefore, we

define Intermarket Influence Analysis as the study of relationships between the current

price (or a derivative of price) of a dependent market and the lagged price (or a derivative

thereof) of one or more influential markets [83, 84, 85]. The way one market influences

another for a perceivable time period will be called an ‘intermarket influence pattern’.

This pattern may vary from one pair of markets to another, or it may vary from one time

period to another for the same pair of markets. Intermarket influences (either positive or

negative) may be reflected on the price itself, and/or one or more derivative properties of

price such as trend (linear or non-linear), volatility 1, etc. of the target market.

Currently intermarket influence is an important consideration among investors and

decision makers. Discovering intermarket influence patterns is useful in many applications

such as market prediction, portfolio optimization and management, option pricing, and

risk management. Intermarket technical analysis is a relatively recent area of technical

analysis practised by professional analysts [60].

Poddig and Rehkugler [66] argued that most of the financial markets of major de-

veloped countries must be regarded as highly integrated and therefore, the traditional

approach of modelling (an unique model with respect to asset or asset class of interest)

would ignore valuable information. Instead of this traditional approach, a non-linear

1This is a measure of the dispersion in a probability density of stock market price returns.
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analysis of integrated financial market is essential to understand the behaviour of these

markets. Taking this matter into account, they proposed a model named the ‘intermar-

ket model’. They defined this model as the direct approach of modelling a system of

interlinked markets by the use of a system of interdependent equations. Their results

suggested that the intermarket model outperforms isolated (unique) market models.

The suggestions and the findings done by the past studies [60, 66] give a strong in-

dication of the importance of taking the behaviour of foreign stock market indices into

account, when studying the behaviour of a selected stock market index.

1.2 Motivation for the Study

Recent studies [63, 65, 66] have shown that the intermarket influences improve fore-

cast accuracy. Furthermore, Olson and Mossaman [63] showed that during periods when

macroeconomic variables are changing, correlations among interrelated markets pick up

the changing market conditions faster than the lagged macroeconomic variables.

If a set of stock markets are interrelated, each stock market in this set can be con-

sidered as a part of a single system. The influence from one integrated stock market on

a dependent market may include the influence from one or more stock markets on the

former. Therefore, in order to estimate the direct influence from one market to another,

intermarket influence needs to be quantified. However, no techniques for the quantifica-

tion of intermarket influences were introduced in the literature.

Discovering and formalising intermarket influence patterns is likely to prove extremely

useful in many applications such as market predictions. Some past studies (for example

[26, 63, 65, 66]) incorporated the possible influence from one or more foreign stock markets

together with other factors, to predict a selected stock market index. However these

studies did not consider the quantified intermarket influences from the considered foreign

stock markets. Therefore, stock market predictions using quantified intermarket influences

as input variables, potentially provides a great opportunity for a PhD research.
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1.3 Research Objectives

The objective of this study is to make predictions about the Australian All Ordinary Index

(AORD) using the intermarket influences from the world’s major stock market indices.

The prediction is twofold:

1. Predicting the direction (up or down) of the Close price of day (t+1) of the AORD;

2. Predicting whether it is best to buy, hold or sell (trading signals) on day (t+ 1).

Such predictions are beneficial for short-term traders, since they can make the correct

investment decitions by looking at the predictions.

1.3.1 Research Problems

The previous section (Section 1.2) highlighted the importance of the quantification of in-

termarket influences. As mentioned in Section 1.2, no quantification technique for quan-

tifying intermarket influences, is available in the literature. Hence, a technique needs to

be introduced before starting to quantify intermarket influences on the AORD.

After quantifying the intermaket influence on the AORD, an investigation can be

carried out to identify how the quantified intermarket influences can be effectively used

for predictions. The existing methods and algorithms can be employed to do these pre-

dictions. However, these methods and algorithms may not be sufficient to address the

prediction problem of interest, specifically the predicting the three trading signals. There-

fore, their appropriateness for addressing the prediction problem of interest, needs to be

examined and also their drawbacks need to be identified. Then the new algorithms for

predicting the trading signals can be developed by overcoming these drawbacks.

Taking above matters into account, the main objective of the study can be elaborated

to following research problems:

1. Develop a technique for quantifying intermarket influence from a set of potential

influential markets on a given target market.
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2. Quantify the intermarket influences from the world’s major stock market indices on

the AORD by applying the technique proposed in 1.

3. Predict the direction of the Close price of the AORD, and investigate whether and

how the quantified intermarket influences can effectively be used for directional

prediction.

4. Predict whether it is best to buy, hold or sell shares (trading signals), with the

help of the existing methods and algorithms, and investigate whether and how the

quantified intermarket influence can effectively be used for such predictions.

5. Investigate the efficiency of the methods and algorithms used in 4 and identify their

shortcomings. Develop new algorithms which predict trading signals with higher

accuracy.

1.4 Significance of the Study

This study is significant due to following reasons:

• It proposes a technique for quantifying intermarket influences from a set of potential

influential markets on a given target market;

• It applies this proposed technique to quantify the intermarket influence from the

world’s major stock market indices on the AORD;

• It introduces new algorithms for predicting whether it is best to buy, hold or sell

shares;

• Uses the quantified intermarket influences for directional prediction and predicting

whether it is best to buy, hold or sell shares.
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1.5 Outline of the Thesis

This thesis consists of eight chapters. The next chapter (Chapter 2) reviews the literature

relevant to this study. Chapter 3 discusses the methodology used to achieve the objectives.

Chapter 4 proposes a technique for quantifying intermarket influences. This chapter

also presents and discuses the quantification results related to the AORD. Chapter 5

aims to predict the direction of the Close price of the AORD with a special view of

investigating the effectiveness of using quantified intermarket influences for directional

prediction. The next chapter (Chapter 6) focuses on predicting whether it is best to

buy, hold or sell, with a special view of investigating the effectiveness of using quantified

intermarket influences for such predictions. This chapter uses the existing methods and

algorithms for such predictions and it investigates the appropriateness of these methods

and algorithms for addressing the prediction problem of interest: predicting the three

trading signals. Chapter 7 focuses on developing algorithms for predicting whether it is

best to buy, hold or sell, by addressing the issues arise when doing such predictions. It

also investigates the efficiency of using the quantified intermarket influences to improve

the prediction accuracy. Finally, Chapter 8 presents the conclusions and suggests future

research directions.
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Chapter 2

Literature Review

2.1 Introduction

This chapter reviews the literature related to stock market predictions with a special view

on the directional prediction and the prediction of trading signals. The methods and

algorithms used for the predictions and the measures used for evaluating the predictions

by the past studies will be discussed. Also the shortcomings of these algorithms and how

past studies overcame these drawbacks will be investigated. In addition to the above

matters, the input features used by past studies for predictions will be reviewed.

2.2 Stock Market Predictions

Before the 1980s, attempts to model financial market data in order to predict future

market directions were unsuccessful due to the inherent complexity of the data. The

efficient market hypothesis claims that financial markets are a random time series and,

therefore unpredictable on the basis of any amount of publicly available knowledge [46].

However, Fama [19] suggested that stock market price movement may show a weak form

of efficient market hypothesis.

8



CHAPTER 2 Literature Review

Until the late 1980s, most quantitative approaches used to test this hypothesis were

based on linear time series modelling [93]. Chenoweth et al. [13] stated that it is very

hard to find statistically significant market inefficiencies using standard linear time se-

ries modelling, since such linear approaches are not capable of identifying dynamic or

non-linear relationships in financial data. Weiss and Kulikowski [91] suggested that an

appropriate nonparametric machine-learning technique might be able to discover more

complex non-linear relationships through supervised learning from examples. Such new

approaches to financial modelling have been developed during the last two decades. Many

recent studies (for instance [12, 16, 22, 45, 64, 66, 67, 70, 74, 75, 100]) used non-linear

modelling techniques to stock market returns.

A majority of previous studies (for example [16, 23, 67, 75]) have specifically aimed at

predicting the price levels (that is the value) of the stock market indices. Recently there

has been a growing interest in prediction of the direction (up and down) of stock market

indices [81]. When predictiong the price level, the error (deviation of the predicted value

from the actual value) is taken as the measure of accuracy, whereas the number of times

that correct direction was predicted is the main concern for directional predictions.

Some studies (for example [11, 98]) have suggested that trading strategies guided by

forecasts on the direction of price change may be more effective and may lead to higher

profits. Laboratory based experiments conducted by O’Connor et al. ([62] cited in [44])

demonstrated the usefulness of predicting the direction of change in price levels, that is

the importance of ability to classify the future return as a gain or a loss. Leung et al. ([44]

cited in [81]) found that the classification models based on the direction of stock returns

outperformed the models based on the level of stock return in terms of both predictability

and profitability .

In terms of practical applications (that is the higher predictability and the profitability),

it is worth to focus on predicting the direction of a given stock market index, rather than

predicting its level.
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2.2.1 Directional Prediction

The literature reveals that there are two types of study which focus on prediction of the

direction of stock markets. One type (say Type A) focused on predicting the future

direction (up or down) of stock market indices (for instance [11, 26, 34, 35, 44, 74, 104]).

The other type (say Type B) focused on predicting the price levels of the stock market

indices. In the latter case, the prediction accuracy was evaluated by sign or direction

accuracy of the predictions (for example [21, 23, 44, 45, 65, 66, 68, 95, 100]). All of these

studies considered only two classes: either upward/downward trend or positive/negative

sign.

Classification Models and Evaluation Measures Used by Type A Studies

Chen et al. [11] employed a probabilistic neural network (PNN) to forecast the sign (pos-

itive or negative) of the 3-month, 6-month and 12-month excess returns of the market

index of the Taiwan Stock Exchange. They compared the predictive strength of the PNN

with those of the Generalised methods of moments (GMM) with Kalman filter and ran-

dom walk models. They used the hit rate (that is the percentage of predictions with the

correct sign) to evaluate the predictions obtained by these three methods. The results

evidenced that PNN outperformed other two models in all three prediction targets.

To forecast the weekly movement direction (up or down) of the Japanese NIKKEI 225

Index, Huang et al. [26] used a support vector machine (SVM) with a radial basis function

as the kernel. Furthermore, they compared the performance of the SVM with those of

linear discriminant analysis, quadratic discriminant analysis and elman backpropagation

neural networks. The hit rate (in this case, the hit rate is the percentage of predictions

with the correct direction) was used to evaluate the performance. Their results showed

that the SVM outperforms the other classification methods.

Kim [34] compared the prediction ability of the SVM against the that of backpropa-

gation (feedforward) neural networks and case base reasoning to predict the direction of

change in the daily Korean composite stock price index (KOSPI). A radial basis function
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was used as the kernel function of these SVMs. He also used the hit rate as the evaluation

measure of the prediction performance. The results suggested that the SVM outperforms

other two models.

An arrayed probabilistic network (APN) was used by Kim and Chun [35] to predict the

fractional change (up or down) of the Singapore Stock price index, from its current value.

This APN is a combination of a number of PNNs and each of these PNNs classifies the

change as belonging to a particular range or not. The final decision is taken by examining

the outputs of individual PNNs. They compared the results of this APN with those of

the recurrent neural networks, backpropagation neural networks and case base reasoning,

by using a ‘mistake chart’ as well as the hit rate. This mistake chart plots Type II error

versus Type I error of the predictions. By means of the hit rate, the APN outperforms

the other models. However, case base reasoning tended to outperform the APN as well

as other models when mistakes (Type I and II errors) were taken into consideration.

To predict stock trends (2%, 5% and 10% up move of the stock closing price, within

the following 22 working days), Saad et al. [74] exploited three types of neural networks,

time delay neural networks (TDNNs), recurrent neural networks (RNNs) and probabilis-

tic neural networks (PNNs). They tested different values for the lost incurred from mis-

classification, L (Section 3.2.2) and also for the standard deviation, σ, of the gaussian

distribution. The percentage of false alarms (the percentage of cases wrongly classified as

an upward trend) was used as the measure of evaluation of the predictions. PNN gave a

low false alarm percentage even for the stocks with low predictability.

Zemke [104] predicted whether the index value of the Warsaw Stock Exchange (WSE)

one trading week ahead will be up or down, in relation to the current value. This study

used backpropagation neural networks, naive bayesian classifier, and k-nearest neighbour

genetic algorithms as classification techniques. When using the backpropagation neural

networks, the up movement and the down movement were scaled as 0.8 and 0.2, respec-

tively. The prediction performance of the classification models considered was evaluated

by the hit rate. The results suggested that the k-nearest neighbour method outperforms
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the other classification models.

Unlike the studies discussed above, the study done by Leung et al. [44] focused on

classifying the next day’s direction (based on probability) as well as estimating the next

day’s price level of the stock market indices (the later part is discussed in the next subsec-

tion in detailed). As the classification models, they employed discriminant analysis, logit

model, probit model and PNN. They used data from three stock market indices, namely

the US S&P 500 Index, the UK FTSE 100 Index and the Japanese Nikkei 225 Index.

Leung et al. [44] used two measures to evaluate the performance of the predictive

models: (1) the percentage of forecasts with the correct sign (hit rate); and, (2) the rate

of return obtained by performing trading simulations. Two different trading strategies

were employed for classification and level estimation models.

According to their results, the PNN gave the highest hit rate for the US S&P 500

Index and the UK FTSE 100 Index, while discriminant analysis produced the highest

hit rate for the Japanese Nikkei 225 Index. PNN also yielded the highest rate of return

for the US and the UK markets while that for the Japanese market was obtained by the

discriminant analysis.

The above literature reveals that the most common algorithms used for the classification

of future movement of stock market indices are PNN, SVM and feedforward (backpropa-

gatoion) neural network (FNN). Also it is noteworthy that theses algorithms, particularly

PNN and SVM, outperform traditional statistical models (such as discriminant analysis,

random walk, logit and probit models), and also FNN models.

The hit rate (the percentage of predictions with the correct direction/sign) seems to be

the most common measure used for evaluation of prediction performance of the models

applied.
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Level Estimation Models and the Evaluation Measures Used by Type B Stud-

ies

As noted in the previous sub section, Leung et al. [44] focused on predicting the price level

of the stock market indices, in addition to the classification of trading signals. They used

an adoptive exponential smoothing, vector autoregressive model with a Kalman filter,

multivariate transfer function and a multi-layered feedforward neural network, as the

level estimation models. The same measures (as those used to evaluate the classification

results) were used to evaluate the performance of the models applied.

When comparing the performance of the level estimation models, the multi-layered

FNNs produced the highest rates of return for all three markets. However, both the hit

rate and the rate of return produced by the best classification models are higher than those

corresponding to the best level estimation model. Hence they suggested that the classi-

fication models are better than the level estimation models in terms of the predictability

and the profitability.

In order to investigated the profitability of a technical trading rule based on an arti-

ficial neural network, Fernando et al. [21] used the FNN to predict the relative return of

the General Index of the Madrid Stock Market, 250 days ahead. If the predicted value

is greater than zero, they considered the corresponding trading signal as a buy signal;

otherwise it was considered as a sell signal. They used several measures to evaluate the

forecast accuracy: hit rate, total return, ideal profit and Sharpe ratio (mean return of

the trading strategy divided by its standard deviation). They suggested that the FNN

trading strategy was more profitable than the buy-and-hold strategy during ‘bear’ and

‘stable’ market periods.

Gencay and Stengos [23] examined the prediction ability of the FNN against linear

regression and GARCH-M models in terms of the sign accuracy of the predictions. They

applied these models to predict the daily return series of the Dow Jones Industrial Average

Index. Their results suggested that FNN models outperformed the other two models.

Although not common, genetic algorithms (GA) were also applied by the past studies
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for stock market prediction. For instance, Mahfoud and Mani [45] applied a combined

GA and neural network model as well as GA and neural network as separate models to

model the relative returns of the stocks traded in S&P 500 Index. The prediction ability

of these models was evaluated in terms of directional correctness. They found that the

combined model outperformed either algorithm individually.

Forecasts related to the Australian stock market are very rare. Pan et al. [65] investi-

gated the predictability of FNN models for forecasting the direction of the AORD. They

predicted the Close price index of the AORD and used sign correctness percentage as the

measure of evaluation.

They argued that if the next day’s relative return is zero or approximately zero, then

there is no substantial difference between current day’s and next day’s Close prices, ir-

respective of the sign. To fix this problem, they introduced a threshold which helps to

represent a ‘no change’ region. When the sign of the actual and the predicted values are

different, they checked whether the absolute value of the difference between the actual

and the predicted values, is less than this threshold. If so, they considered that the signs

of the both values to be the same.

To compare the predictive accuracy of the stock returns produced by the neural net-

works with those obtained by the linear predictive models, Qi and Maddala [68] forecasted

S&P 500 index returns using the FNN. Linear regression and random walk models were

considered as the linear models to be compared. Several measures, including the direction

accuracy (proportion of times the upward or downward movement is correctly predicted)

and the proportion of times the sign (positive or negative) is correctly forecasted, were

used as the measures of evaluation. FNN outperformed the two linear model in terms of

the direction accuracy and the sign accuracy.

Wood and Dasgupta [95] also employed FNNs to predict the direction (trend) of the

Morgan Stanley US Capital Market Index, one month ahead. The predictive power of

the neural network models were compared with those of the linear regression and ARIMA

models. These models predicted the value of the index and this predicted value was

14



CHAPTER 2 Literature Review

substituted in the criterion of identifying the correctly predicted direction. The hit rate

was used as the measure of evaluation of predictive power. Their results suggest that, in

terms of directional prediction, the FNN model outperforms the two alternative models.

An approach similar to Wood and Dasgupta [95] was used by Yao et al. [100] to test

the forecasting ability of neural networks. They also employed FNN and ARIMA models

to forecast the value of the Kuala Lumpur Stock Exchange Index (KLCI). The forecasts

were evaluated by hit rates (in terms of accuracy of gradients and signs) as well as rate

of returns obtained by performing trading simulations. The experiment results showed

that the neural network model provides higher rate of returns compared to the ARIMA

models.

According to the above literature, it is clear that the most common model used for value

prediction is FNN models. The FNNs show better performance than linear models such

as regression and random walk models, in predicting the value of stock market indices.

The most common measures of evaluation for level prediction models are the hit rate

and the rate of return (these measures were used by the past studies independent of whether

they predicted the direction of the price level or value of the price level).

However, apart from the study done by Pan et al. [65], none of the other studies

(mentioned above) paid attention to the ‘no change’ region when estimating the directional

accuracy. As argued by Pan et al. [65], there is no significant change in the price level

(compared to the previous day), if the predicted relative return is zero or close to zero.

This matter indicates the necessity of introducing a threshold when estimating the direction

accuracy.

2.2.2 Predicting Trading Signals

Profitability of stock market trading is directly related to the prediction of trading signals.

In the last few decades, there has been a growing number of studies attempting to predict

the trading signals of financial market indices. Many past studies (for example [21, 88,

95, 100]) considered only two trading signals: buy and sell. Although not very common,
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some studies (for example [11, 13, 38, 40, 44, 56]) considered a third signal:hold.

Models Applied to Predict Trading Signals and Evaluation Measures

As mentioned in Section 2.2.1, Chen et al. [11] employed probabilistic neural network

(PNN), GMM and random walk models to forecast the sign (positive or negative) of the

3-month, 6-month and 12-month excess returns of the Taiwan Stock Exchange Index.

They applied different trading strategies for the PNN and other two models. The PNN

was used to estimate the probability of a predicted return showing an upward trend

and this probability was used to make the decision of trading. Unlike the case of the

PNN, predicted value the GMM and random walk models were used to make the trading

decision.

The performance of the models considered was evaluated in terms of profitability. The

rate of return obtained by performing trading simulations was used for the evaluations.

In trading simulations, they assumed that an investor invests a fixed amount of money at

the beginning of each month in either risk-free bonds or the stock index fund, depending

on the prediction results. This simulation was tested against a buy and holds strategy.

This strategy assumes that the investor invests money in the stock index fund and hold

till the end of the period. Results showed that the investor can gain profits by responding

to the prediction results obtained by all three models. The trading strategies guided by

PNNs were more profitable than those related to GMM and random walk models.

To forecast buy and sell signals of the S&P 500 Index, Chenoweth et al. [13] embedded

some technical analysis knowledge into neural network. They used a threshold to define

up and down trends of the index and combine this information with the average direction

index (ADX) [17, 41]. When compared with the benchmark ‘buy and hold’ strategy, the

trading system based on their neural network model was more profitable.

Fernando et al. [21] and Yao et al. [100] followed similar approaches. Instead of

predicting the trading signals, they predicted the value of the indices by using FNNs

and then used different criteria to classify the corresponding prediction as a buy or a
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sell signal. The rate of return obtained by performing trading simulations is among the

number of measures of evaluation used.

Kohara et al. [38] employed FNN, recurrent neural network and multiple regression

to predict the daily change in the Close price of the TOPIX (Tokyo Stock Exchange

Price Index). The trading signals (buy and sell) were defined based on this predicted

value. The neural network models outperformed the multiple regression model in terms

of stock-trading profit, while the recurrent network model outperformed the FNN model.

To predict the trading signals of the Taiwan stock market Kuo [40] applied two separate

models for two types of factors: (1) a fuzzy neural network to model quantitative factors;

and, (2) a fuzzy Delphi to model qualitative factors. In order obtain the final prediction

he integrated the decisions produced by the two models using a FNN model. The other

main feature of this study is the consideration of a hold signal addition to the buy and

sell signals. The predictions were evaluated by the number of buy and sell signals.

Unlike the other studies, Leung et al. [44] applied both the classification and level

estimation methods to predict the trading signals of three stock market indices (Refer

Section 2.2.1 and 2.2.1 for more details). They employed discriminant analysis, logit

model, probit model and PNN as the classification models, while adoptive exponential

smoothing, vector autoregressive model with Kalman filter, multivariate transfer function

and multi-layered feedforward neural network were used as the level estimation models.

The performance of both the classification and level estimation models were evaluated

by rate of return. For the classification models, if the probability of an upward (positive)

movement is greater than 0.5, then the corresponding signal was identified as a buy signal.

Otherwise, it was assumed that the corresponding signal was a non-buy signal and the

money was invested in treasury bills, instead of buying shares. For the level estimation

models, a different trading strategy was applied: if the predicted excess return was greater

than zero, the corresponding signal was considered as a buy signal, otherwise the money

was invested in treasury bills. They found that classification models are better than the

level estimation models in terms of profitability
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Mizuno et al. [56] employed a FNN model to predict trading signals, buy, sell and

no change, of the Tokyo Stock Exchange Price Index (TOPIX). Their network model

produced more accurate predictions in the most dominant class: the no change signal.

Prediction results were evaluated by the ratio of accuracy of each type of signal (that is

the ratio of correctly classified signals out of the total classified to a particular class).

Vanstone [88] used an artificial neural network model to identify trading signals in

the Australian stock market. He predicted the value of the ASX200 Index using artificial

neural networks. Then a selection criterion was followed to identify trading signals, buy

and sell. In addition to the value of the index, this criterion takes signal strength into

account.

The majority of past studies examine the profitability of the predictions (of trading

signals) rather than their predictability. The most commonly adopted evaluation measure

of profitability is the rate of return obtained by performing trading simulations. Few

studies which evaluated the predictions in terms of predictability adopted the hit rate as

the measure of evaluation.

Studies aiming at predicting the three trading signals, including the hold signal, are

very rare in the literature. The literature does not provide evidence for such predictions

related to the Australian stock market.

Criteria Used to Defining Trading Signals

To classify the trading signals, Fernando et al. [21] assumed that a predicted value (of

index) greater than zero indicates a buy signal while this value less than zero indicates a

sell signal. Yao et al. [100] followed two strategies to define the trading signal correspond-

ing to the predicted value of the index:

Strategy 1

if (x̂t+1 − x̂t) > 0, then buy else sell ;

Strategy 2

if (x̂t+1 − xt) > 0, then buy else sell
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where xt and x̂t are the actual and the predicted values of the index at time t.

The main disadvantage of the criteria used in theses two studies [21, 100] is the dis-

regard of the cases which are zero. Neither of two studies mentioned what would be the

trading action, if the predicted value (in reference to [21]) or the difference (in reference

to [100]) is zero.

Vanstone [88] argued the following criteria is suitable to define the trading signals:

Buy tomorrow if today’s predicted value > x′, and today’s predicted value > yester-

day’s predicted value;

Sell tomorrow if today’s predicted value ≤ x′, and today’s predicted value < yesterday’s

predicted value;

where x′ is the signal strength threshold chosen.

This criterion seems to be more practical than the criteria suggested in [21, 100].

However, it is not practicable to make adjustments to it to include the hold class.

Kohara et al. [38] classified the corresponding signal as buy (or sell), if the next day’s

positive (or negative) change in the stock market was larger than a preset value which

represents a large change. The network model designed by Kuo [40] outputs a value

which represents the trading signal. The corresponding trading signal was determined by

comparing this value with an upper and a lower bound. Different values were tested for

these boundaries and [0.2, 0.8] gave the best predictions of trading signals.

Similar to Kuo [40], Mizuno et al. [56] also applied two thresholds to define trading

signals. If the predicted value was below 0.4, the corresponding signal was considered as a

sell signal while if this value was above 0.6, then the corresponding signal was considered

as a buy signal.

The criteria adopted by Chen et al. [11] is based on the probability of the predicted

stock return being in an upward trend, P . They used both single threshold and multiple

threshold criteria:
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Single threshold criterion

buy if P > 0.5

hold if P = 0.5

sell if P < 0.5;

Multiple threshold criterion

buy if P > 0.7

hold if 0.5 ≤ P ≤ 0.7

sell if P < 0.5

Leung et al. [44] also followed a similar multiple threshold criterion. Results obtained by

Chen et al. [11], suggested that the multiple threshold criterion is more profitable than

the single threshold criterion.

The multiple threshold criteria adopted in [11, 44, 40, 56] seems to be more practicable,

the only shortcoming is that the probability levels in [11, 44] or boundaries in [40, 56] may

vary from one stock market index to another.

2.3 Algorithms Used for Stock Market Prediction

Past studies (mentioned in Section 2.2.1, and 2.2.2) evidence that FNN, PNN and SVM

are the most successful algorithms for predicting the direction as well as trading signals of

the stock market indices. Therefore, in this section, we will review the literature regarding

to the training of these three algorithms and also discuss their shortcomings. Furthermore,

the attempts to overcome the problems associated with theses algorithms by the past

studies, are revealed.
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2.3.1 Applications of Feedforward Neural Networks for Predict-

ing Trading Signals

The literature [16, 21, 22, 44, 65, 68, 95, 100] shows that FNN is the most commonly used

model to predict the value (price level) of stock market indices. Also it was proved that

FNN outperforms linear models such as the regression, ARIMA and random walk models.

Some studies [21, 44, 65, 68, 95, 100] went beyond the value prediction by classifying the

predicted value into two categories, upward and downward trend, and then assessed the

FNN’s ability to predict the direction of stock market indices. FNN is seems to be a

promising alternative algorithm to classification algorithm such as PNN and SVM.

Fernando et al. [21] applied a three-layered neural network model to predict the relative

return of the General Index of the Madrid Stock Market. This model consists of one

hidden layer with four neurons. A logarithmic function was used as the transfer function

between the input and hidden layers while hyperbolic tangent function was used between

the hidden and the output layers. The values assigned for the parameters of the model

such as learning rate and momentum as well as sizes of training and test sets are not

mentioned in the paper.

The FNN models applied by Leung et al. [44] also consist of three layers with one

hidden layer. Different numbers of neurons were allocated for the hidden layer depending

on the stock market index. They used ‘ThinkPro’ computer software to develop these

FNNs. The whole data set consists of 348 samples. 17% of the most recent data was used

for testing while the remaining data was allocated for training. No further information is

mentioned in their paper.

Pan et al. [65] also applied a three-layered neural network model with one hidden

layer to predict the direction of the AORD. The hidden layer consists of three neurons.

A sigmoid function was used as the transfer functions between the input and the hidden

layers, and a linear transfer function was used between the hidden and the output layers.

20% of data randomly chosen to be used for testing while the remaining data was used

for training. The best predictions were obtained when the learning rate and momentum
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were 0.03 and 0.4, respectively.

Vanstone [88] employed a software package, ‘NeuroLab’ to develop FNN models. This

software uses logistical sigmoid functions as the transfer functions. The number of hidden

neurons as well as the learning rate and the momentum were varied according to the

different models tested.

A three-layered FNN model with one hidden layer employed by Wood and Das-

gupta [95] was trained with a learning rate equal to 0.0001 and momentum equal to

0.1. Sigmoid functions were used as the transfer functions. The data set used in this

study consists of 142 data points. The most recent 16% of data was used for testing while

the rest was allocated for training.

Unlike the studies discussed above, the study done by Yao et al. [100] employed three-

layered as well as four-layered FNNs. They also varied the number of neurons in the

hidden layers. Sigmoid hyperbolic tangent functions were used as the transfer functions.

The data used in this study consists of daily time series data from January, 1984 to

October, 1991. The most recent data was used for testing and the remaining was used

for training.

Although above studies claim that FNN produced more accurate predictions, there are

some shortcomings associated with FNN. The literature [15, 32] reveals the possibility of

the FNN finding suboptimal solutions as a result of being trapped in local minima. Several

studies (for example [32, 54, 87, 103]) attempted to find global solutions for the parameters

of the FNNs by developing new algorithms. Minghu et al. [54] proposed a hybrid algorithm

of global optimization of dynamic learning rate for FNNs and this algorithm is shown to

have a global convergence for error backpropagation multilayer FNNs. Ye and Lin [103]

proposed a new approach to supervised training of weights in MLFNNs. Their algorithm

is based on a ‘subenergy tunnelling function’ to reject searching in unpromising regions

and a ‘ripple-like’ global search to avoid local minima. Jordanov [32] proposed a global

algorithm which makes use of a stochastic optimization technique based on so-called

low discrepancy sequences to trained FNNs. Toh et al. [87] also proposed an iterative
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algorithm for global FNN learning.

There is another problem specific to the application of FNN as a classifier. The

ordinary least squares (OLS) error function (see 3.3), which is used as the error function

in standard FNNs, is inappropriate for the problem of classifying trading signals of a stock

market index. This is because, when minimising the OLS error function, FNNs try to

minimise the difference between the actual and the predicted value. On the other hand,

in classification of trading signals the aim is to minimise the misclassification irrespective

of the size of the error (the difference between the actual and the predicted value).

To address this issue, some past studies [7, 69, 101, 102] proposed modification to the

OLS error function. These studies incorporated factors which represent the direction of

the prediction [7, 101, 102] and recency of the data that was used as inputs [69, 101,

102], when suggesting the modifications. However, these studies considered only two

trading signals: buy and sell, which correspond to up and down movements, and therefore,

penalised the wrongly classified direction (positive/negative). Hence the modified error

function proposed by these studies may not be suitable for the case of classifying three

trading signals: buy, hold and sell.

2.3.2 Applications of Probabilistic Neural Networks for Predict-

ing Trading Signals

When training PNNs to obtain the probability that the predicted relative return showing

an upward trend, Chen et al. [11] assumed that the joint distribution of the input variables

is gaussian. Estimation of the parameters of the distribution (the mean and the standard

deviation) were based on the training data. This study used moving windows to train

the networks. The first 68 samples were used as the training set to predict the value

corresponding to the 69th sample; then the second 68 samples (from second to 69th

samples) were used to predict 70th sample. This procedure was repeated 60 times to

obtain the probabilities corresponding to the last 60 observations of the data set.

The paper authored by Leung et al. [44] does not mention any detailed description of
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the network training. 288 observations (83% of the whole data set) were used for training

PNNs while the remaining 60 observations were used as the test sample.

Some studies (for example [44] proved that the PNN outperformed the FNN in terms

of profitability of predictability. However, PNN algorithms also show some shortcomings.

For example, PNN algorithms, such as the Matlab PNN algorithm [14] does not allow

the consideration of a distribution other than the Gaussian, as the distribution of input

variables [77]. There is evidence from the literature [3, 24, 50] that the distribution of the

stock price index returns deviate from the Gaussian distribution.

To deal with the problem of imbalanced data, PNN has a solution: that is, varying the

loss due to misclassification [11, 74, 77] (Section 3.2.2) according to the size of the class.

However, it is not straightforward to assign a proper value for loss due to misclassification

for different trading signals, as the loss depends on seriousness of the misclassification.

For instance, the misclassification of a buy signal as a sell is very serious mistake while

if the same signal is misclassified as a hold signal, then the mistake is less serious.

2.3.3 Applications of Support Vector Machines for Predicting

Trading Signals

Huang et al. [26] used a support vector machine (SVM) with a radial basis function as the

kernel to forecast the direction (upward and downward trend) of the Japanese NIKKEI

225 Index. The parameter of this radial basis kernel was set to
√

10. The training set

used included 640 samples (approximately 95% of data) while 36 samples were included

in the test set.

Kim [34] also used a radial basis function as the kernel of the SVMs trained to predict

the direction of the Korea Composite Stock Price Index. He tested different values for the

parameter of the radial basis function and best prediction results were obtained when the

parameter was equal to 5. The training set included 2347 samples (80% of data) while

test set consisted of 581 samples (20% of data).

Furthermore, Kim [34] showed that the SVM outperformed the FNN in terms of
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predictability. However, it is widely accepted by researchers that traditional classification

algorithms such as SVM, decision trees, neural networks, etc. do not perform well when

the data has an imbalanced distribution among the classes of interest [1]. Both studies [26,

34] applied SVM for prediction of two classes, buy and sell signals which correspond to

up and down trends. Therefore, the data used in these studies has balanced distribution.

This may be the reason that SVM produced accurate prediction results in these studies.

Several attempts have been made in the literature (for example [1, 10, 27, 57, 90, 97])

to modify the SVM algorithm to address the issue of imbalanced data. Chawla et al. [10]

tried over-sampling the minority class by creating a synthetic minority class. Veropoulos

et al. [90] suggested penalising classes making errors on positive instances at a higher

rate than errors on negative instances. Combining the algorithms proposed by Chawla

et al. [10] and Veropoulos et al. [90], Akbani et al. [1] introduced a new SVM algorithm

to deal with the problem of imbalanced data. Their experiments showed that this new

algorithm outperforms the other two algorithms. Morik et al. [57] also introduced a

correction factor to deal with the problem of imbalanced data and this is incorporated

in ‘SVM-Light’ (version 6.01) software [29]. Modifying the kernel matrix according to

the imbalanced data distribution, Wu et al. [97] proposed a kernel-boundary-alignment

algorithm.

2.4 Integrated Markets and Intermarket Influences

Bhattacharyya and Banerjee [5] argued that capital markets are not only influenced by

the domestic macro economic factors. The electronic communication and media have

increased the availability and timeliness of information across the globe. The movements

in the assets prices in a particular country’s capital markets are continuously affected by

the inflow relevant to ‘global’ information [5]. Many other past studies (for instance [5,

18, 80, 96, 99]) which are focused on examining the relationships between world’s major

stock markets suggest that they are interrelated (integrated).

Becker et al. [4] examined the inter-temporal relationship between the USA and
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Japanese stock markets. Their research revealed the existence of a high correlation be-

tween the open to close returns for USA stocks for the previous trading day and the

Japanese equity market performance in the current period. In contrast, the Japanese

market has only a small impact on the USA returns in the current period.

Eun and Shim [18] investigated the international transmission mechanism of stock

market movement from 1980 to 1985. They analysed daily return data from markets from

nine countries; Australia, Japan, France, Germany, Switzerland, the UK, Canada, the

USA and Hong Kong (China). Their research provided evidence that a substantial amount

of multi-lateral interaction exits among these national stock markets. Furthermore, their

research confirmed that the USA stock market was the most influential market among the

nine markets considered while none of the eight foreign markets significantly influenced

the USA markets.

Compared to the previous studies [18, 4], the study done by Wu and Su [96] has made

several advances such as systematic examination of the existence of four possible rela-

tionships and the testing of the relationships between stock markets, after removing the

effect of the other markets. They analysed the stock returns of the USA, Britain, Japan,

and Hong Kong from 1982 to 1991. They used a multiple hypothesis testing procedure to

systematically examine the existence of four possible types of relationships; independent,

contemporaneous, unidirectional, and feedback, among the markets. Their approach also

allowed the examination of the relationships between stock markets conditioned on the

effect of the other markets.

They found the existence of significant dynamic relationships among the four mar-

kets considered. These relationships were strengthened considerably after the 1987 stock

market crash. Correlations among markets have been much higher in more recent years.

Their results revealed that there was an asymmetry in the cross correlations between stock

market returns. Larger markets appeared to lead smaller markets. The USA stock market

continued to exert a strong influence on other markets after 1987. However, other markets

also had an impact on the USA market particularly in recent years. They also found that
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the Japanese market had a fairly strong influence on other markets after the influence of

the USA was removed. Their research provided evidence for a structural shift in the in-

ternational market dynamics. Therefore, they suggested that lead-lag relationships might

change over time.

A study done by Taylor and Tonks [80] suggested that since the abolition of the UK

exchange control, the UK stock market has become cointegrated with other stock markets,

namely the stock markets of Germany, the Netherlands and Japan. Furthermore, their

results suggested that in the long run, the returns of these markets are highly correlated.

The research done by Yang et al. [99] suggested that there is not enough evidence

of integration among the larger markets (particularly, the US, Japanese, the UK and

German stock markets) in the long run. However, they found sufficient evidence for the

increasing the integration between the US and the smaller markets of the world.

Furthermore, Mendelsohn [53] suggested that intermarket analysis can be used in

conjunction with traditional single-market technical indicators to broaden trading per-

spective.

The literature [5, 18, 80, 96, 99] confirms that the world’s major stock markets are

integrated. Also some studies [4, 18, 96] provide evidence that US stock markets have a

strong influence on the other major global markets. These studies confirm the existence of

intermarket influences (Section 1.1.2) among the global stock markets. Hence, each stock

market, which belongs to this set of integrated markets, can be considered as a part of a

single global system [84]. The influence from one integrated stock market on a dependent

market may include the influence from one or more stock markets on the former. This

matter indicates that the intermarket influences (from a set on influential markets on a

dependent market) needs to be quantified in order to use them effectively in applications

such as predictions.

Surprisingly, the literature does not provide any evidence for an existing method for

quantifying intermarket influences. This highlights the necessity of introducing such tech-

niques.
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2.5 Input Features Used for Predictions

As noted in Section 1.1.1, regarding stock market predictions, there are two types of anal-

ysis: fundamental analysis and technical analysis. Technical analysis looks in depth at

financial conditions and operating results of a specific company and underlying behaviour

of its common stock; the value of a stock is established by analysing the fundamental

information associated with the company, such as accounting, competition, and manage-

ment. For fundamental analysis, retail sales, gold prices, industrial production indices,

foreign currency exchange rates, etc. can be used as the input features [100].

On the other hand, technical analysis is based on the assumption that stock markets

move in trends and these trends can be captured and used for forecasting. It attempts to

use past stock prices and volume information to predict the future price movements [100].

Intermarket technical analysis was coined by Murphy [58] and is a relatively recent area

of technical analysis practised by professional analysts. Based on qualitative analysis, he

suggested that all major traded asset markets (commodities, bonds, stocks and currencies)

are interlinked in an international framework.

Nowadays, experts argue that stock markets are influenced by many interrelated fac-

tors including the affects of economic, political and even psychological factors. These

factors interact with each other in a complex fashion, and it is therefore, very difficult to

find an exact set of factors which determine the behaviour of stock markets [82].

2.5.1 Input Features Used for Directional Predictions

Some published research (for example [11, 26, 35, 44, 45]) used input variables which

consist of combinations of fundamental and technical indicators, to predict the direction

(up/down or positive/negative) of different stock market indices. Although, not very

common, the input set used by Qi and Maddala [68] consists of only the fundamental

variables. The directional prediction based on the technical indicators seems to be a very

common feature in the literature (for instance [34, 74, 104, 21, 23, 65, 95]).

Among the technical indicators employed for direction prediction, the most commonly
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used inputs are the lagged price indices of the stock market index to be predicted or

their derivatives, such as relative or log returns, moving averages (for example [11, 21, 35,

44, 65, 104]). However, the application of intermarket influences, that is the information

(such as lagged price or relative return) of other stock market indices, is rare. Studies done

by Huang et al. [26], Pan et al. [65], and Poddig and Rehkugler [66] are among the few

such studies. Huang et al. [26] and Pan et al. [65] applied the lagged data of the US S&P

500 Index to predict the direction of the Japanese NIKKEI 225 Index and the AORD,

respectively. Poddig and Rehkugler [66] used a system of interdependent equations to

predict the direction of the stock markets, bond markets and currency rates of the US,

Japan and Germany. To predict the direction of each capital market, the lagged data of

the other capital markets considered were taken as the input features.

It is noteworthy that these studies [63, 65, 66] suggested that incorporating intermarket

influences for predictions improves the prediction accuracy. However, these studies did

not take the quantified intermarket influences into account for the direction prediction.

2.5.2 Input Features Used for Predicting Trading Signals

Vanstone [88] claimed that fundamental variables may be suitable as input features, if the

intention is to do long term forecasts. On the other hand, if the intention is to do short

term predictions, technical variables may be more suitable.

Some studies (for example [11, 38, 40, 44, 88] relied on both types of variables for fore-

casting. Although not very common, Kohara et al. [38] and Kuo [40] included qualitative

variables, such as the effect of news and political effects, in the input sets that they used

for predicting trading signals.

As in the case of directional prediction, many studies (for instance [11, 13, 21, 38, 40,

44, 56]) used technical indicators to predict trading signals. Some of these studies [13, 21,

56] relied only on technical indicators. The application of the lagged price or a derivative

of the price of the stock market whose trading signals to be predicted seems are to be a

common feature in the fast studies [11, 13, 21, 38, 44, 56].
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It is noteworthy that the application of lagged prices or the derivatives of the prices

of foreign stock markets, to predict the trading signals of a selected market, is very rare.

The use of such information to predict trading signals may improve the predictability and

profitability of the prediction.

2.6 Summary

Published research suggests that intermarket influences improves the accuracy of predic-

tions related to stock markets. However, using intermarket influences for predicting the

direction or trading signals of a selected stock market is not very common in the litera-

ture. The need to quantify intermarket influences before applying them for predictions,

was understood. Surprisingly, literature does not provide any evidence for the existence

of techniques which can be applied to quantify intermarket influences (from a selected set

of influential markets on a given market).

The prediction of three trading signals including the hold signal is also not very common

among the past studies. The literature provides evidence for the drawbacks of the most

commonly used algorithms (FNN, PNN and SVM ) for the classification of trading signals.

This matter suggests the need to develop new algorithms by addressing these issues.

The next chapter focuses on the methodology used on this study. Also it explains the

three algorithms, FNN, PNN and SVM in detail.
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Methodology and the Techniques

Applied

This chapter describes the methodology that was used to achieve the objectives of the

study. The classification techniques (algorithms) used in the experiments are also dis-

cussed.

3.1 Methodology

The research methodology included the following six steps:

1. Designing a technique to quantify intermarket influences by minimising the rank

correlation between the relative return of the Close price of day t of a given depen-

dent market and the lagged relative returns of the Close prices of a set of potential

influential markets.

2. Quantifying intermarket influences from different combinations of potential influen-

tial markets on the AORD by using the technique proposed in step 1;

3. Predicting the direction of the Close price of the AORD using FNNs, in particular

using the quantified intermarket influences for the directional prediction. Inves-
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tigating whether the quantified intermarket influence can effectively be used for

directional prediction;

4. Predicting whether it is best to buy, hold or sell (trading signals) using the FNNs,

PNNs and the SVMs, in particular using the quantified intermarket influences for

predicting trading signals. Investigating whether quantified intermarket influences

can effectively be used for such predictions;

5. Investigating the effectiveness of the methods and algorithms used for predicting

trading signals and identifying their shortcomings; Verification of the predictions

obtained from these algorithms;

6. Developing new algorithms, which predict the trading signals of the AORD, by

modifying the error function associated with the FNN and employing a global op-

timization algorithm to train the networks; Investigating the effectiveness of using

the quantified intermarket influences for such predictions.

Figure 3.1 illustrates the steps of the overall methodology and links to the chapter in

which each step is addressed. Sections 3.1.1 to 3.1.5 provide brief descriptions about all

steps involved in the methodology.

3.1.1 Designing a Technique for Quantifying Intermarket Influ-

ences

Literature provides evidence that the most of the world’s major stock markets are inte-

grated (Section 2.4). Therefore, there is a possibility that the influence from an integrated

stock market on a dependent stock market will include the influence from one or more

stock markets on the former. A direct measure of influence from one market on another

is inappropriate. Hence, this study introduces a technique which generates a relative

measure. This measure estimates the influence from an influential market to a dependent

market, relative to the influence from other influential markets on this dependent market.
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Figure 3.1: Overall methodology
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This was done by estimating the combined influence of a set of influential markets and

finding the contribution from each influential market to this combined influence. The full

description of the proposed technique is given in Chapter 4 (Section 4.2).

3.1.2 Quantifying Intermarket Influences on the AORD

Intermarket influences from different market combinations on the AORD was quantified

by applying the quantification technique proposed in Chapter 4 (Section 4.2). These

market combinations included major stock market indices of the US, European, Asian

markets as well as the AORD index itself (Section 4.3). Quantification was carried out

by considering the whole study period as a single window as well as for different moving

windows. Influences from the Close price of potential influential markets within a week

were studied. Since, the correlation structure may change over the time [83, 96], different

moving windows were considered in order to capture the dynamic patterns of the inter-

market influences. A detailed description of quantification of intermarket influences on

the AORD together with the quantification results are given in Chapter 4.

3.1.3 Directional Prediction Using Quantified Intermarket In-

fluences

To a lesser extent, feedforward neural networks (FNNs) are used as a technique for pre-

dicting the direction of a stock market index [64, 104] (Section 2.2.1). On the other

hand, instead of predicting the direction of the stock market of interest, some stud-

ies [21, 23, 65, 95, 100] (Section 2.2.1) predicted the price level using FNNs, and then

prediction accuracy was evaluated by comparing the sign (positive or negative) of the

predicted value with that of the actual value.

If the relative return of day (t + 1) is zero or approximately zero, then there is no

substantial difference between prices corresponding to day t and day (t+ 1), irrespective

of the sign. Sign correctness measure does not take this matter into account. To fix

this problem, Pan et al. [65] and Tilakaratne [82] introduced a threshold (Section 2.2.2).
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Even though the signs of the actual and the predicted values are not the same, if the

absolute value of the difference between the actual and the predicted values is less than

the threshold, then it was assumed that the signs of the both values are the same.

We also applied FNN (see Section 3.2.1 for more detail about FNN) to predict the

relative return of the Close price of day (t + 1) of the AORD. A similar approach to

Pan et al. [65] and Tilakaratne [82], was adopted for evaluating the predictions. We

introduced a more appropriate measure, Direction Correctness Percentage (DCP) to asses

the performance of the networks. DCP indicates the percentage of predictions with the

correct direction (up, down or no change). More details about the DCP is given in

Section 5.2.2.

Three types of inputs were considered when training the FNNs:

1. Lagged relative returns of the potential influential markets as separate inputs;

2. Sum of the quantified lagged relative returns (that is, lagged relative returns mul-

tiplied by the corresponding quantification coefficients, ξi, i=1, 2, . . . ,) of these

markets as a single input;

3. Quantified lagged relative returns of these markets as separate inputs.

The last two types of input were employed in order to examine how the quantified inter-

market influences can be incorporated for the directional prediction.

Chapter 5 discusses the prediction of the direction of the Close price of the AORD

using quantified relative return in detailed. Description of neural network experiments

together with the results obtained are also given in this chapter.

3.1.4 Predicting Trading Signals Using Quantified Intermarket

Influences

Some past studies considered the direction, upward or downward trends, of the Close

price of a stock market as buy or sell signals, respectively (for example [21, 101, 102]).
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In practice, a trader does not buy or sell if there is no significant change in the price

level; instead, he/she holds the money or shares in hand. Therefore, we noted that

the consideration of hold signals is as important as buy and sell signals. We used our

own criterion (Criterion A) to identify the trading signals. This criterion is described in

Section 6.2.

This study investigated whether quantified intermarket influences can effectively be

used to predict the trading signals; buy, hold and sell, of the AORD. Therefore, the quan-

tified relative returns of the influential markets as well as their un-quantified counterparts

were used as the input variables. These input variables belong to the above mentioned

(Section 3.1.3) three types of inputs.

As argued in the literature (Section 2.3) FNN, PNN and SVM are better algorithms

for predicting the trading signals of a given stock market. The detailed description of the

mechanism behind FNN, PNN and SVM are given in Section 3.2.1, 3.2.2 and 3.2.3. This

study also adopted these three algorithms to predict the trading signals of the AORD. The

three types of inputs mention in Section 3.1.3 above were used to train these algorithms.

The prediction results were evaluated in terms of predictability as well as the prof-

itability. When evaluating the predictability, it is important to consider not only the

classification rate but also the misclassification rate. This is because loss incurred due

to serious misclassification (such as misclassification of sell signal as buy signal and vice

versa) may overrun the gain obtained by responding the correctly classified signals. There-

fore, we employed the classification and misclassification rates (refer Section 6.4 for more

details) as the measures of predictability while the rate of return obtained by performing

trading simulations (Section 6.4) was used as the measure of profitability.

A new trading simulation was proposed (Section 6.4.1). The speciality of this simu-

lation is that it searches the proportion of money and shares involved in trading in order

to gain higher the profits. Chapter 6 explains the related experiments and their results

in detail.
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3.1.5 Developing Algorithms for Predicting Trading Signals

This study is interested in predicting three trading signals, buy, hold and sell. Con-

sideration of these three classes (signals) resulted in an imbalance in data distribution

(section 6.6.2). This imbalance caused the classification algorithms, PNN and SVM, to

be less effective (see results in Section 6.6.2 and 6.6.3). FNN provided results which could

be acceptable (see results in Section 6.6.1. However, FNN uses backpropagation learning

for weight modification (Section 3.2.1) and backpropagation learning is heavily dependent

on the initial weight randomisation and can often converge to the solutions which are less

than optimal [9]. An analysis of the distribution of the error function resulting from the

FNN training was carried out and is described in Section 6.7. The results of this analysis

suggested that the solutions could be far from the global optimal solutions.

New algorithms for predicting trading signals, were developed based on neural network

techniques. When developing these new algorithms, the main concern was to modify the

ordinary least squares (OLS) error function (see (3.3) in Section 3.2.1), in a way that

suits the problem of interest: classification of trading signals into three classes, buy, hold

and sell. Following similar past studies [7, 69, 101, 102]), we introduced two modified

error functions. A detailed description about the alternative error function is given in

Section 7.2.1.

This study proposed four neural network algorithms and these algorithms are explained

in Section 7.3. We used a global optimization algorithm, AGOP (Section 4.2.2) to train

these networks. By using a global optimization algorithm for network training, we aim

to find ‘deep’ solutions to respective error minimisation functions.

The same types of inputs that are mentioned in Section 3.1.3 above, were used as inputs

to these new algorithms. The performance of these algorithms were evaluated by overall

classification rate as well as overall misclassification rate (Section 7.3.2). The prediction

results of the best of each type of neural network algorithm were further evaluated in

terms of profitability (by performing trading simulations; Section 7.5).

A full description about the development of neural network algorithms for predicting
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trading signals together with the results obtained are given in Chapter 7.

3.2 Algorithms for Predicting Trading Signals

This section explains the three algorithms that this study adopted for predicting trading

signals. The literature (Section 2.2.1 and 2.2.2) gives evidence that feedforward neural

networks (FNN), probabilistic neural networks (PNN) and the support vector machines

(SVM) are the most commonly used and appropriate algorithms.

3.2.1 Feedforward Neural Networks

Figure 3.2 depicts an example of a multilayer feedforward neural network. A multilayer

feedforward neural network can have any number of layers and any number of units

(neurons) per layer. The first layer is called the input layer and the last layer is called

the output layer. The middle layers are called hidden layers. The network shown below

has four neurons (or units) in the input layer, three neurons in the hidden layer, and one

neuron in the output layer.

Each neuron-to-neuron connection is modified by a weight (or connection strength).

In addition, each neuron has an extra input that is assumed to have a constant value of

one, and the weight that modifies this extra input is called the bias. All the information

propagates along the connections in the direction of network inputs to network outputs,

hence the term feedforward.

The input neurons simply pass on the input vector a′ = {Ij : j = 1, 2, . . . , n}. The

following equation gives the net input to the rth neuron of the hidden layer:

netr = f1(ΣjwjrIj + br) (3.1)

where Ij is the jth input variable to the input layer, wjr is the weight of the link connecting

jth neuron of the input layer to rth neuron of the hidden layer, and br is the bias associated

with the rth neuron of the hidden layer. f1 is the transformation function between the

input layer and the hidden layer.
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Figure 3.2: A three-layered feedforward neural network

Input to the sth neuron of the output layer is given by:

net′s = f2(Σrwrsnetr + b′s) (3.2)

where f2 is the transformation function between the hidden layer and the output layer.

wrs is the weight of the link connecting rth neuron of the hidden layer to sth neuron of

the output layer, and br is the bias associated with the sth neuron of the output layer.

netr is defined by (3.1).

A network is fed with inputs as well as outputs (training data or sample data). Then

the network learns the mapping from inputs to corresponding outputs. This is called

supervised learning. In order for the network to learn the patterns of the data, a learning

algorithm is needed. Backpropagation is the learning algorithm most commonly used for

the feedforward neural networks.
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The Backpropagation Algorithm

Backpropagation is an algorithm that modifies network weights to minimise the mean

squared errors between the predicted and actual outputs of the network. Backpropagation

is a supervised learning algorithm. Once the network is trained, the weights are optimized

and these optimized weights can then be used to compute outputs for new inputs.

Let the training set be denoted by {(ãi, ai)|i = 1, 2, . . . , N}. Once the input vector,

{ãi : i = 1, 2, . . . , N} is fed into the network, it computes an output vector {oi : i =

1, 2, . . . , N}. Then oi, i = 1, 2, . . . , N is compared against the training target ai, i =

1, 2, . . . , N . A performance criterion function is defined based on the difference between

ai and oi. The commonly used criterion function is the ordinary least squared (OLS) error

function, which is given by (3.3).

EOLS =
1

N

N∑
i=1

(ai − oi)2 (3.3)

Backpropagation tries to minimise the sum of squared errors, by forcing the network

weights to change in such a way that errors are minimised. Backpropagation training

consists of three steps:

1. Output Calculations: present the given input vector to the network inputs and run

the network: compute the activation functions sequentially forward from the first

hidden layer to the output layer.

2. Error Backpropagation: compute the difference between the predicted output and

the actual output. Propagate the error sequentially backward from the output layer

to the input layer.

3. Weight Modification: for every connection, change the weight by modifying that

connection in proportion to the error.

When these three steps have been performed for every example from the data series,

one epoch of training has occurred. Learning usually runs through thousands of epochs,
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either until a predetermined maximum number of epochs is reached, or the network output

error falls below an acceptable threshold. Training (learning) of a network can be time

consuming, depending on the network size, size of the training data set, number of epochs,

and the desired network output errors.

During the first step mentioned above, an input vector is presented to the input layer,

and then the network computes the output for the non-input units. For instance, the

network output for the ith example is:

ois = f2(Σrwrs(f1(ΣjwjrI
i
j + br)) + b′s) (3.4)

where k, s, wrs, wjr, br, b
′
s, f1, and f2 are defined in Section 3.2.1. I ij represents the jth

input variable (input to the jth neuron of the input layer) of the ith training sample.

During the second step, the error terms for each output neuron are computed (given

by 3.5), as well as for each neuron of each hidden layer (given by 3.6).

δis = (ois − ais)φ′(net′s) (3.5)

where s is the index of output neuron and φ′ is the derivative of transformation function

between the hidden and the output layers.

δir = φ(netr)Σsδ
i
swrs (3.6)

where r is the index of hidden neuron and φ is the derivative of the transformation function

between the input and hidden layers.

During the third step, the error computed from the output layer is backpropagated

through the network, and weights are modified according to their contribution to the error

function defined by (3.3) above. The change in the weight is computed according to (3.7)

and added to the original weight.

∆wijr = ηδiro
i
r (3.7)

where wjr is the weight of the link connecting jth neuron to rth neuron, and oir is the

output of rth neuron corresponding to the ith sample. η is called the learning rate.
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Choice of Learning Rate (η)

The learning rate controls how quickly and how finely a network converges to a particular

solution. At the start of a training sample using the backpropagation algorithm, the

weights change proportional to the negative gradient of the error; but the magnitude of

the desired weight change is not fixed. The magnitude depends on the appropriate choice

of the learning rate, η. A large value of η will lead to rapid learning but the weight may

then oscillate, while low values imply slow learning. The proper value for η depends on

the application. Usually this value changes from 0 to 1 [52].

Momentum

Backpropagation may lead the weights in a neural network to a local minimum of the error

function (see (3.3)). This local minimum may be substantially different from the global

minimum that corresponds to the best choice of weights. Therefore, it is essential to take

some corrective action to prevent the network from getting stuck in a local minimum. This

problem can be overcome by making weight changes in an iteration of the backpropagation

algorithm dependent on the immediately preceding weight change. Then (3.7) can be

modified as below:

∆wjr(t+ 1) = ηδror + α∆wjr(t) (3.8)

where wjr(t) is called momentum, which is the weight change required at time t and α

is called the momentum coefficient. A correct choice of α will significantly reduce the

number of iterations to convergence. A value close to 0 indicates that the past history

does not have much effect on the weight change. However, a value close to 1 suggests that

current error has little effect on the weight change [52].

3.2.2 Probabilistic Neural Networks

A Probabilistic neural network (PNN), introduced by Specht [77], is a nonlinear, non-

parametric classification algorithm that has been described as the neural network imple-

mentation of kernel discriminant analysis [72].
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PNN Logic

PNN, which is based on the Bayesian method of classification, is capable of classifying a

sample with the maximum probability of success, provided that there is enough data to

estimate the distribution ([92] cited in [11]). The principle of a Bayesian classifier rests

on the selection of class C with the largest product term in the Bayesian Classification

Theorem:

MaxC{PCLCfC(X)}, (3.9)

where PC is a priori probability for class C, LC is the loss incurred by misclassifying a

sample which actually belongs to class C, X = (x1, x2, . . . , xj), is the input vector (of j

number of elements) to be classified, and fC(X) is the probability of X given the density

function of class C [11].

There is no particular method or technique to decide the value of LC ; prior knowledge

or a trial and error method is used to estimate this value. Many studies related to financial

predictions assume that the loss of misclassification is equal for each class.

In general, the distribution of the vector X assumed to be Gaussian:

fC(X) =
1

(2π)j/2σjCnC

nC∑
j=1

exp
−(X − YiC)′(X − YiC)

2σ2
C

(3.10)

where j is the number of elements in X, nC is the number of training samples belong to

class C, YiC is the ith training sample in class C, and σC , which is equal to the standard

deviation of samples belong to class C, is called a smoothing parameter. However, the

distribution of the vector X may take other possible forms of distributions [77].

A basic PNN topology consists of four layers: an input, an output and two hidden

layers) of processing units (for example Figure 3.3) [11]. The input layer has a processing

unit to represent each independent variable in the input vector X, while the output layer

consists of a set of processing units to indicate the output class. The first hidden layer

is called the pattern layer and uses a processing unit to ‘memorise’ each training sample.

The second hidden layer is termed the class layer and is made up of an array of units

with the number equal to the total number of classes.
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Figure 3.3: An example for probabilistic neural network Source: Chen et al. [11]

Figure 3.3 depicts a simple PNN which represents a model with two input variables

(X1 and X2), one output with two classes, and three training samples for each of the two

classes.

3.2.3 Support Vector Machines

A support vector machine (SVM), a novel network algorithm, was developed by Vap-

nik [89]. Unlike the traditional neural network models which minimise the deviation from

the correct solution, SVM minimise an upper bound of generalisation error [34]. Hence,

solutions produced by SVM may be global optimal solutions.

A SVM maps a set of input vectors x into high-dimensional feature space, through

some non-linear mapping, chosen a priori [89]. A linear model constructed in the new

space can represent a nonlinear decision boundary in the original space [34]. In the new
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space, an optimal separating hyperplane is constructed and this hyperplane is termed

the maximum margin hyperplane. The maximum margin hyperplane gives the maximum

separation between decision classes. The training samples that lie on this plane are called

support vectors while all other training samples are considered to be irrelevant for defining

the binary class boundaries.

Formalisation of the SVM problem

Consider data points of the form:

{(x1, c1), (x2, c2), . . . , (xn, cn)} (3.11)

where the ci is either 1 or -1 which denotes the class to which the point xi belongs. Each

xi is a p-dimensional real vector. (3.11) can be considered as the training data, which

denotes the correct classification which we would like the SVM to eventually distinguish,

by means of the dividing (or separating) hyperplane [105]:

w · x− b = 0. (3.12)

The vector w is perpendicular to the separating hyperplane. The offset parameter b

allows to increase the margin. In its absence, the hyperplane is forced to pass through

the origin, restricting the solution [105].

Since the aim is to maximise the margin, it is necessary to find the support vectors

and the parallel hyperplanes (to the optimal hyperplane) closest to these support vectors

in either class. These parallel hyperplanes can be described by equations (by scaling w

and b) [105]:

w · x− b = 1

w · x− b = −1. (3.13)

If the training data are linearly separable, these hyperplanes can be selected in a way

that there are no points between them and then try to maximise their distance. The
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perpendicular distance between the hyperplanes is 2/‖ w ‖, so we want to minimize

‖ w ‖. To exclude data points, we need to ensure that for all i either [105]:

w · xi − b ≥ 1 or

w · xi − b ≤ −1. (3.14)

This can be rewritten as [105]:

ci(w · xi − b) > 1, 1 < i < n. (3.15)

Primal Problem

The problem now is to minimize ‖ w ‖ subject to the constraint 3.15. This is a quadratic

programming (QP) optimization problem. More clearly [105],

Minimize (1/2) ‖ w ‖2, (3.16)

s.t. ci(w · xi − b) > 1, 1 < i < n. (3.17)

The factor of (1/2) is used for mathematical convenience [105].

Dual Problem

Writing the classification rule in its dual form reveals that classification is only a function

of the support vectors, i.e., the training data that lie on the margin. The dual of the SVM

can be shown to be [105]:

Maximise
n∑
i=1

αi −
∑
i,j

αiαjcicjx
T
i xj (3.18)

s.t. αi ≥ 0, (3.19)

where the αi; 1 < i < n constitute a dual representation for the weight vector in terms of

the training set [105]:

w =
∑
i

αicixi (3.20)
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Nonseparable Case

If there exists no hyperplane that can split the training sample, the ‘Soft Margin’ method

will choose a hyperplane that splits the examples as cleanly as possible, while still maxi-

mizing the distance to the nearest cleanly split examples. This method introduces slack

variables, εi, which measure the degree of misclassification corresponds to xi [105]:

ci(w · xi − b) > 1− εi, 1 < i < n. (3.21)

The objective function is then increased by a function which penalises non-zero εi, and

the optimization becomes a trade off between a large margin, and a small error penalty.

If the penalty function is linear, (3.16), (3.17) transform to [105]:

Minimize ‖ w ‖2 +C
∑
i

εi, (3.22)

s.t. ci(w · xi − b) > 1− εi, 1 < i < n. (3.23)

Problem (3.22), (3.23) can be solved using Lagrange multipliers. The key advantage of

a linear penalty function is that the slack variables vanish from the dual problem, with

the constant C appearing only as an additional constraint on the Lagrange multipliers.

Non-linear penalty functions have been used, particularly to reduce the effect of outliers

on the classifier, but unless care is taken, the problem becomes non-convex, and thus it

is considerably more difficult to find a global solution [105].

For non-liner classification cases, the dot product in (3.17) and (3.23) is replaced by

a kernel function, K(x, y). The most commonly used kernel functions are the polynomial

kernel, K(x, y) = (xy+1)d and the Gaussian radial basis function, K(x, y)=exp(−1/γ2(x−

y)2) where d is the degree of the polynomial kernel and γ2 is the bandwidth of the Gaus-

sian radial basis function kernel. Choosing the proper kernel and proper values for its

parameters is essential in order to obtain the best model [34].
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3.3 Summary

This chapter presented the overall methodology used in this study. The links to the indi-

vidual chapters, to which each step of the methodology relates, is also given. Additionally,

it discussed the algorithms this study used for predicting trading signals.

The next chapter (Chapter 4) covers the first and the second steps of the methodology

those of developing a technique for quantifying intermarket influences from a given set of

potential influential markets on a selected dependent market and applying this technique

for quantifying intermarket influences on the AORD, respectively.
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Chapter 4

Quantification of Intermarket

Influences on the Australian All

Ordinary Index

4.1 Introduction

As described in Section 1.1.2, a significant impact from the lagged prices (or derivative

thereof) of a stock market index on the current price (or derivative of price) of a given

stock market can be defined as the influence from the former market on the latter. If the

performance of two markets are interrelated, then Ruggiero [73] defined one market as an

intermarket of other. The influence of an intermarket on another can be defined as an

intermarket influence.

Currently intermarket influence is an important consideration among investors and

decision makers. However, no techniques for quantification of intermarket influences were

introduced in the literature (Section 2.4). Discovering and formalizing intermarket in-

fluence patterns is likely to prove extremely useful in many applications such as market

prediction, portfolio optimization and management. Recent studies [63, 65, 66] have

shown that the consideration of intermarket influences as input variables, improves the
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forecast accuracy.

Past studies confirmed that most of the world’s major stock markets are integrated

(Section 2.4). Hence, such an integrated market can be considered as a part of a single

global system. The influence from an integrated stock market on a dependent market

may also include the influence from one or more stock markets on the former.

If there is a set of influential markets to a given dependent market, it is not straightfor-

ward to separate the influence from individual influential markets. Instead of measuring

the individual influence from one influential market on the dependent market, the strength

of the influence from this influential market on the dependent market can be measured

compared to the influence from the other influential markets. This study uses a novel

approach to quantify intermarket influences. This approach estimates the combined in-

fluence of a set of influential markets and the contribution from each influential market

to the combined influence.

This chapter focuses on developing a new technique to quantify intermarket influences.

This technique is applied to quantify intermarket influences from a selected set of world’s

major stock markets on the AORD. The quantification is carried out by different time

lags and different time periods.

4.2 Quantification of Intermarket Influences

As mentioned earlier in Section 1.1.2, intermarket influence may impact on price and/or

one or more derivative properties of price. To achieve the objectives of this study (to

predict the direction of the Close price and to predict whether it is best to buy, hold

or sell, on day (t + 1)), we have only two options to consider: analysing intermarket

influence on either Close price or return (such as relative return) of the Close price. We

opted analysing intermarket influence on relative returns of the Close price, since returns

for different stock indices are comparable.

Quantification of intermarket influences on the AORD was carried out by finding the

coefficients, ξj s which maximise the median rank correlation between the relative return
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of Close price of day t of the AORD and the sum of ξj multiplied by the lagged relative

returns of Close prices of the potential influential markets over a number of small non-

overlapping windows of a fixed size. ξj measures the contribution of the jth influential

market to the combined influence which equals to the optimal correlation. This coefficient

will be termed quantification coefficient.

The objective function to be maximised is defined by Spearman’s correlation coeffi-

cients calculated on these windows. The description of the objective function is given in

Section 4.2.1.

In this study, we used the global optimization algorithm developed in [47, 48]. A brief

description of this algorithm is given in Section 4.2.2. The performance of this algorithm

has been demonstrated in solving different optimization problems including discontinuous

objective functions (for example [39]), which is the case in our study as well.

Spearman’s rank correlation coefficient (see page 54 for more descriptions) was used

instead of the more commonly used Pearson’s correlation coefficient, for the following

reasons:

• Stock market time series are generally non-linear and non-stationary (variance varies

with time). Unlike Pearson’s correlation coefficient, rank correlation measurers

(such as Spearman’s rank correlation coefficient) assess how well an arbitrary mono-

tonic function can describe the relationship between two variables.

• Spearman’s rank correlation coefficient is a non-parametric measure of correlation.

No assumptions about frequency distributions of variables are required.

Since, influential patterns are likely to vary with time [83], the whole study period was

divided into a number of moving windows of a fixed length. The correlation structure

between stock markets also changes with time [96]. Therefore, each moving window was

further divided into a number of small windows of 22 days in length. 22 days of a stock

market time series represent a trading month. The rank correlation coefficients were

calculated for these smaller windows within each moving window.
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The other important matter with regard to this optimization procedure is that the

absolute value of the correlation coefficient was considered when finding the optimal me-

dian correlation. This is appropriate as we are interested in the strength rather than the

direction of the correlation (that is either positively or negatively correlated).

4.2.1 Optimization Problem

Let Y (t) be the relative return of the Close price of a selected dependent market at time

t and Xj(t) be the relative return of the Close price of the jth influential market at time

t . Also let:

Xξ(t− i) =
∑
j

ξjXj(t− i) (4.1)

where ξj ≥ 0 , j = 1, 2, ...,m , is the quantification coefficient associated with the jth

influential market Xj . m is the total number of influential markets and i is the time lag.

The aim is to find the optimal values of the quantification coefficients, ξ = (ξ1, ..., ξm)

which maximise the rank correlation between Y (t) and Xξ(t− i) for a given window and

time lag i . In the calculations, i = 0, 1, 2, 3, 4 , which represent correlation/influence

within a week, were considered. i = 0 represents the same day correlation between the

Close price of the dependent market and a selected combination of the Closes price of

influential markets. i = 1 gives the correlation between the Close price of day t of the

dependent market and the Close prices of day (t−1) of a combination of influential markets

and this correlation is referred as the previous day’s (day (t−1)) combined influence from

this combination of influential markets on the dependent market. Other time lags can be

defined in a similar manner.

The correlation can be calculated for a window of a given size. This window can be

defined as:

T (t0, l) = {t0, t0 + 1, ..., t0 + (l − 1)} (4.2)

where t0 is the starting date of the window and l is its size (in days).

The correlation between the variables Y (t), Xξ(t − i), t ∈ T (t0, l), defined on the
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window T (t0, l), will be denoted by Ci(ξ):

Ci(ξ) = Corr(Y (t), Xξ(t− i) ‖ T (t0, l)). (4.3)

For a particular window T (t0, l), the following optimization problem can be formulated:

Maximise Ci(ξ);

s.t.
∑
j

ξj = 1, ξj ≥ 0 j = 1, 2, ...,m (4.4)

In this way, the optimal quantification coefficients, ξj, are obtained for a given combi-

nation of influential markets, on the fixed window T (t0, l). For a period of several years,

the optimal correlation changes according to the starting point of the window.

To define optimal values of ξ for a long time period, the following method is applied:

let [1, T ] = 1, 2, ..., T be a given period (for instance, a large window). This period is

divided into n windows of size l (we assume that T is divisible by l):

T (tk, l), k = 1, 2, 3, ..., n; (4.5)

so that,

T (tk, l) ∩ T (tk′ , l) = φ for ∀ k 6= k′ , (4.6)
n⋃
k=1

T (tk, l) = [1, T ]. (4.7)

For given i, the correlation coefficient on a window T (tk, l) is defined as:

Ci
k(ξ) = Corr(Y (t), Xξ(t− i) ‖ T (tk, l)), k = 1, ..., n. (4.8)

To define the objective function over the period [1, T ], the median of the vector,

(Ci
1(ξ), ..., C

i
n(ξ)) is used. Now, the main optimization problem can be redefined as:

Problem (P):

Maximise f i(ξ) = Median (Ci
1(ξ), ..., C

i
n(ξ)); (4.9)

s.t.
∑
j

ξj = 1, ξj ≥ 0 j = 1, 2, ...,m. (4.10)
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Rank correlation measure

The Spearman’s rank correlation coefficient is used in (4.8) as the measure of correlation.

Given two variables X and Y , the Spearman’s rank correlation coefficient, rs, can be

defined as;

rs =
n(n2 − 1)− 6

∑
d2
i − (Tx + Ty)/2√

(n(n2 − 1)− Tx)(n(n2 − 1)− Ty)
(4.11)

where:

n− total number of bivariate observations;

di− difference between the rank of x and the rank of y in the ith observation;

Tx− number of tied observations of X; and

Ty− number of tied observations of Y .

The Spearman’s Rank Correlation depends on the rank of the given vectors. According

to Equation (4.1), it is obvious that the rank order of the elements of Xξ(t− i) doest not

change if ξ is replaced by λ ξ, where λ > 0. In other words, the corresponding elements

of the vectors Xξ(t − i) and Xλ ξ(t − i) have the same rank order. This means that the

objective function f i(ξ), in (4.9), satisfies the following condition:

f i(λ ξ) = f i(ξ), for all λ > 0. (4.12)

4.2.2 Global Optimization Algorithm

The objective function f i(ξ), in (4.9), is not only discontinous, but also piece-wise con-

stant. This is because, for each window k, the correlation coefficient Ci
k(ξ) is a piece-wise

constant function as it depends on the ranking of the vectors Y (t) and Xξ(t − i). Solv-

ing this type of optimization problems is extremely difficult. The majority of available

algorithms need smoothness or at least semi-smoothness of the objective functions to be

minimized.

In this study, the algorithm AGOP, developed in [47] and [48], was applied to solve the

optimization problem of interest. This algorithm was designed for continuous optimiza-

tion problems with box constraints. It uses a line search mechanism where the descent
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direction is obtained via a dynamic systems approach. It is applicable to a wide range of

optimization problems requiring only function evaluations to work. In particular it does

not require gradient information and can be used to find minima of non-smooth functions.

The AGOP algorithm will now be described in terms of the minimizing the function

g(ξ) = −f i(ξ). AGOP must first be given a set of initial points, say Ω = {ξ1, ..., ξq} ⊂ Rm,

q ≥ 2. Generally, a suitable choice for an initial set of points is the set of some vertices

of a given box. Let ξ? ∈ Ω be the point in Ω with the smallest cost, that is, g(ξ?) ≤ g(ξ)

for all ξ ∈ Ω. The set Ω and the values of g at each of the points in Ω allow us to

determine a vector v to be used as a possible descent direction from point ξ?. An inexact

line search along the direction of v provides a new point ξ̂q+1 6= ξ?. A local search around

ξ̂q+1 is then carried out using a method called local variation. This is an efficient local

optimization technique that does not explicitly use derivatives and can be applied to non-

smooth functions. A good survey of direct search methods can be found in [37]. Letting

ξq+1 denote the optimal solution of this local search, the set Ω is augmented to include

ξq+1. Starting with this updated Ω, the whole process can be repeated. The process

terminates when v is approximately 0 (or a prescribed bound on the number of iterations

is reached). The solution returned is the current ξ?, that is, the point in Ω with the

smallest cost.

To solve Problem (P) that contains equality constraints (4.10), property (4.12) will

be used. Consider the following problem with box constraints:

Problem (P1):

Maximise f i(ξ)= Median (Ci
1(ξ), ..., C

i
n(ξ));

s.t. ξj ∈ [0, 1], j = 1, 2, ...,m. (4.13)
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It is easy to verify that the following property is true:

Proposition 1 Let ξ∗ be a global optimal solution to Problem (P1). Then

ξ = ξ∗/λ∗, where λ∗ = ξ∗1 + ...+ ξ∗m, (4.14)

is a global optimal solution to Problem (P).

Therefore, to solve Problem (P), first the algorithm AGOP is applied to Problem

(P1), taking g(ξ) = −f i(ξ), and get a solution ξ∗. Then using transformation (4.14), a

solution ξ to the original problem with equality constraints is obtained.

Another way to handle the equality constraints in (4.10) would be to eliminate one

variable, say ξm, taking ξm = 1− ξ1− ...− ξm−1. In this case, we would have the following

constraints, instead of (4.10);

ξ1 + ...+ ξm−1 ≤ 1, ξj ≥ 0 j = 1, 2, ...,m− 1. (4.15)

Then, the problem (4.9, 4.15), becomes an optimization problem with inequality con-

straints, which is much easier than the original Problem (P). However, solving problem

(4.9, 4.15) is very difficult because the objective function is discontinuous. That is why,

solving Problem (P1), that uses only box constraints is preferable in terms of finding

better solutions.

4.3 Data and Data Preprocessing

The data set consists of daily relative returns of the Close prices of ten potential influential

stock markets and the AORD, from 2nd July 1997 to 30th December 2005. The selected

potential influential markets are:

• US S&P 500 Index (GSPC),

• US Nasdaq Composite Index (IXIC),

• UK FTSE 100 Index (FTSE),

56



CHAPTER 4 Quantification of Intermarket Influences on the AORD

• French CAC 40 Index (FCHI),

• German DAX Index (GDAXI),

• Hong Kong Hang Seng Index (HSI),

• Singapore Straits Times Index(STI),

• Japanese Nikkei 225 Index (N225),

• Chinese SSE Composite Index (SSEC),

• Taiwan TSEC Weighted Index (TWII).

The GSPC and IXIC are widely considered as market leaders. The FTSE, FCHI, and

GDAXI are major European stock market indices, while the HSI, STI, N225, SSEC and

TWII are major Asian stock market indices.

Since different stock markets are closed on different holidays, the regular time series

data sets considered have missing values. If no trading took place on a particular day, the

rate of change of price should be zero. Therefore, the missing values of the Close price

were replaced by the corresponding Close price of the last trading day.

Relative Returns, RR, of the daily Close price of the stock market indices were used

for the analysis:

RR(t) =
P (t)− P (t− 1)

P (t− 1)
(4.16)

where RR(t) and P (t) are the relative return and the Close price of a selected index on

day t, respectively. Returns are preferred to price, since returns for different stocks are

comparable on equal basis.

It is worth noting that the opening and closing times for many of the various markets

do not coincide. For example, the Australian, Asian, French and German markets have

all closed by the time the US markets open.
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4.4 Description of Quantification Experiments

Firstly, the quantification of intermarket influences was carried out for different time lags

by considering the whole study period as a single window. Different market combinations

were incorporated for this analysis. In this analysis, we expected to investigate the impact

of intermarket influences at different time lags.

As mentioned in Section 4.2, the influential patterns between markets are likely to

vary with time [83]. Therefore, the quantification process needs to be carried out for

different time periods (windows).

Secondly, the quantification process was repeated for different time periods (windows)

by considering only the time lag 1. From the previous quantification process (described

above), we identified only the intermarket influences at time lag 1 has a significant impact

on the AORD (Table 4.1). The quantification coefficients obtained in this process are to

be used for the predictions related to the AORD. This goal requires the quantification

coefficients to be calculated using ‘known data’ (that is training data).

4.4.1 Quantification of Intermarket Influences for the Whole

Study Period

The quantification coefficients which maximise the median Spearman’s rank correlation

between the relative return of the Close price of day t of the AORD and the sum of the

quantification coefficient multiplied by the lagged relative returns of the Close prices of

the potential influential markets were found by considering the whole study period as a

single window. This procedure was carried out for different combinations of influential

markets. These combinations (with their notations) are:

• GSPC+European markets ≡ (A),

• GSPC+European markets+AORD ≡ (B),

• GSPC+European markets+Asian markets ≡ (C),
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• GSPC+European markets+Asian markets+AORD ≡ (D),

• US markets ≡ (E),

• US markets+European markets ≡ (F),

• US markets+European markets+Asian markets ≡ (G),

• US markets+European markets+Asian markets+AORD ≡ (H).

Past studies [65, 82] evidence that the lagged Close price of the AORD itself shows

an impact on the Close price of day t of the AORD. Therefore, in addition to the lagged

Close prices of the global markets, those of the AORD were also taken into account when

forming the market combinations.

The quantification results obtained by these experiments are presented in Section 4.5.

4.4.2 Quantification of Intermarket Influences for Different Time

Periods (Training Windows)

The whole study period was divided into six moving windows of three trading years (for

stock market time series, 256 days is considered as a trading year). Each time, a window

was shifted forward by one trading year in order to get the starting point of the next

window. Each window was divided into two parts; the most recent 10% of data (test

set) was separated and this portion was allocated for evaluating the predictions. The

remainder (that is 90% of data from the beginning of the window) is called a training

window and this window was used to estimate the quantification coefficients.

For each training window, the quantification coefficients which maximise the median

Spearman’s rank correlation between the relative return of the Close price of day t of

the AORD and the sum of the quantification coefficients multiplied by the respective

relative returns of day (t− 1) of the Close prices of the potential influential markets were

derived. The second quantification process was also carried out for the same combinations

of influential markets that were used for the first quantification process (Section 4.4.1).
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Section 4.6 presents the results obtained from this second quantification process.

4.5 Numerical Experiments: Quantification of Inter-

market Influences for the Whole Study Period

The quantification (of intermarket influences) results at different time lags, derived con-

sidering the whole study period as a single window (Section 4.4.1), are presented in this

section. In addition to these results, this section discusses some issues identified relating

to the optimization problem of interest.

Table 4.1 presents the optimal median Spearman’s correlations relevant to the above

mentioned market combinations (Section 4.4) at different time lags.

Table 4.1: Optimal median Spearman’s correlations at different time lags for different

market combinations

Time lag Market combination

(A) (B) (C) (D) (E) (F) (G) (H)

0 0.275 NA2 0.5201 NA2 0.160 0.275 0.5171 NA2

1 0.5531 0.5531 0.5541 0.5541 0.5321 0.5541 0.5551 0.5551

2 0.169 0.182 0.225 0.221 0.153 0.169 0.227 0.228

3 0.195 0.196 0.222 0.220 0.184 0.205 0.223 0.225

4 0.182 0.181 0.216 0.220 0.156 0.194 0.215 0.216

1correlations significant at 5% level (one sided critical value for Spearman’s correlation at 5% level is

0.425 [76]).

2correlation between the relative return of day t of the AORD with the sum of quantified relative return

of the same day of a market combination which includes the AORD is not meaningful.

Note: Quantification coefficient multiplied by the respective relative return is termed

quantified relative return.
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Spearman’s correlation for a given market combination measures the strength of the

combined influence from the markets included in this combination on the AORD. Corre-

lation at time lag 0 represents the same day correlation between the relative return of the

AORD and the sum of the quantified relative returns of a given market combination.

At time lag 0, only the correlations relating to the market combinations (B) and (F)

are significant (Table 4.1). The reason may be that these two combinations include the

Asian markets. There is a period in the trading day in which the Australian and the Asian

markets are open simultaneously, and therefore, these markets share the information at

the same time.

Correlations at time lag 1 indicates the combined influence from the Close prices of

day (t− 1) of a given market combination on the AORD Close price. All the correlations

at lag 1 are significant (Table 4.1). Market combination (E), which includes only the US

markets yielded the lowest correlation at lag 1 (0.532). The next lowest correlation is cor-

responding to the market combinations (A) and (B) and this value is 0.553. (A) includes

the GSPC and the European markets while the AORD is included in (B) in addition to

the four indices included in (A). However, there are no substantial differences among the

correlations (at time lag 1) corresponding to all market combinations considered, except

(E). Therefore, it can be suggested that adding other markets to the combination which

includes the GSPC and the European markets did not substantially increase the combined

influence on the AORD.

The correlations at the time lags greater than one are not significant (Table 4.1). This

indicates that the Close prices of two or more days in the past of the considered market

combinations did not have a significant impact on the current day’s Close price of the

AORD.

The quantification coefficient, ξ, relating to a particular market indicates the contri-

bution from that market to the combined influence compared to the contribution from

the other markets considered. Therefore, ξ corresponding to a market can be used as a

measure of the contribution of this market to the combined influence. For this purpose it
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is sufficient to consider the influential market combination (G), since it covers all potential

global influential markets considered.

Table 4.2 presents the quantification coefficients for all influential markets considered

at time lags 0 and 1. None of the correlations at time lags greater than one are significant

(Table 4.1). Therefore, it is not worth considering the quantification coefficients relating

to these time lags.

Table 4.2: The optimal values of the quantification coefficients (ξ) which maximise the

median Spearman’s correlation coefficient between the relative return of the Close price of

day t of the AORD and the sum of the quantified coefficient multiplied by lagged relative

returns of the influential market combination (G), for the whole study period

Stock market index Optimal values of ξ

at lag 0 at lag 1

GSPC 0.0626 0.7958

IXIC 0.0 0.0

FTSE 0.0 0.1487

FCHI 0.1589 0.0

GDAXI 0.0 0.0222

HSI 0.1290 0.0

STI 0.2161 0.0

N225 0.2582 0.0111

SSEC 0.1450 0.0

TWII 0.0303 0.0222

Optimal Spearman’s

correlation coefficient 0.5172 0.5554

At time lag 1, the GSPC had the highest contribution to the combined influence on

the AORD followed by the FTSE (Table 4.2). The Close prices of the Asian markets (at

lag 0), particularly the STI and the N225 were highly correlated with that of the AORD.
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4.5.1 Some Issues Related to the Optimization Problem (P1)

As mentioned in Section 4.2.2, due the discontinuity of the objective function, Prob-

lem (P1) (or Problem (P)) is a difficult global optimization problem. Therefore, there

is no guarantee that the results presented in Table 4.1 are the global optimal solutions.

Nevertheless, the results are quite reasonable in the sense that including extra market

leads to a higher optimal correlation coefficient. Following this idea, one can expect the

optimal median Spearman’s correlations to agree with the following conditions;

• (A)≤(B), (A)≤(C), (A)≤(D), (A)≤(F), (A)≤(G), (A)≤(H),

• (B)≤(D), (B)≤(H),

• (C)≤(D), (C)≤(G), (C)≤(H),

• (D)≤(H),

• (E)≤(F), (E)≤(G), (E)≤(H),

• (F)≤(G), (F)≤(H), and

• (G)≤(H).

There do appear to some exceptions (for example, (C) vs (G) at lag 0, (C) vs (D)

at lag 2, (A) vs (B), (C) vs (G) and (D) vs (H) at lag 4), however, the values of Spear-

man’s correlation coefficient in these cases are so similar as not to represent a significant

difference. In all other cases, the optimal Spearman’s correlation agrees with the above

mentioned conditions. Therefore, applying the optimization algorithm described in Sec-

tion 4.2.2, one can expect to obtain quite reasonable (close to global optimal) solutions

to Problem (P1).
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4.6 Numerical Experiments: Quantification of Inter-

market Influences for Different Training Windows

The quantification results, obtained for the six windows which are described in Sec-

tion 4.4.2, are presented in this section.

4.6.1 Quantification of Intermarket Influences from the Market

Combinations (A) to (D)

Table 4.3 to 4.6 present the optimal values of the quantification coefficients (ξ) together

with the optimal median Spearman’s correlations corresponding to the market combina-

tions (A) to (D) (Section 4.4), for different windows, respectively. These market combi-

nations do not include the IXIC Index.

Table 4.3: Optimal values of quantification coefficients (ξ) and the optimal median Spear-

man’s correlations corresponding to market combination (A) for different moving windows

Training Optimal values of ξ Optimal median

Window No. GSPC FTSE FCHI GDAXI Spearman’s correlation

1 0.5720 0.2905 0.1141 0.0233 0.57821

2 0.6124 0.1825 0.0787 0.1264 0.54781

3 0.7656 0.0931 0.1328 0.0085 0.56801

4 0.7946 0.0562 0.1492 0.0000 0.57901

5 0.5572 0.1720 0.0346 0.2362 0.59041

6 0.6658 0.0583 0.0795 0.1964 0.53591

1correlations significant at 5% level (one sided critical value for Spearman’s correlation at 5% level is

0.425 [76]).

Table 4.3 shows that the Spearman’s correlation corresponding to each window is

significant (at the 5% level). This implies that the Close prices of day (t − 1) of the

markets included in combination (A) had a significance combined influence on the Close
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price of day t of the AORD in each window considered. Irrespective of the window, the

GSPC had the highest contribution to the combined influence and its contribution was

more than 50%. The FTSE had the second highest contribution in the first and the second

window. In the next two windows, the FCHI showed the second highest contribution. In

the last two windows, the GDAXI showed the second highest contribution. This confirms

that the influence patterns change with time.

Table 4.4: Optimal values of quantification coefficients (ξ) and the optimal median Spear-

man’s correlations corresponding to market combination (B) for different moving windows

Training Optimal values of ξ Optimal median

Window No. GSPC FTSE FCHI GDAXI AORD1 Spearman’s correlation

1 0.5621 0.2929 0.0997 0.0282 0.0170 0.58051

2 0.5780 0.1083 0.1266 0.1688 0.0183 0.55001

3 0.7369 0.0000 0.1730 0.0175 0.0726 0.56971

4 0.7898 0.0701 0.1401 0.0000 0.0000 0.57991

5 0.5569 0.1699 0.0394 0.2338 0.0000 0.59041

6 0.6592 0.0431 0.0900 0.1957 0.0120 0.53681

1correlations significant at 5% level (one sided critical value for Spearman’s correlation at 5% level is

0.425 [76]).

The Spearman’s correlation relating to market combination (B) is significant in each

window (Table 4.4). When the AORD was added to the GSPC and the three Euro-

pean market indices, the correlation increased in each window, except the fifth window

(Table 4.3 and Table 4.4). In the fifth window optimal median correlation remained un-

changed. It is noteworthy that the quantification coefficient relevant to the AORD is

zero, but those of the other markets are different from the respective quantification co-

efficients when the input set consists of only the GSPC, FTSE, FCHI and GDAXI. This

indicates that Problem (P1) has multiple optimal solutions. However, the quantification

coefficients relevant to the two optimal solutions are approximately the same.
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As in the previous case (Table 4.3), the GSPC contributes more than 50% to the

combined influence. Surprisingly, the previous day’s Close price of the AORD had the

least contribution in all windows, except the third window.

Table 4.5: Optimal values of quantification coefficients (ξ) and the optimal median Spear-

man’s correlations corresponding to market combination (C) for different moving windows

Training Optimal values of ξ

Window No. GSPC FTSE FCHI GDAXI HSI STI N225

1 0.5681 0.2894 0.1195 0.0187 0.0042 0.0000 0.0000

2 0.5975 0.1198 0.1122 0.1420 0.0040 0.0000 0.0000

3 0.5818 0.0168 0.2684 0.0168 0.0000 0.0000 0.0000

4 0.7994 0.0000 0.1072 0.0000 0.0000 0.0311 0.0000

5 0.7000 0.1133 0.1497 0.0117 0.0000 0.0008 0.0129

6 0.5500 0.1916 0.1344 0.0499 0.0166 0.0000 0.0000

Training Optimal values of ξ Optimal median Spearman’s correlation

Window No. SSEC TWII

1 0.0000 0.0000 0.57821

2 0.0246 0.0000 0.56631

3 0.1162 0.0000 0.57821

4 0.0623 0.0000 0.59741

5 0.0000 0.0117 0.59061

6 0.0000 0.0575 0.54041

1correlations significant at 5% level (one sided critical value for Spearman’s correlation at 5% level is

0.425 [76]).

Irrespective of the window, the correlation is significant which indicates that there

was a significance combined influence from the Close prices of day (t− 1) of the markets

included in combination (C), on the Close price of day t of the AORD. Still the GSPC

shows the highest contribution to the combined influence. In the first window, no Asian
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markets other than the HSI contributed to the combined influence. Except for the fifth

window the N225 did not contribute and its contribution in this window also very small.

Spearman’s correlation relating to all windows, except the first, increased when the

quantified relative return of day (t− 1) of the Asian markets were added to those of the

GSPC and the European markets (Table 4.3 and Table 4.5). The correlation correspond-

ing to the first window remained unchanged. It is noteworthy that the quantification

coefficients relevant to all the Asian markets except the HSI, are zero, and those of the

US and the European markets are different from their respective quantification coeffi-

cients shown in Table 4.3. This implies that the maximum value of the objective function

(optimal median Spearman’s correlation) may be achieved at different points. However,

the values of the quantification coefficient relevant to the two optimal solutions are ap-

proximately the same.

Table 4.6 evidences that the Close prices of day (t − 1) of market combination (D)

had a significance combined influence on the Close price of day t of the AORD during the

study period. Also it indicates that the GSPC had the highest contribution among the

indices included in market combination (D) while the N225 did not have any contribution

in any window. Surprisingly, the Close price of day (t−1) of at least one European market

showed stronger influence on the Close price of day t of the AORD than its Close price

of day (t− 1), during the study period.

When comparing the markets combinations (B) and (D), the optimal median correla-

tion corresponding to (D) is greater than that of (B) in each window (Table 4.4 and 4.6).

The correlation remained unchanged in the last window, when the quantified relative re-

turn of day (t − 1) of the AORD was added to those of the market indices included in

(C). The quantification coefficient relevant to the AORD is zero while these coefficients

relevant to most of the other indices are different from their respective values in Table 4.5.

Another notable issue is that the correlation reduced in the second and the third windows,

when an extra index was added to market combination (C) (Table 4.5 and 4.6). However,

there is no substantial reduction.
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Table 4.6: Optimal values of quantification coefficients (ξ) and the optimal median Spear-

man’s correlations corresponding to market combination (D) for different moving windows

Training Optimal values of ξ

Window No. GSPC FTSE FCHI GDAXI HSI STI N225

1 0.5635 0.2828 0.1039 0.0263 0.0059 0.0000 0.0000

2 0.5902 0.1051 0.1234 0.1559 0.0000 0.0000 0.0000

3 0.6409 0.0168 0.1575 0.0000 0.0000 0.0413 0.0000

4 0.7822 0.0000 0.1069 0.0000 0.0050 0.0292 0.0000

5 0.5648 0.2482 0.0535 0.0000 0.0000 0.0000 0.0000

6 0.5432 0.1700 0.1325 0.0685 0.0335 0.0000 0.0000

Training Optimal values of ξ Optimal median Spearman’s correlation

Window No. SSEC TWII AORD13

1 0.0025 0.0000 0.0151 0.58221

2 0.0254 0.0000 0.0000 0.56351

3 0.0398 0.0000 0.1036 0.57541

4 0.0643 0.0000 0.0124 0.59851

5 0.1292 0.0000 0.0044 0.59511

6 0.0000 0.0523 0.0000 0.54041

1correlations significant at 5% level (one sided critical value for Spearman’s correlation at 5% level is

0.425 [76]).

3AORD1 ≡ AORD(t-1)

4.6.2 Quantification of Intermarket Influences from the Market

Combinations (E) to (H)

The optimal values of quantification coefficients (ξ) together with the optimal median

Spearman’s correlations corresponding to the market combinations (E) to (H) (Sec-

tion 4.4), for different moving windows are shown in Table 4.7 to 4.10, respectively. Unlike

the market combinations (A) to (D), these market combinations include the IXIC Index.
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Table 4.7: Optimal values of quantification coefficients (ξ) and the optimal median Spear-

man’s correlations corresponding to market combination (D) for different moving windows

Training Optimal values of ξ Optimal median

Window No. GSPC IXIC Spearman’s correlation

1 0.7228 0.2772 0.52891

2 0.8974 0.1026 0.49721

3 0.9299 0.0701 0.52101

4 1.0000 0.0000 0.55051

5 0.7270 0.2730 0.55661

6 0.7834 0.2166 0.49461

1correlations significant at 5% level (one sided critical value for Spearman’s correlation at 5% level is

0.425 [76]).

The combined influence from the Close price of day (t−1) of the stock market indices

that belong to combination (E) is significant in each window (Table 4.7). The contribution

of the GSPC is much greater than that of the IXIC. In the forth window, the GSPC

contributes 100% to the combined influence.

Irrespective of the window, the Close price of day (t − 1) of the indices included in

combination (F) had a significance combined influence on the Close price of day t of the

AORD (Table 4.8). The GSPC showed the highest contribution in each window.

The addition of the three European stock market indices to the market combination

of the GSPC and the IXIC (combination (F)) improved the correlation by substantial

amounts (10.49%, 10.06%, 9.14%, 4.61%, 7.13% and 8.29% in windows 1 to 6, respectively;

Table 4.7 and Table 4.8).

Table 4.9 evidences that there was a significance combined influence from the Close

prices of day (t− 1) of the indices belong to combination (F). The GSPC had the highest

contribution to the combined influence from this market combination. Irrespective of the

window, the N225 did not show any contribution.
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Table 4.8: Optimal weights and the optimal median Spearman’s correlations correspond-

ing to market combination (F) for different moving windows

Optimal

Training Optimal values of ξ median

Window No. Spearman’s

GSPC IXIC FTSE FCHI GDAXI correlation

1 0.5310 0.0520 0.2879 0.1041 0.0249 0.58441

2 0.5886 0.0000 0.1886 0.0639 0.1590 0.54721

3 0.4864 0.0353 0.3308 0.1267 0.0207 0.56861

4 0.8707 0.0000 0.0000 0.1293 0.0000 0.57591

5 0.4426 0.1870 0.1997 0.1510 0.0197 0.59631

6 0.5473 0.1200 0.3163 0.1633 0.0000 0.53561

1correlations significant at 5% level (one sided critical value for Spearman’s correlation at 5% level is

0.425 [76]).

Except for the first window, the addition of the Asian markets to combination (G)

improved the correlations by substantial amounts (Table 4.8 and Table 4.9). The correla-

tion corresponding to the first window was reduced when the Asian markets were added

to (H), however, this drop is not a substantial drop.

The GSPC had the highest contribution to the combined influence from the market

combination (H) (Table 4.10). Both the N225 and the AORD did not show any contri-

bution.

When the AORD was added to the market combination (G), the correlation decreased

in all windows except the first and the fifth windows (Table 4.9 and Table 4.10).
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4.7 Possible Variations of the Quantification Coeffi-

cients

We investigated the possible variations in the optimal values of quantification coefficients

relevant to a given market combination, when the respective optimal median correlation

varies by a small value.

Let ξ∗=(ξ∗1 , . . . , ξ
∗
i , . . . , ξ

∗
m)) be the vector of quantification coefficients corresponding

Table 4.9: Optimal values of quantification coefficients (ξ) and the optimal median Spear-

man’s correlations corresponding to market combination (G) for different moving windows

Training Optimal values of ξ

Window No. GSPC IXIC FTSE FCHI GDAXI HSI STI

1 0.5537 0.0332 0.2712 0.0957 0.0319 0.0142 0.0000

2 0.5923 0.0000 0.1110 0.1195 0.1426 0.0069 0.0000

3 0.6635 0.0758 0.0000 0.1986 0.0000 0.0000 0.0000

4 0.7899 0.0000 0.0000 0.1192 0.0026 0.0000 0.0208

5 0.3439 0.1961 0.2171 0.0895 0.0701 0.0000 0.0740

6 0.4461 0.2104 0.2279 0.0199 0.0000 0.0890 0.0000

Training Optimal values of ξ Optimal median Spearman’s correlation

Window No. N225 SSEC TWII

1 0.0000 0.0000 0.0000 0.58391

2 0.0000 0.0277 0.0000 0.56591

3 0.0000 0.0517 0.0103 0.57851

4 0.0000 0.0675 0.0000 0.59911

5 0.0000 0.0093 0.0000 0.60001

6 0.0000 0.0066 0.0000 0.54091

1correlations significant at 5% level (one sided critical value for Spearman’s correlation at 5% level is

0.425 [76]).
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Table 4.10: Optimal values of quantification coefficients (ξ) and the optimal median

Spearman’s correlations corresponding to market combination (H) for different moving

windows

Training Optimal values of ξ

Window No. GSPC IXIC FTSE FCHI GDAXI HSI STI

1 0.5375 0.0433 0.2817 0.1097 0.0271 0.0006 0.0000

2 0.5825 0.0000 0.0960 0.1348 0.1534 0.0000 0.0000

3 0.5758 0.0000 0.0194 0.2689 0.0000 0.0000 0.0194

4 0.8434 0.0000 0.0550 0.0339 0.0000 0.0000 0.0677

5 0.3389 0.1996 0.2183 0.0767 0.0767 0.0000 0.0792

6 0.5269 0.1535 0.2831 0.0000 0.0000 0.0243 0.0000

Training Optimal values of ξ Optimal median

Window No. N225 SSEC TWII AORD13 Spearman’s correlation

1 0.0000 0.0000 0.0000 0.0000 0.58501

2 0.0000 0.0333 0.0000 0.0000 0.56351

3 0.0000 0.1165 0.0000 0.0000 0.57431

4 0.0000 0.0000 0.0000 0.0000 0.58671

5 0.0000 0.0106 0.0000 0.0000 0.60111

6 0.0000 0.0066 0.0122 0.0000 0.53981

1correlations significant at 5% level (one sided critical value for Spearman’s correlation at 5% level is

0.425 [76]).

3AORD1 ≡ AORD(t-1)

to a selected combination of m (m is an positive integer) markets. Also let ξ∗ is an optimal

solution to the problem (P) ((4.9) and (4.10) in Section 4.2.1) with time lag i=1.

Given a vector ξ=(ξ1, . . . , ξm), the value of the objective function in (4.9) will be

denoted by C(ξ)=f 1(ξ)=Median(C1
1(ξ), . . . , C1

n(ξ)) (refer Section 4.2.1 for the meaning of

the objective function). We also denote C∗=C(ξ∗).
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We aimed at finding the possible range for quantification coefficient associated with

a given market, which provides a close to optimal value for median correlation. For this

purpose, we consider the maximum variation for the quantification coefficient associated

with this market (assuming that the quantification coefficients relevant to other markets

are fixed), given that the median correlation does not lie below C∗(1− ε). In the exper-

iments, we choose ε=0.05 which corresponding to the 95% of the optimal value of the

correlation.

For a given market i ∈ {1, . . . ,m}, we define:

ξmax
i = Max{ξ ∈ [ξ∗i , 1], C(ξ∗1 , . . . , ξ

∗
i−1, ξ, ξ

∗
i+1, . . . , ξ

∗
m) ≥ C∗(1− ε)},

for all ξ̃i ∈ [ξ∗i , ξi]; (4.17)

and,

ξmin
i = Min{ξ ∈ [0, ξ∗i ], C(ξ∗1 , . . . , ξ

∗
i−1, ξ, ξ

∗
i+1, . . . , ξ

∗
m) ≥ C∗(1− ε)},

for all ξ̃i ∈ [ξi, ξ
∗
i ]. (4.18)

Then the interval [ξmin
i , ξmax

i ], is the interval that the quantification coefficient asso-

ciated with ith (i = 1, . . . ,m) market can vary, while the corresponding correlation lies

within the interval [C∗(1− ε), C∗].

To study the possible variations in the optimal values of quantification coefficients,

we considered the market combination (A) (Section 4.4). The reason for choosing this

combination is that the quantified relative returns of the markets included in this com-

bination (GSPC, FTSE, FCHI and GDAXI) yielded the best accuracy for predicting the

trading signals of the AORD (Section 7.6 in Chapter 7) and the second best accuracy for

predicting the direction of the Close price of the AORD (Section 5.4 in Chapter 5).

Table 4.11 gives the quantification coefficients relating to the indices included in the

market combination (A) with their lower and upper bounds for different windows. These

lower and upper bounds are denoted by ξmin
i and ξmax

i , respectively.
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Table 4.11: The lower (ξmin
i ) and the upper (ξmax

i )

bounds of the quantification coefficients corresponding

to the market combination (A)

Training Market Quantification Lower bound Upper bound Range

Window No. Index coefficient (ξmin
i ) (ξmax

i )

Window Market Quantification Lower Upper Range

No. Index coefficient bound bound

1 GSPC 0.57 0.50 0.62 0.12

FTSE 0.29 0.26 0.35 0.09

FCHI 0.11 0.00 0.12 0.12

GDAXI 0.02 0.00 0.05 0.05

2 GSPC 0.61 0.54 0.66 0.12

FTSE 0.18 0.16 0.22 0.06

FCHI 0.08 0.07 0.13 0.06

GDAXI 0.13 0.12 0.23 0.11

3 GSPC 0.77 0.53 0.91 0.38

FTSE 0.09 0.04 0.18 0.14

FCHI 0.13 0.03 0.27 0.24

GDAXI 0.01 0.01 0.06 0.05

4 GSPC 0.79 0.70 0.99 0.29

FTSE 0.06 0.01 0.08 0.07

FCHI 0.15 0.01 0.17 0.16

GDAXI 0.00 0.00 0.02 0.02

5 GSPC 0.56 0.46 0.68 0.22

FTSE 0.17 0.03 0.22 0.19

FCHI 0.03 0.00 0.11 0.11

Continued on next page
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Table4.11 – continued from the previous page

Training Market Quantification Lower bound Upper bound Range

Window No. Index coefficient (ξmin
i ) (ξmax

i )

GDAXI 0.24 0.18 0.33 0.15

6 GSPC 0.67 0.63 0.73 0.10

FTSE 0.06 0.05 0.08 0.03

FCHI 0.08 0.05 0.14 0.09

GDAXI 0.20 0.18 0.23 0.05

In each window the lower boundary of the quantification coefficient relevant to the

GSPC is greater than the upper boundary of the quantification coefficient relevant to

any other market in the combination (A) (Table 4.11). The lowest lower boundary of the

quantification coefficient associated with the GSPC (given that the corresponding median

correlation does not lie below 95% of its optimal value) is around 0.5 which shows a high

contribution.

The quantification coefficients relating to the other markets, which provides the median

correlation not less than 95% of its optimal value, vary within narrow intervals being

mainly close to zero (Table 4.11). This indicates that during the study period, the other

markets showed a lesser impact on the Close price of day t of the AORD, than the GSPC.

Finally, it can be suggested that the optimal coefficients are not very flexible in terms of

providing the highest correlation.

4.8 Conclusions Derived from the Experiments

The optimal median Spearman’s correlations obtained at different time lags suggested

that only the combined influence from the Close prices of day (t − 1) of the different

market combinations considered, on the Close price of day t of AORD, was significant
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during the study period.

Quantification results for different time periods confirm that influential patterns vary

with time. The Close price of day (t − 1) of the GSPC showed the highest contribution

to the combined influences on the Close price of day t of the AORD, followed by those of

the three European markets considered. The Close prices of day (t− 1) of the considered

Asian markets did not show any substantial influence. Surprisingly, the Close price of day

(t− 1) of the AORD itself did not contribute as much as those of the European markets.

4.9 Summary

This chapter proposed a technique to quantify intermarket influences from a given combi-

nation of potential influential markets on a dependent market. This was done by assigning

a coefficient (ξ) to each influential market included in the market combination. The op-

timal value of the each coefficient was derived in such a way that they maximise the

median Spearman’s correlation between the relative return of the Close price of day t of

the dependent market and the sum of ξi multiplied by the lagged relative return of the ith

influential market in the combination. This coefficient is termed quantification coefficient

and measures the contribution from the respective influential market to the combined

influence from the set of markets included in the combination.

This proposed technique was applied to find the possible influence from a selected set

of global stock indices on the AORD. The results obtained suggest that the proposed

quantification technique is successful. However, more experiments need to be carried

out in order to justify this claim. One such attempt is to investigate if the quantified

intermarket can effectively be used for prediction.

The next three chapters investigate whether the quantified intermarket influences on

the AORD can effectively be used to predict the direction (up or down; Chapter 5) and

the trading signals (Chapter 6 and Chapter 7) of the AORD.
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Chapter 5

Predicting the Direction of the

Australian All Ordinary Index

5.1 Introduction

A number of previous studies have attempted to predict the price levels of stock market

indices (for example [16, 23, 67, 75]). However, in the last few decades, there has been a

growing number of studies attempting to predict the direction or the trend movements of

financial market indices (Section 2.2.1). Directional prediction is useful for traders as well

as policy makers. Some studies have suggested that trading strategies guided by forecasts

on the direction of price change may be more effective and may lead to higher profits [98].

Many previous studies (Section 2.5) have used technical indicators of the local markets

or economical variables to predict the stock market time series. Only a few studies (for

example [26, 65, 66]) incorporated the lagged data of foreign stock markets to predict the

direction of a selected stock market, but there was no formal quantification of influence

from those foreign markets.

The focus of this chapter is to investigate whether the quantified intermarket influences

can be effectively used to predict the direction of the Close price of day (t+1) of the AORD.

Measures of the strength of intermarket influences (that is, quantification coefficients) were
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incorporated for this prediction.

This chapter includes the identification of the techniques used to predict the direction

of stock market indices, description about neural network training followed by the eval-

uation measures. It also explains how the prediction experiments were carried out and

then presents the results of the numerical experiments with their interpretations. Finally

it suggests the conclusions derived from the results obtained.

5.2 Techniques Used for Predicting the Direction of

the Stock Market Indices

Chenowethet et al. [13] suggested that linear approaches such as linear time series models,

are not capable of identifying dynamic or non-linear relationships in financial data. Neu-

ral networks adopt non-linear and non-parametric approach for modelling data. During

the past few decades there has been growing interest in applications of artificial neural

networks for predicting stock returns. Many studies have reported promising results [81].

It was found that the FNN outperforms the conventional prediction tools, such as multiple

linear regression models and autoregressive integrated moving average models, in terms

of directional prediction or prediction of percentage change in price level (Section 2.2.1).

To a lesser extent, backpropagation (feedforward) neural networks have also been used

to predict the direction of different stock market indices [64, 104]. Alternatively, instead

of predicting the direction, some researchers [23, 65, 68, 95, 100] predicted the price level

using backpropagation neural networks, but the prediction accuracy was evaluated by the

sign correctness (negative or positive) of the prediction (or hit rate) (Section 2.2.1).

Following past research, this study also adopted the FNN for predicting the direction

of the Close price of the AORD. These networks predicted the price level of the Close

price of the AORD and an approach similar to the approache used by Pan et al. [65] is

used for evaluation.
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5.2.1 Neural Network Training

In our past studies [65, 82], we obtained satisfactory results by applying a three-layered

FNN for predicting the direction of the AORD. Following those studies, three-layered

FNNs with one hidden layer were trained to predict the relative return of the Close

price of the AORD. These FNNs were designed with the help of Matlab neural network

toolbox [14]. The layers’ weights and biases were initialised using the Nguyen-Widrow

function [61].

In FNN applications for stock market predictions (Section 2.3.1), sigmoid functions are

commonly used as transfer functions (for instance [65, 95, 100]). Theses functions are con-

tinuous, monotonically increasing, invertible, continuously differentiable, and bounded.

According to Mehrotra et al. [52], these are the main reasons for selecting sigmoid func-

tions. Furthermore, Kaastra and Boyd [33] argued if a network is to learn average be-

haviour, a sigmoid transfer function is suitable. According to the objectives of this re-

search, it is expected that the networks will learn average behaviour. We also expected

to transfer original relative returns to values between [-1, +1] and interested in non-linear

modelling of data. Therefore, we employed a tan-sigmoid function, as the transfer function

between the input layer and the hidden layer.

A linear transformation function was used as the transfer function between the hidden

and the output layers. We assumed that a linear transformation function is sufficient as

non-linear patterns were already identified (by the hidden layer) and also such an output

tallies with our evaluation measures (Section 5.2.2).

The slope of a sigmoid function approaches zero as the input gets large and therefore

the gradient can have a very small magnitude. If the steepest descent algorithm is used,

this causes small changes in the weights and biases, even though the weights and biases

are far from their optimal values [14]. The Resilient backpropagation training algorithm

(Rprop) [71] eliminates the harmful effects of the magnitudes of the partial derivatives.

It uses the sign of the derivative to determine the direction of the weight update; the

magnitude of the derivative has no effect on the weight update. Therefore, the networks
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were trained with the resilient backpropagation training algorithm.

Stock market indices exhibit evolutionary characteristics which change over time [70].

This means that any model fitted will also have to be evolutionary or its usefulness will be

short lived [9]. To address this issue, it was decided to use a number of moving windows

for network training, rather than considering the whole study period as a single window.

The same six moving windows that used to quantify intermarket influences on the AORD

(Section 4.4) were considered for this purpose.

The most recent 10% of data of each moving window (76 samples) was used for testing

while the remaining data (692 samples) was used for training. 692 samples are sufficient

for learning the patterns within data while 76 samples are sufficient for evaluate the

learning.

The most recent 22.2% of the training data (that is 20% of the window) was used for

the validation. The majority of past studies with similar aim (directional prediction) did

not use a validation set (Section 2.3.1). However, in this study, validation sets were used

to monitor training progress so as to prevent the network from over-fitting.

The Nguyen-Widrow function uses different initial values for network parameters

(weights and biases) [61]. This results in different solutions for network parameters.

Since the network parameters vary according to their initial values, the network output

also varies [9]. The general practice to overcome this problem is to train neural networks

for a number of times and calculate the average output.

Input Sets

The networks were trained with three types of inputs:

1. Type 1 - Multiple un-quantified inputs: Xj(t− i), j = 1, 2, ...,m, where Xj(t− i) is

the relative return at time lag i of the jth influential market and m is the number

of influential markets;
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2. Type 2 - Sum of the quantified inputs:
∑m

j=1 ξjXj(t− i) where Xj(t− i) is defined

as in Type 1 above while ξj is the quantification coefficient (Section 4.2) associated

with the j influential market;

3. Type 3 - Multiple quantified inputs: ξjXj(t − i), j = 1, 2, ...,m, where Xj(t − i)

and ξj are defined as 1 and 2 above.

Since the aim is to predict the direction (up or down) of day (t + 1) of the AORD, the

value of i can be varied from 0 to any positive integer. However, it is not meaningful

to consider i >5. This is because it is very unlikely that the Close prices of either the

influential markets or the AORD, of more than one week in the past, have a significant

impact on the Close price of day (t + 1) of the AORD. Therefore, in the experiments

i = 0, 1, ..., 5 were considered. i=0 indicates the relative returns of day t, i=1 indicates

the relative return of day (t− 1) and so on.

Each set of influential markets included one or more of the following stock markets

which are assumed to be potential influential markets to the AORD:

1. US S&P 500 Index (GSPC),

2. US Nasdaq Composite Index (IXIC),

3. UK FTSE 100 Index (FTSE),

4. French CAC 40 Index (FCHI),

5. German DAX Index (GDAXI),

6. Hong Kong Hang Seng Index (HSI),

7. Singapore Straits Times Index(STI),

8. Japanese Nikkei 225 Index (N225),

9. Chinese SSE Composite Index (SSEC),
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10. Taiwan TSEC Weighted Index (TWII).

The number of neurons in the input layer was varied according to the number of input

variables. The output layer consisted of a single neuron which generates the predicted

value of the relative return of the Close price of day t of the AORD.

Different numbers of neurons for the hidden layer were tested along with various values

for learning rate and the momentum (Section 3.2.1).

5.2.2 Evaluation Measures

To evaluate the prediction accuracy, the rate of return and hit rate are usually employed

in the literature (Section 2.2.1). The rate of return assesses the profitability of predictions

while hit rate assesses their predictability. When applying the rate of return as a measure

of evaluation of directional prediction, past studies assumed that an upward trend (or

positive prediction) as a buy signal and downward trend (or negative prediction) as a sell

signal. Furthermore, these studies did not consider the hold signal (Section 2.2.1).

In practice, a trader does not buy or sell if there is no significant change in the price

level; instead he/she holds the money or shares in hand. Therefore, it is not practicable

to use the rate of return as the evaluation measure.

Hit rate indicates the percentage of correct predictions (the percentage of prediction

with correct direction, in the case of predicting the direction). However, if the relative

return of day (t+ 1) is zero or approximately zero, then there is no substantial difference

between Close price of day t and that of day (t+1), irrespective of the sign. Hit rate does

not take this matter into account.

To fix this problem, Pan et al. [65] used a different measure which considers a thresh-

old which helps to represent a ‘no change’ region. When the sign of the actual and the

predicted values are different, they checked whether the absolute value of the difference

between the actual and the predicted values is less than this threshold. If so they consid-

ered that the signs of the both values are the same (Section 2.2.1).
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This study adopted a similar approach to Pan et al. [65]. It uses Direction Correct-

ness Percentage (DCP) to asses the performance of the networks. DCP indicates the

percentage of predictions with the correct direction (up, down or no change).

DCP can be described as follows:

If the relative return of a particular day is positive that means there is an

increase in this day’s Close price compared to the previous day and vice-

versa. If both the actual and the predicted relative return are positive or both

negative, it is obvious that the direction of both values are the same. Even

though the sign is different, if the absolute value of both actual and predicted

relative returns lie close to zero, then it is reasonable to assume that there is

no significant change in the next day’s Close price. This study adopts 0.001

as the threshold. In other words, if the observed and the predicted relative

returns of the AORD lie in the range (-0.001, 0.001), then it was considered

that the direction of both are the same regardless of whether they had the

same sign.

5.2.3 Description of Directional Prediction Experiments

The same six moving windows mentioned in Section 4.4 of the previous chapter (Chap-

ter 4) was considered for neural network experiments. The most recent 10% of data of

each window were allocated for testing while the remaining was used for training. The

training sets used for these experiments are the same as the training windows used for

quantification of intermarket influences (Section 4.4). Therefore, we were able to use the

quantification coefficients derived in the previous experiments (Chapter 4) for the neural

network experiments.

Initially, the neural networks were trained with the relative returns of different individ-

ual markets. Since, it is not meaningful to consider quantified relative return of individual

stock markets, only the first type of inputs (Section 5.2.1) were considered. Depending on

the results obtained from the inputs sets, which included relative returns of the individual
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markets, relative returns of the different market combinations were selected as inputs. All

three types of inputs described in Section 5.2.1 were considered in this stage. Network

training with each input set was repeated for all six training windows.

The DCP (Section 5.2.2) was calculated for the test set of a window for each trial of

neural network training. Since the output of the networks varies according to the initial

values of the network parameters (Section 5.2.1), each FNN was trained 500 times (trials).

Then the average DCP over 500 trails was calculated. This procedure was repeated for

all six windows. Finally, the overall average DCP over six windows was calculated.

5.3 Numerical Experiments and Interpretations

FNNs were trained with single inputs as well as sets of several inputs. Three neurons in

the hidden layer with a learning rate equal to 0.003 and a momentum coefficient equal to

0.01 always gave better performance for validation and testing.

Note: In this section Type 1 to Type 3 inputs are also referred as multiple un-quantified

inputs, multiple quantified inputs, and sum of the quantified inputs, respectively (Sec-

tion 5.2.1).

5.3.1 Prediction Based on Single Markets

Firstly, an investigation was carried out to understand the contribution from the relative

returns of the potential influential markets as well as those of the AORD, at different

time lags, for predicting the direction of the Close price of day (t + 1) of the AORD.

Table 5.1 shows the average DCP for testing of the neural network performance. The

relative returns at different time lags of AORD and the considered potential influential

markets were used as the input features.

Except for the US markets, the average DCP decreased when the relative return of

day (t−1) (that is, X(t-1)) was added to the input set consists of relative return of day t,

X(t) (Table 5.1). This indicates that it is not worth adding the relative returns of one or
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more days in the past of the European as well as those of the Asian markets to the input

set. Adding these extra inputs seems to have created noise that reduces the predictive

ability of the networks.

At time lag one, the GSPC had the highest DCP (67.33%). The next five highest

DCPs were produced by the GDAXI, FTSE, FCHI, IXIC and HSI, respectively. These

results indicate that the relative returns of day t of the US and the European markets

are more informative for predicting the relative return of day (t+ 1) of the AORD, than

those of the other markets. Among the Asian markets considered, the HSI seemed to be

the most useful market for the prediction of the AORD.

Table 5.1: Average Direction Correctness Percentage (DCP) for testing for the (t + 1)th

day’s prediction based on single market

Average DCP relating to

the relative return the relative returns

Stock market of day t of day t and

(X(t)) day (t− 1)

(X(t) & X(t-1))

GSPC 67.3254 67.4138

IXIC 63.3281 63.7049

FTSE 65.4715 64.6191

FCHI 64.1482 63.5342

GDAXI 65.6118 64.8196

SSEC 59.8412 57.412

HSI 61.0118 59.152

TWII 59.9579 58.3218

STI 55.2553 53.5253

N225 56.6947 53.5764

AORD 59.0978 57.6956
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The average DCP corresponding to the US market increased when the relative returns

at time lag two were added. Therefore, the relative returns of higher lags (>2), of these

markets were also considered. Table 5.2 presents the average DCP relevant to the US

markets when the relative returns at time lags greater than two were added to the input

set.

Table 5.2: Average Direction Correctness Percentage (DCP) for testing for the (t + 1)th

day’s prediction based on the US markets (X(t), X(t-1), ... refer to the relative returns of

day t and day (t− 1) and so on.)

Inputs Average DCP for

GSPC IXIC

X(t),X(t-1),X(t-2) 67.9644 64.3432

X(t),X(t-1),X(t-2),X(t-3) 68.0114 64.1237

X(t),X(t-1),X(t-2),X(t-3),X(t-4) 68.1521 64.7155

X(t),X(t-1),X(t-2),X(t-3),X(t-4),X(t-5) 68.4000 64.7530

Table 5.2 shows that the average DCP value increased as the relative returns at the

time lags greater than two of the GSPC were added to the input set. When the relative

returns at time lag three was added, the average DCP relevant to the IXIC decreased.

However, it increased when those at time lags greater than three were added to the input

set.

5.3.2 Prediction Based on Different Influential Market Combi-

nations (Using Quantification Coefficients)

When the relative returns of day t of single markets were considered as inputs, the GSPC

gave the highest DCP (Table 5.1). Therefore, the neural networks were trained with the

relative return of day t of the GSPC together with those of different sets of markets as the

inputs. These sets included the markets (GDAXI, FTSE, FCHI, IXIC and HSI) which gave
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the next highest DCPs after the GSPC. The aim was to find the input combination(s)

which increases the DCP. The three types of inputs described in Section 5.2.1, were

considered.

The quantification coefficients (at time lag 1) corresponding to the market combina-

tions that were considered in this section are presented in Appendix A.

Network Training with Type 1 and Type 2 Inputs

Table 5.3 compares the average DCP for the un-quantified input combinations of influen-

tial markets (Type 1) with their single quantified counterparts (Type 2).

Table 5.3: Average Direction Correctness Percentage (DCP)

for the test set when networks were trained with Type 1 and

Type 2 inputs (Bold values represent the higher DCPs for the

multiple un-quantified inputs and the sum of the quantified

inputs while X(t) refers to the relative return of day t of

market X).

Average DCP for % increase in

multiple sum of average DCP

Input variables un- the when using

quantified quantified sum of the

inputs inputs quantified inputs

(Type 1) (Type 2) for prediction

GSPC(t), GDAXI(t) 67.6158 68.6798 1.57

GSPC(t), FTSE(t) 67.6136 68.5070 1.32

GSPC(t), FCHI(t) 67.5667 68.3162 1.11

GSPC(t), IXIC(t) 65.1456 67.3706 3.42

GSPC(t), HSI(t) 67.0202 67.2627 0.36

GSPC(t), FTSE(t), GDAXI(t) 67.5066 68.8443 1.98

Continued on next page
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Table5.3 – continued from the previous page

Table5.3 – continued from the previous page

Average DCP for % increase in

multiple sum of average DCP

Input variables un- the when using

quantified quantified sum of the

inputs inputs quantified inputs

(Type 1) (Type 2) for prediction

GSPC(t), FCHI(t), GDAXI(t) 67.1561 68.7474 2.37

GSPC(t), FTSE(t), FCHI(t) 67.3088 68.8689 2.32

GSPC(t), FTSE(t), IXIC(t) 66.3711 68.4237 3.09

GSPC(t), GDAXI(t), HSI(t) 67.3829 68.4118 1.53

GSPC(t), FTSE(t), HSI(t) 67.5311 68.1224 0.88

GSPC(t), GDAXI(t), IXIC(t) 66.837 68.4395 2.40

GSPC(t), FTSE(t), FCHI(t), IXIC(t) 66.0388 66.8469 1.22

GSPC(t), FTSE(t), FCHI(t), GDAXI(t) 67.3338 69.1136 2.64

GSPC(t), FTSE(t), FCHI(t), GDAXI(t), HSI(t) 66.8570 66.8508 0.42

GSPC(t), FTSE(t), FCHI(t), GDAXI(t), IXIC(t) 65.6560 66.2974 0.98

GSPC(t), FTSE(t), FCHI(t), GDAXI(t), HSI(t) 66.8570 68.6434 2.67

Initially all possible two market combinations were used to form the inputs sets.

Among these input sets, the multiple un-quantified input set (Type 1) with the GSPC

and the GDAXI gave the highest average DCP (Table 5.3). This is also true for the single

inputs which represent the sum of quantified inputs (Type 2).

In the next step, all possible three market combinations which include the GSPC and

the GDAXI were considered when forming the input sets. Additionally, all possible three

market combinations with the GSPC and the FTSE were taken into account. The reason

is that the GSPC and the FTSE showed the first and second highest contribution the
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to the combined influence on the AORD, respectively (Section 4.6). Among the single

inputs with three market combinations, the one corresponding to the GSPC, FTSE and

FCHI yielded the highest average DCP and this value was grater than the best average

DCP of two market combinations.

Then all possible four market combinations with the GSPC, FTSE, and FCHI were

considered. The average DCP was further improved when the GDAXI was added to the

market combination with the GSPC, FTSE and FCHI.

Adding a fifth market to the market combination with the GSPC, FTSE, FCHI and

the GDAXI, did not improve the average DCP. Therefore, it is not reasonable to train

the network with input sets which include all six markets.

It is noteworthy that the DCP corresponding to the input set of Type 2 was always

higher than that of the input set of Type 1. This may be due to the separate inputs

containing more noise than their quantified counterparts and consequently, the quantified

inputs show high correlation with the output (relative return of day (t+1) of the AORD).

Network Training with Type 1 and Type 3 Inputs

Table 5.4 compares the average DCP for the un-quantified input combinations of influen-

tial markets (Type 1) with the respective multiple quantified inputs (Type 3).
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Table 5.4: Average Direction Correctness Percentage (DCP)

for the test set when networks were trained with Type 1 and

Type 3 inputs (Bold values represent the higher DCPs for

multiple un-quantified and quantified inputs while X(t) refers

to the relative return of day t of market X).

Average DCP for % increase in

multiple multiple average DCP

Input variables un- quantified when using

quantified inputs quantified inputs

inputs (Type 3) for prediction

(Type 1)

GSPC(t), GDAXI(t) 67.6158 67.4899 -0.19

GSPC(t), FTSE(t) 67.6136 68.1377 0.76

GSPC(t), FCHI(t) 67.5667 67.4939 -0.11

GSPC(t), IXIC(t) 65.1456 64.2531 -1.37

GSPC(t), HSI(t) 67.0202 67.3566 0.50

GSPC(t), FTSE(t), GDAXI(t) 67.5066 67.5886 0.12

GSPC(t), FCHI(t), GDAXI(t) 67.1561 67.1022 -0.08

GSPC(t), FTSE(t), FCHI(t) 67.3088 67.6373 0.49

GSPC(t), FTSE(t), IXIC(t) 66.3711 66.8399 0.71

GSPC(t), GDAXI(t), HSI(t) 67.3829 67.7360 0.52

GSPC(t), FTSE(t), HSI(t) 67.5311 68.4443 1.35

GSPC(t), GDAXI(t), IXIC(t) 66.837 65.2746 -2.34

GSPC(t), FTSE(t), FCHI(t), HSI(t) 66.5684 67.7298 1.74

GSPC(t), FTSE(t), GDAXI(t), HSI(t) 66.8802 68.0316 1.72

GSPC(t), FTSE(t), HSI(t), IXIC(t) 66.6933 66.6031 -0.14

GSPC(t), FTSE(t), FCHI(t), GDAXI(t), HSI(t) 66.8570 67.6978 1.26
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Firstly, the all possible two market combinations were considered for network training.

The market combination of the GSPC and the FTSE gave the highest average DCP among

the multiple quantified input combinations (Table 5.4).

In the next step, the all possible three market combinations with the GSPC and the

GDAXI as well as those combinations with the GSPC and FTSE were considered when

forming the input sets. When a third market was added to any multiple un-quantified

input set, which is a combination of two markets, the average DCP dropped. The average

DCP increased when the HSI was added to the multiple quantified input set which consists

of the GSPC and the FTSE.

Then all possible four market combinations which include the GSPC, FTSE and the

HSI were used to form the input sets. The average DCP corresponding to the multiple

un-quantified input sets was further reduced. The addition of the forth market to the

multiple quantified input combinations with the GSPC, FTSE and HSI also did not

contribute to any improvement in average DCP. Among the multiple quantified inputs

sets with four market combinations, the one consisting of the GSPC, FTSE, GDAXI and

HSI showed the highest average DCP. The addition of the FCHI to the multiple quantified

input combination of the GSPC, FTSE, GDAXI and HSI reduced the average DCP. It is

unlikely that the considering input sets which includes all six markets will produce better

results.

The highest average DCP for the multiple un-quantified input sets was obtained when

the relative returns of day t of the GSPC and the GDAXI were included in the market

combination (Table 5.4). In general DCP decreased when more markets were added.

For the majority of the market combinations considered, the multiple quantified inputs

gave higher average DCP than their un-quantified counterparts. However, there are some

combinations for which the multiple un-quantified inputs generated higher average DCP

than their quantified counterparts. The reason may be the inability of the networks (used

in this chapter) to provide deep (global) solutions.
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When considering the multiple quantified inputs, the one corresponding to the market

combination the GSPC, FTSE and HSI produced the highest average DCP. The second

highest average DCP was obtained when the networks were trained with the multiple

quantified inputs of the market combination of the GSPC and the FTSE, followed by

that of the market combination of the GSPC, FTSE, GDAXI and HSI.

Comparison of the Results Corresponding to Three Types of Inputs

The single inputs, which represent the sum of quantified inputs, always gave higher DCP

values for the relative return of day (t+1) of AORD than their un-quantified counterparts

(Table 5.3). Except for a few cases, the average DCP produced by these single inputs

(Type 2), is higher than that produced by the respective multiple quantified inputs (Ta-

ble 5.3 and 5.4). As mentioned above, the neural networks may not be capable enough to

find deep solutions when trained with multiple inputs. (To deal with this problem, this

study developed new neural network algorithms described in Chapter 7.)

When considering the single input combinations, the one corresponding to the relative

returns of day t of the GSPC together with those of the European markets, resulted in the

highest DCP (69.1136). This value is even higher than the highest average DCP produced

by any of the multiple quantified inputs (68.4443; Table 5.3 and 5.4). The next highest

DCP was generated by the single input of the sum of the quantified relative return of day t

of the GSPC, FTSE and the FCHI followed by that corresponding to the relative return of

day t of the GSPC and the GDAXI. However, when a fifth market was added to the single

input, which gave the highest prediction accuracy, the DCP decreased. This indicates that

either the IXIC or the HSI did not contribute significantly the directional prediction of

the Close price of day (t+ 1) of the AORD and indeed they reduced the predictive power

of the model. Therefore, it can be suggested that the sum of the quantified relative return

of day t of the US GSPC market and the European markets was the most appropriate

input to predict the direction of the Close price of the AORD.
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Among the multiple un-quantified input combinations, the relative returns of day t of

the GSPC and the GDAXI gave the best DCP (67.6158; Table 5.3). As with the earlier

case (Table 5.4), DCP decreased when more markets were added.

According to the input combinations already tested, the sum of the quantified relative

returns of day t of the GSPC and the European markets yielded the best prediction for

the direction of the relative return of the Close price of day (t + 1) of the AORD. The

possibilities of improving the predictive power of this model are worth investigating. One

possibility is adding extra markets to this market combination.

5.3.3 Prediction Based on Different Influential Market Combi-

nations and the AORD

Past studies [65, 82] revealed that the lagged time series data of the AORD itself is useful

for predicting the direction of the Close price of the AORD. Furthermore, Table 5.1 shows

that the relative return of day t of the AORD alone has an ability to predict its direction

corresponding to day (t+1), with an accuracy of 59%. This indicates that the Close price

of day (t) of the AORD had an slight impact on the following day’s Close price of the

AORD itself. Therefore, in order to investigate the possibilities of improving the DCP,

the relative return of day t of the AORD was added to the best input set with multiple

un-quantified relative returns as well as the best three single inputs (Table 5.3) and the

best three multiple quantified input sets (Table 5.4).

The results obtained by the neural network training when the relative return of day

t of the AORD was added to the best input sets shown in Table 5.3 are presented in

Table 5.5. The quantification coefficients relevant to the market combinations shown in

these two tables are presented in Appendix A.

When the relative return of day t of the AORD was added to the best three input sets,

the DCP values relating to all multiple un-quantified sets decreased (Table 5.5). However,

the DCPs corresponding to their counterparts with single inputs increased. The highest

average DCP was produced by the single input set which includes the sum of the quantified
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Table 5.5: Average Direction Correctness Percentage (DCP) for test set when the relative

return of day t of the AORD was added to the best input sets in Table 5.3 (Bold value

represents the highest average DCP).

Average DCP for % increase in

multiple sum of average DCP

Input variables un- the when using

quantified quantified sum of the

inputs inputs quantified inputs

(Type 1) (Type 2) for prediction

GSPC(t), GDAXI(t), AORD(t) 66.7136 68.5096 2.69

GSPC(t), FTSE(t), FCHI(t), AORD(t) 66.1996 69.0689 4.33

GSPC(t), FTSE(t), FCHI(t), GDAXI(t), AORD(t) 66.2175 69.1605 4.44

relative returns of day t of the GSPC, FTSE, FCHI, GDAXI and AORD. This value is

the highest average DCP among the all input sets considered in this study. However,

addition of the AORD to the input set that included the GSPC and the three European

markets increased the prediction accuracy only by 0.07%.

Table 5.6 presents the results of the neural network training when the relative return

of day t of the AORD was added to the best input sets shown in Table 5.4.

In the case of quantified inputs, except for the market combination which includes

the GSPC, FTSE, GDAXI, and HSI, adding the AORD to all other market combina-

tions, helped to improve the average DCP (Table 5.6). The highest average DCP was

obtained when the multiple quantified inputs include the GSPC, FTSE, HSI and AORD

(68.5382%). However, when considering the multiple un-quantified inputs, the addition

of the relative return of day t of the AORD did not improve the average DCP.
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Table 5.6: Average Direction Correctness Percentage (DCP) for test set when the relative

return of day t of the AORD was added to the best input sets shown in Table 5.4 (Bold

value represents the highest average DCP).

Average DCP for % increase in

multiple multiple average DCP

Input variables un- quantified when using

quantified inputs quantified inputs

inputs (Type 3) for prediction

(Type 1) for prediction

GSPC(t), FTSE(t), AORD(t) 66.2658 68.3101 3.08

GSPC(t), FTSE(t), HSI(t), AORD(t) 66.3806 68.5382 3.25

GSPC(t), FTSE(t), GDAXI(t), HSI(t), AORD(t) 66.5847 67.6702 1.63

5.3.4 Investigating the Possibilities of Including Other Markets

to the Best Input Combinations

Table 5.1 and Table 5.2 demonstrate that the relative returns of both the GSPC and

the IXIC at time lags greater than 1 help improve the DCP. Therefore, the sum of the

quantified relative returns of day t of the GSPC, European markets and AORD, and the

relative returns of day (t−1) of the GSPC was considered as a single input. This resulted

in a decrease of the DCP value (DCP = 68.4898), suggesting that it is not worth adding

the relative returns of the GSPC at higher lags.

Adding the relative return of day t of the IXIC to the sum of the quantified relative

returns of the GSPC and the European markets also did not improve the DCP value

(Table 5.3). Hence, it is not helpful to add the relative returns of the IXIC at the time

lags greater than 1 to the input combination which gave the highest DCP. Finally, it can

be proposed that the direction (up or down) of the Close price of day (t+1) of the AORD

can best be predicted using the sum of the quantified relative returns of the Close price of
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day t of the GSPC and the European markets (FTSE, GDAXI and FCHI) together with

that of the AORD.

5.4 Conclusions Derived from the Experiments

Usage of quantified intermarket influences for predicting the direction (up or down) of

the Close price of day (t + 1) of the AORD seems to be better than their un-quantified

counterparts. We used two different ways to use the quantified intermarket influences: (1)

considering the sum of the quantified intermarket influences of the different stock market

indices as one ‘combined input’ (Type 2); and, (2) considering the quantified intermarket

influences from different stock market indices as separate inputs (Type 3). Out of theses

two, the first option proved to be more productive for the directional prediction of the

AORD Close price. The best results were obtained when the combined influence from

the Close price (relative return) of day t of the US S&P 500 Index (GSPC) and those of

the European stock market indices (the FTSE, FCHI and GDAXI) together with that of

the AORD itself, was used as the input to for the prediction of interest. However, the

addition of the relative return of the Close price of day t of the AORD to the input set,

with corresponding relative returns of the GSPC and the European markets, improved

the prediction accuracy only by 0.07%.

5.5 Summary

This chapter investigated whether the quantified intermarket influences on the AORD

can be effectively used to predict the direction (up or down) of its Close price. Also, it ex-

amined how the quantified intermarket influences can be used to obtain better prediction

accuracy. Results suggested that the quantified intermarket influences can effectively be

used to predict the direction of the Close price of day (t+ 1) of the AORD. This indicates

the success of the proposed technique for quantifying intermarket influences.

Some studies consider the direction, that is upward trend and downward trend, as
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corresponding to buy and sell signals. However, in practice, a trader will not buy or sell

if there is no significant increase or decrease in the price level of a stock market index and

instead, he/she will hold the money or the shares in hand. Therefore, it is more useful

to predict whether it is best to buy, hold or sell shares of a stock market index (in other

words predict the trading signals), rather than the directional prediction. Therefore, the

next chapter (Chapter 6) focuses on predicting the trading signals of the AORD.
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Chapter 6

Predicting Trading Signals of the

Australian All Ordinary Index

6.1 Introduction

Majority of the past studies focused on classification of future values into two categories

(up or down) which are considered to be buy and sell signals (Section 2.2.2). Timely

decisions must be made which result in buy signals when the market is low and sell

signals when the market is high [9]. However, it is worth holding shares if there is no

significant rise or drop in the price index. Therefore, from the practical point of view, it

is important to consider the ‘hold’ category.

Many studies found evidence for the existence of intermarket influences among global

stock markets (Section 2.4). However, the use of intermarket influences from foreign stock

market indices to predict trading signals of a given market is very rare in the literature

(Section 2.5). The few studies which used intermarket influences did not attempt to

quantify the intermarket influences.

This chapter focuses on predicting whether it is best to buy, hold or sell; in other words

predicting the trading signals of day (t+1) of the AORD. Several types of input sets were

used in forecasting in order to identify the best way of using the available information of

98



CHAPTER 6 Predicting Trading Signals of the AORD

the foreign stock market indices to forecast the trading signals. These input sets include

the intermarket influences from the major influential markets to the AORD in quantified

form as well as un-quantified form.

Prediction of trading signals was done by applying three different algorithms. The

prediction results were evaluated in terms of predictability as well as profitability.

6.2 Defining Trading Signals

As mentioned earlier most of the past studies classified the future values into buy or sell

signals based on the direction of the trend (down or up) of the future values (section 2.2.2).

Since, this study considers three classes, the following criterion was introduced to identify

the trading signals.

Criterion A

buy if Y (t+ 1) ≥ lu

hold if ll < Y (t+ 1) < lu

sell if Y (t+ 1) ≤ ll

where Y (t + 1) is the relative return the Close price of day (t+1) of the AORD while lu

and ll are two thresholds.

The values of of lu and ll depend on traders’ choice. There is no standard criterion

found in the literature on how to decide the values of lu and ll and theses values may vary

from one stock index to another. A trader may decide the values for these thresholds

according to his/her knowledge and experience.

The proper selection of the values for ll and lu could be done by performing a numerical

experiments. We experimented different pairs of values for ll and lu. For different windows,

different pairs gave better predictions. These values also varied according to the prediction

algorithm used. However, for the definition of trading signals, these values needed to be

set.
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For this study we chose lu = −ll = 0.005, assuming that 0.5% increase (or decrease)

in Close price of day (t + 1) compared to that of day t, is reasonable enough to consider

the corresponding movement as a buy (or sell) signal.

6.3 Algorithms Used for Predicting Trading Signals

The three algorithms (FNN, PNN, and SVM) which were claimed by past studies (Sec-

tion 2.3) as the most successful algorithms for predicting trading signals were adopted by

this study. Both the PNN and the SVM output the predicted class while the FNN gives

the value of the prediction instead of the class. The theory behind these three algorithms

are discussed in detail in Chapter 3 (Section 3.2.1 to 3.2.3).

6.4 Evaluation Measures

The majority of past studies evaluated their predictions in terms of profitability while a few

studies concerned on the predictability (Section 2.2.2). In these studies, the profitability

of predictions was determined according to the rate of returns obtained by performing

different trading strategies. The rate of return is a measure that provides the net gain in

assets as a percentage of the initial investment.

The most common measure of evaluation of the predictability is the hit rate (Sec-

tion 2.2.2). The hit rate indicates the percentage of cases correctly classified.

This study aimed at classifying trading signals into three classes: buy, hold and sell.

From a trader’s point of view, the misclassification of a hold signal as a buy or sell signal

is a more serious mistake than misclassifying a buy signal or a sell signal as a hold signal.

The reason is in the former case a trader will loses the money by taking part in an unwise

investment while in the later case he/she only loses the opportunity of making a profit,

but makes no monetary loss. The most serious monetary loss occurs when a buy signal

is misclassified as a sell signal and vice-versa. The hit rate does not take the seriousness

of the misclassification into account, and therefore, it is not an adequate measure for the
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evaluation of the forecasting relating to this study.

This study used the classification and misclassification rates to evaluate the forecast-

ing accuracy. These rates indicate the patterns of classification/misclassification of data

belonging to a class. The classification rate indicates the proportion of correctly classified

signals to a particular class out of the total number of actual signals in that class whereas,

misclassification rate indicates the proportion of incorrectly classified signals from a par-

ticular class to another class, out of the total number of actual signals in the former

class.

The other measure this study used to asses validity the forecasting is the rate of

return obtained by performing trading simulations. Predictability does not necessarily

imply profitability. The results from trading are also useful in identifying better models

when the predictive performances are not significantly different [81].

Different past studies employed different trading strategies to asses the profitability

of the forecasts [81]. This study adopted a buy and sell strategy to form the trading

simulation. Following Yao et al. [101] this study also assumed the major blue chips in the

stock basket are bought or sold, and the aggregate price of the major blue chips is the

same as the index.

For this study we proposed a new trading simulation. The speciality of the trading

simulation is that it searches for the proportion of money that a trader needs to invest

and the proportion of shares that he/she needs to sell, in order to earn higher profit. In

this sense, the proposed simulation is very close to the reality.

6.4.1 Trading Simulations (Paper Trading)

This study assumes that at the beginning of each period, the trader has some amount of

money as well as a number of shares. Furthermore, it is assumed that the value of money

in hand and the value of shares in hand are equal. Two types of trading simulations were

used: (1) response to the predicted trading signals which might be a buy, hold or a sell

signal; (2) do not participate in trading, and hold the initial shares and the money in
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hand until the end of the period. The second simulation was used as a benchmark.

First Trading Simulation (The Proposed Trading Simulation)

Let the value of the initial money in hand be M0 and the number of shares at the beginning

of the period be S0. Assume that S0 = M0/P0, where P0 is the Close price of the AORD

on the day before the starting day of the trading period.

Also let Mt, St, Pt, V St be the money in hand, number of shares, Close price of the

AORD, value of shares holding on the day t (t=1, 2, ..., T ), respectively. This simulation

assumes that a fixed amount of money is always used in trading regardless of whether

the trading signal is buy or sell. Let this fixed amount be denoted as F 0 and be equal

to M0/L, L > 0. In the calculations L = 1, 2, ..., 10 is considered. When L = 1, F 0

equals M0, when L = 2, F 0 equals 50% of M0 and so on. Let ∆b
t and ∆s

t be the number

of shares bought and the number of shares sold at day t, respectively.

Suppose the trading signal at the beginning of the day t is a buy signal. Then the

trader spends F =min{F 0,Mt−1} amount of money to buy a number of shares at a rate

of the Close price of day (t− 1).

Mt = Mt−1 − F, F = min{F 0,Mt−1} (6.1)

∆b
t =

F

Pt−1

(6.2)

St = St−1 + ∆b
t (6.3)

V St = St × Pt (6.4)

Suppose the trading signal is a hold signal, then:

Mt = Mt−1 (6.5)

St = St−1 (6.6)

V St = St × Pt (6.7)
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Let the trading signal at the beginning of the day t be a sell signal. Then the trader

sells S ′=min{(F 0/Pt−1), St−1} amount of shares.

∆s
t = S ′, S ′ = min{(F 0/Pt−1), St−1} (6.8)

Mt = Mt−1 + S ′ × Pt−1 (6.9)

St = St−1 −∆s
t (6.10)

V St = St × Pt (6.11)

According to the above definitions, it is clear that if there is no money in hand (F=0),

a buy signal will treated as a hold signal. Similarly, if there are no shares in hand, a sell

signal will be treated as a hold signal.

Second Trading Simulation (The Benchmark Trading Simulation)

In this case, the trader does not participate in trading. Therefore, Mt = M0 and St = S0

for all t=1, 2, ..., T . However, the value of the shares changes with the time and therefore,

the value of shares at day t, V St = S0 × Pt.

Rate of Return

Let the total value of money and shares in hand at the end of the period (day T ) be TC.

This value can be calculated as:

• for the first trading simulation

TC = MT + ST × PT (6.12)

• for the second trading simulation

TC = M0 + S0 × PT (6.13)

The rate of return (R%) at the end of a trading period is calculated as below:

R% =
TC − 2M0

2M0
× 100 (6.14)
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6.5 Data

The results obtained from Chapter 5 (Section 5.4) showed that the relative returns of the

Close prices of day t of the GSPC (US S&P 500 Index), the three European market indices;

the FTSE (UK FTSE 100 Index), FCHI (French CAC 40 Index), GDAXI (German DAX

Index) as well as the AORD are suitable to predict the direction of the Close price of

day (t + 1) of the AORD. Therefore, to forecast the trading signals, the data from two

combinations of stock market indices were selected: (1) the GSPC, FTSE, FCHI and

GDAXI; and, (2) the GSPC, FTSE, FCHI, GDAXI and AORD. The following six input

sets were used for forecasting trading signals:

1. Four input features of the relative returns of the Close prices of day t of the market

combination (1) (denoted by GFFG)

- (GSPC(t), FTSE(t), FCHI(t), GDAXI(t));

2. Four input features of the quantified relative returns of the Close prices of day t of

the market combination (1) (denoted by GFFG-q)

- (ξ1GSPC(t), ξ2FTSE(t), ξ3FCHI(t), ξ4GDAXI(t));

3. Single input feature of the sum of the quantified relative returns of the Close prices

of day t of the market combination (1) (denoted by GFFG-sq)

- (ξ1GSPC(t)+ξ2FTSE(t)+ξ3FCHI(t)+ξ4GDAXI(t));

4. Five input features of the relative returns of the Close prices of day t of the market

combination (2) (denoted by GFFGA)

- (GSPC(t), FTSE(t), FCHI(t), GDAXI(t), AORD(t));

5. Five input features of the quantified relative returns of the Close prices of day t of

the market combination (2) (denoted by GFFGA-q)

- (ξA1 GSPC(t), ξA2 FTSE(t), ξA3 FCHI(t), ξA4 GDAXI(t), ξ5AORD(t));
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6. Single input feature of the sum of the quantified returns of the Close prices of day

t of the market combination (2) (denoted by GFFGA-sq)

- (ξA1 GSPC(t)+ξA2 FTSE(t)+ξA3 FCHI(t)+ξA4 GDAXI(t)+ξA5 AORD(t)).

(ξ1, ξ2, ξ3, ξ4) and (ξA1 , ξ
A
2 , ξ

A
3 , ξ

A
4 , ξ

A
5 ) are the solutions to (4.9), (4.10) (in Section 4.2.1)

corresponding to the market combination (1) and (2), respectively. We note that it may

be ξi 6= ξAi , for i=1, 2, 3, 4.

6.6 Numerical Experiments and Evaluations of Pre-

diction Results

The same six moving windows which were used for quantifying intermarket influences

on the AORD (refer Section 4.4 and 4.6) were considered for theses experiments. For

all experiments, each window was divided into two sets: a test set and a training set.

The most recent 10% of data was used for testing while the remaining 90% was used for

training. Each window consisted of 768 samples and therefore, each training set consisted

of 692 samples while each test set consisted of 76 samples. 692 samples are sufficient for

learning the patterns within data while 76 samples are sufficient for evaluate the learning.

The training sets used for the experiments are the same as the training windows used

for quantification of intermarket influences (Section 4.4) in Chapter 4. Therefore, it is

appropriate to use the same sets of values for quantification coefficients which were derived

previously in Chapter 4. Table 4.3 and 4.4 (in Section 4.6) present the quantification

coefficients of these six training windows, corresponding to the market combinations (1)

and (2), respectively. The quantification coefficients shown in Table 4.3 are the values of

ξi, i = 1, 2, 3, 4 and those given in Table 4.4 are the values of ξAi , i = 1, 2, 3, 4, 5.

The classification and misclassification rates (Section 6.4) as well as the trading simu-

lations (Section 6.4.1) were used to evaluate the prediction results obtained from training

FNN, PNN and SVM.
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The trading simulations described in Section 6.4.1 were performed on the trading sig-

nals generated by FNNs, PNNs and SVMs. In each case, the rate of return corresponding

to each window was the highest when the whole amount of money in hand and the total

amount of shares in hand was involved in training. In other words, the rate of return

reached its highest value when L=1 (Section 6.4.1).

Subsection 6.6.1 to 6.6.3 describe the experiments relating to each algorithm used for

predicting trading signals in detail. These sections also include the evaluation of prediction

results.

6.6.1 Predicting Trading Signals using FNN

FNN Experiments

Three-layered FNNs with one hidden layer were trained 1000 times using the Resilient

backpropagation training algorithm (Rprop). The reasons for using this algorithm were

explained in Section 5.2.1. A tan-sigmoid function was used as the transfer function

between the input layer and the hidden layer while the linear transformation function

was employed between the hidden and the output layers. The reasons for selecting these

functions are also described in Section 5.2.1. Different numbers of neurons for the hidden

layer and different values for learning rate as well as the momentum coefficient were tested.

FNNs were trained for each one of the six windows considered. For FNN experiments,

each training set was further divided into two sets; the most recent 22.2% of data of each

training set (20% of the full data set) was allocated for validation while the remaining

77.8% (70% of the full data set) was used for training.

These FNNs were designed with the help of Matlab Neural Network Toolbox [14].

This toolbox uses the Nguyen-Widrow function [61] to initialise layers’ weights and bi-

ases. Initial weight randomisations can greatly affect the solution to which the network

converges [9]. To balance the effect of weight randomisation, this study trained FNNs

1000 times in each window.
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The above mentioned six sets of inputs (Section 6.5) were considered when training

the networks. These networks output the relative return of day (t+ 1) of the AORD. The

average value of the prediction (over 1000) for each day was calculated and this average

value subsequently classified into the three classes of interest according to Criterion A

(Section 6.2).

FNNs gave the best results when there were three neurons in the hidden layer and the

learning rate and the momentum coefficient were 0.003 and 0.01, respectively.

Evaluation of the Prediction Results Using Classification and Misclassification

Rates

Table 6.1 compares the average (over the six windows) classification and misclassification

rates relating to the forecasting results obtained from the FNNs trained with input sets

GFFG and GFFGA. Both input sets consist of the un-quantified relative returns of the

Close prices of day t of the GSPC, FTSE, FCHI and GDAXI. In addition to these input

features, the un-quantified relative return of day t of the AORD also included in the input

set GFFGA.

Table 6.1: Average classification rate /misclassification rate corresponding to the results

obtained from the FNNs trained with the input sets GFFG and GFFGA

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG rates for input set GFFGA

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 26.40% 72.77% 0.83% 26.40% 72.77% 0.83%

Hold 5.79% 86.69% 7.52% 5.38% 86.28% 8.34%

Sell 0.00% 79.79% 20.21% 0.00% 77.71% 22.29%
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The classification rate for the hold class is very high irrespective of the input features

used (Table 6.1). When the un-quantified relative return of day t of the AORD was

added to the input set, the classification rate relevant to the sell class increased. However,

adding this extra input feature also resulted in an increase in misclassification rate from

hold class to sell class, which is a negative impact. Although small, both cases show a

very serious mistake which arose due the misclassification of 0.83% of buy signals as sell

signals. It is not obvious whether adding the information of the AORD helped to improve

the forecasting accuracy.

The average (over the six windows) classification and misclassification rates relating

to the forecasting results obtained from the FNNs trained with input sets GFFG-q and

GFFGA-q are shown in Table 6.2. The input set GFFG-q includes the quantified relative

returns of the Close prices of day t of the GSPC, the three European market indices. In

addition to these input features, the quantified relative return of the Close price of day t

of the AORD is also included in input set GFFGA-q.

Table 6.2: Average classification rate /misclassification rate corresponding to the results

obtained from the FNNs trained with the input sets GFFG-q and GFFGA-q

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-q rates for input set GFFGA-q

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 25.57% 74.43% 0.00% 26.40% 73.60% 0.00%

Hold 5.00% 88.30% 6.70% 5.00% 87.86% 7.14%

Sell 0.00% 79.79% 20.21% 0.00% 79.80% 20.21%

Although, the addition of the extra input feature associated with the AORD increased

the prediction accuracy relating to buy signal, the rate of misclassification of hold signals

to sell signal also increased (Table 6.2). Therefore, as with the previous case, it is not very
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clear that adding the extra input feature made any effect in improving the forecasting

accuracy. However, when compared to the output relevant to un-quantified inputs, using

quantified intermarket influences improved the forecasting accuracy in the sense that the

later input features eliminated the serious mistake of misclassification of buy signals to

sell signals (Table 6.1 and Table 6.2).

Table 6.3 presents the average (over the six windows) classification and misclassifica-

tion rates relating to the forecasting results obtained from the FNNs trained with input

sets GFFG-sq and GFFGA-sq. The input set GFFG-sq consists of the sum of the quanti-

fied relative returns of the Close prices of day t of the GSPC, the three European market

indices, while the input set GFFGA-sq consists of the sum of the quantified relative re-

turns of the Close prices of day t of the GSPC, the three European market indices and

the AORD. The speciality of these two input sets is that each of them consists of only a

single input feature.

Table 6.3: Average classification rate /misclassification rate corresponding to the results

obtained from the FNNs trained with the input sets GFFG-sq and GFFGA-sq

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-sq rates for input set GFFGA-sq

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 21.55% 78.45% 0.00% 23.21% 76.79% 0.00%

Hold 4.18% 88.68% 7.14% 4.18% 88.68% 7.14%

Sell 0.00% 79.72% 20.28% 0.00% 80.83% 19.17%

In this case also there is no clear evidence that adding the information relevant to

the AORD make an significant impact on improving the forecasting accuracy. Although

there is an improvement in the forecasting accuracy of the buy signal, that relating to

sell signal declined (Table 6.3). When compared with the previous two cases, the quan-
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tified single inputs reduced the forecasting accuracy corresponding to both buy and sell

signals (Table 6.1 to 6.3). However, in this case also there is no serious mistakes such as

misclassification of buy signals to sell signals.

Comparing all three tables (Table 6.1 to 6.3), it can be suggested that better fore-

casts can be achieved by training FNNs with multiple inputs of the quantified relative

returns of the Close prices of day t of the GSPC, the European market indices and the

AORD. In other words, it can be suggested that employing the quantified intermarket

influences from the GSPC, the three European markets (FTSE, FCHI and GDAXI) and

the AORD as multiple inputs improves the prediction accuracy, when compared to using

the corresponding un-quantified intermarket influences.

Evaluation of the Prediction Results Using Trading Simulations

Table 6.4 shows the average rates of return obtained by performing the proposed trading

simulation (described in Section 6.4.1) on the prediction results generated by the FNNs

trained with the six sets of inputs (mentioned in Section 6.5).

Table 6.4: Average (over the six windows) rates of return relating to the FNNs trained with

different input sets (The annual average rate of return relating to the benchmark simulation

= 9.57% )

Input Rate of return Annual

set for test period rate of return

GFFG 7.49% 25.23%

GFFGA 7.20% 24.25%

GFFG-q 7.69% 25.90%

GFFGA-q 6.71% 22.60%

GFFG-sq 7.33% 24.69%

GFFGA-sq 7.30% 24.59%
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Table 6.4 demonstrates that, irrespective of the input set, a trader can gain higher

profits by responding to the trading signals produced by the FNNs. The highest average

rate of return was obtained when responding to the trading signals generated by the

FNNs trained with the input set GFFG-q. This input set consists of the quantified

relative returns of the Close prices of day t of the GSPC and the three European markets.

Therefore, it can be suggested that the FNNs produced the trading signals which are

more profitable, when they were trained with the multiple inputs of quantified intermarket

influences of the GSPC and the three European markets.

Concluding Remarks

FNN produce better results (by means predictability and profitability) when the multiple

inputs of the quantified relative returns of the influential markets were used for training.

Therefore, it can be assumed that quantified intermarket influences can be effectively used

to predict the trading signals of day (t+ 1) of the AORD.

6.6.2 Predicting Trading Signals using PNN

PNN Experiments

PNNs were also trained for the same six moving windows, which were used for training

FNNs (Section 6.6.1). The same six input sets (Section 6.5) were considered for network

training. Networks output the class (buy, hold, or sell) relevant to the day t of the AORD.

The lost incurred by misclassification, LC (Section 3.2.2), for each class was assumed

to be equal. The joint distribution of the input variables was assumed to be Gaussian.

The parameters of the distribution were estimated by using the training data. When there

were multiple inputs, the average standard deviation of the individual input variables was

considered as the standard deviation of the joint distribution.

111



CHAPTER 6 Predicting Trading Signals of the AORD

Evaluation of the Prediction Results Using Classification Rate /Misclassifica-

tion Rate

Table 6.5 compares the average classification rate /misclassification rate (over the six

windows) relating to the prediction results produced by the PNNs trained with the input

sets GFFG and GFFGA.

Table 6.5: Average classification rate /misclassification rate corresponding to the results

obtained from the PNNs trained with the input sets GFFG and GFFGA

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG rates for input set GFFGA

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 13.85% 86.15% 0.00% 15.52% 84.48% 0.00%

Hold 2.10% 93.00% 4.90% 2.47% 93.05% 4.48%

Sell 0.00% 84.10% 15.90% 0.00% 84.10% 15.90%

PNNs did not generate serious misclassifications when they were trained with un-

quantified relative returns of the Close prices of day t of the influential markets (Table 6.5).

The average classification rates relevant to buy signals increased when the relative return

of the Close price of day t of the AORD was added to the input features. Also adding

this extra feature resulted in an increase in the rate of misclassification from hold signals

to buy signals, while that corresponding to misclassification of hold signals to sell signals

decreased. However, theses changes were not substantial.

The average classification rate /misclassification rate (over the six windows) corre-

sponding to the prediction results obtained by the PNNs trained with the input sets

GFFG-q and GFFGA-q are shown in Table 6.6.

The PNNs trained with the quantified relative returns of the Close prices of day t of

the influential market also did not produce serious misclassifications (Table 6.6). When
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Table 6.6: Average classification rate /misclassification rate corresponding to the results

obtained from the PNNs trained with the input sets GFFG-q and GFFGA-q

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-q rates for input set GFFGA-q

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 12.29% 87.71% 0.00% 14.76% 85.24% 0.00%

Hold 2.47% 91.70% 5.83% 2.47% 91.70% 5.83%

Sell 0.00% 81.74% 18.26% 0.00% 82.01% 17.99%

the quantified relative return of the Close price of day t of the AORD was added to

the input features, the average classification rate of buy signals increased by 20% (from

12.29% to 14.76%), which is a substantial increase. In contrast, this rate relevant to sell

signals decreased by 1% (from 18.26% to 17.99%) which is not a substantial drop. The

misclassification rates of hold signals to buy/sell remained unchanged.

Table 6.7 presents the average classification rate /misclassification rate (over the six

windows) relating to the trading signals produced by the PNNs when they were trained

with the input sets GFFG-sq and GFFGA-sq.

Table 6.7 shows that there were no serious misclassifications when the PNNs trained

with the single inputs which consist of the sum of the quantified relative returns of the

Close prices of day t of the influential markets. The sum of the quantified relative re-

turns of the Close prices of day t of the GSPC, the three European markets and the

AORD, showed lower classification rates of buy and sell signals, than the respective rates

corresponding to its counterpart without the AORD.

Comparing Table 6.5 to 6.7, it can be suggested that a better prediction accuracy

can be obtained when the quantified intermarket influences from the GSPC, the three

European markets as well as the AORD itself are used as the input features to predict
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Table 6.7: Average classification rate /misclassification rate corresponding to the results

obtained from the PNNs trained with the input sets GFFG-sq and GFFGA-sq

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-sq rates for input set GFFGA-sq

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 9.30% 90.70% 0.00% 7.79% 92.21% 0.00%

Hold 1.20% 95.50% 3.30% 1.23% 95.49% 3.28%

Sell 0.00% 88.00% 12.00% 0.00% 89.10% 10.90%

the trading signals.

When the prediction results of PNNs (Table 6.5 to 6.7) trained with different inputs

are compared with their respective results produced by the FNNs (Table 6.1 to 6.3), it is

obvious that FNNs produce predictions with higher accuracy.

Although, the past studies (Section 2.2.1 and 2.2.2) showed that the PNN provides

good results as a classifier, it did not provide the expected results in this study (we noted

that no buy or sell signals were predicted in some windows). The reason may be that the

previous studies aimed at predicting only two classes and the data used is approximately

evenly distributed among these two classes. In contrast, this study considered three classes

and the data is not evenly distributed; usually the hold class dominates. Table 6.8, which

presents the distribution of the test data among three classes confirms this matter.

Irrespective of the window, the hold class dominates (Table 6.8). In each window, at

least 50% of the data falls into this class.

To address the problem of imbalanced distribution of data, one possibility is to allocate

different values as the lost incurred by misclassification (LC in 3.9 in Chapter 3) for

different classes (trading signals). However, there is no particular way to estimate these

values; the only possibility is to follow a trial and error method. The PNN experiments
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Table 6.8: Distribution of test data among buy, hold and sell classes (Percentage of data

in each class is also shown in brackets)

Window Number Buy Hold Sell

1 20 (26.32%) 40 (52.63%) 16 (21.05%)

2 20 (26.32%) 44 (57.89%) 12 (15.79%)

3 23 (30.26%) 38 (50.00%) 15 (19.74%)

4 12 (15.79%) 56 (73.68%) 08 (10.53%)

5 11 (14.47%) 59 (77.63%) 06 ( 7.90%)

6 21 (27.63%) 40 (52.63%) 15 (19.74%)

were repeated by randomly allocating higher values for the LC corresponding to the

buy and sell classes. This attempt was also unsuccessful as it resulted in higher rate of

misclassification of buy signals as sell signals and vice-versa.

The other reason behind the less satisfactory performance by PNN (compared to

that of FNN) may be that the deviation of distributions of the input variables from

the Gaussian. Some past studies [3, 24, 50] (Section 2.3.2) provide evidence that the

distribution of the relative returns shows deviations from the Gaussian distribution.

Evaluation of the Prediction Results Using Trading Simulations

The average (over the six windows) rates of return obtained by performing the proposed

trading simulations (Section 6.4.1) on the trading signals produced by the PNNs trained

with the six types of inputs (Section 6.5) are shown in Table 6.9.

Table 6.9 also evidences that a trader can make higher profits by responding to the

trading signals produced by the PNNs trained with any type of input. The highest average

rate of return was obtained when the trading simulations were performed on the trading

signals produced by the PNNs trained with the input set GFFGA-q. This input set

includes multiple inputs of the quantified relative returns of the Close prices of day t of

the GSPC, the three European markets and the AORD. This suggests that the PNNs

115



CHAPTER 6 Predicting Trading Signals of the AORD

Table 6.9: Average (over the six windows) rates of return relating to the PNNs trained

with different input sets (The annual average rate of return relating to the benchmark simu-

lation = 9.57% )

Input Rate of return Annual

set for test period rate of return

GFFG 5.09% 17.15%

GFFGA 5.13% 17.28%

GFFG-q 5.06% 17.04%

GFFGA-q 5.97% 20.11%

GFFG-sq 4.04% 13.61%

GFFGA-sq 4.17% 14.05%

produced the more profitable trading signals when they were trained with quantified

intermarket influences of these markets.

When compared with the average rates of return corresponding to FNNs (Table 6.4),

the respective rates of returns relevant to PNNs are smaller. Therefore, for the purpose of

gaining profits, FNNs produce more accurate predictions, than the PNNs. As described

earlier, reason may that PNNs does not perform well, when the data is imbalanced.

Concluding Remarks

The results obtained from the PNNs also suggest that the quantified intermarket influences

of the influential markets can be effectively used to obtain the trading signals of day (t+1)

of the AORD. In other words, the predictability and the profitability of the trading signals

are higher when the PNNs were trained with quantified intermarket influences.
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6.6.3 Predicting Trading Signals using SVM

SVM Experiments

This study used SVM-Light (version 6.01) software developed by Joachims [29] to train

SVMs. The past studies [8, 34, 78], which focused on predictions relating to financial

time series, used the radial basis function (Gaussian kernel) as the kernel function (Sec-

tion 3.2.3). Following these studies, radial basis function was adopted as the kernel

function.

Kim [34] found that the parameter of the radial basis function, γ gave the best results

(for predicting the direction of the Korean composite stock price index) when it equals

5. Therefore, different values around 5 were tested for the value of γ. SVMs used in this

study also predicted the trading signals more accurately when γ=5.

The same six windows which were used for the experiments with FNN and PNN,

were considered for the SVM experiments. Training SVM with one input feature is not

meaningful. Therefore, the SVMs were trained with the input sets GFFG, GFFG-q,

GFFGA and GFFGA-q only (Section 6.5).

Evaluation of the Prediction Results

Table 6.10 compares the average (over the six windows) classification rate /misclassifica-

tion rate relating to the prediction results produced by the SVMs trained with the input

sets GFFG and GFFGA while Table 6.11 compares those rates corresponding to the input

sets GFFG-q and GFFGA-q.

Irrespective of the input set, SVM did not produce serious misclassifications (Ta-

ble 6.10 and 6.11). SVMs trained with input features which include the un-quantified

relative returns (Table 6.10) yielded better prediction accuracies than those trained with

their quantified counterparts (Table 6.11). Both tables evidence that there is no impact

on the prediction accuracy by including the information relevant to the AORD to the

input sets.
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Table 6.10: Average classification rate /misclassification rate corresponding to the results

obtained from the SVM trained with the input sets GFFG and GFFGA

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG rates for input set GFFGA

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 7.07% 92.93% 0.00% 7.90% 92.10% 0.00%

Hold 1.23% 95.49% 3.28% 1.23% 95.49% 3.28%

Sell 0.00% 89.31% 10.69% 0.00% 89.31% 10.69%

Table 6.11: Average classification rate /misclassification rate corresponding to the results

obtained from the SVM trained with the input sets GFFG-q and GFFGA-q

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-q rates for input set GFFGA-q

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 1.56% 98.44% 0.00% 1.56% 98.44% 0.00%

Hold 0.44% 96.68% 2.88% 0.44% 96.68% 2.88%

Sell 0.00% 91.67% 8.33% 0.00% 91.67% 8.33%

Although, the SVM is proved to be a promising method for different classification

problems (for example [26, 28, 34]), it did not produce the expected classification ac-

curacy for the classification problem of interest in this study. In majority of cases it

classified all signals as hold signals. The literature (Section 2.3.3) provides evidence for

poor performance of SVM when data is not equally distributed among the classes of inter-

est (imbalanced distribution). The data used in this study has an imbalanced distribution
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(Table 6.8). This may be the reason for the poor performance showed by the SVM in

predicting trading signals of the AORD.

Joachims [29] introduced a correction factor to SVM-Light (version 6.01) to deal with

the problem of imbalanced data. We attempted to improve the classification accuracy

by assigning different values for this correction factor when training SVM. However, our

attempt was not successful.

As explained in Section 2.3.3, there are some modified SVM algorithms (for example [1,

27, 97]) to deal with imbalanced data. However, due to the unavailability of the source

codes of these modified SVM algorithms, this study was not able to apply them to classify

the trading signals.

Evaluation of the Prediction Results Using Trading Simulations

Table 6.12 presents the average (over the six windows) rates of return obtained by per-

forming the proposed trading simulation (described in Section 6.4.1) on the prediction

results generated by the SVM trained with the input sets GFFG, GFFGA, GFFG-q and

GFFGA-q (Section 6.5).

Table 6.12: Average (over the six windows) rates of return relating to the SVMs trained

with different input sets (The annual average rate of return relating to the benchmark simu-

lation = 9.57% )

Input Rate of return Annual

set for test period rate of return

GFFG 4.16% 14.01%

GFFGA 4.64% 15.63%

GFFG-q 3.25% 10.95%

GFFGA-q 2.80% 9.43%
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In contrast to the results of the trading simulations relating to FNNs (Table 6.4) and

PNNs (Table 6.9), the higher average rates of return was obtained when the SVMs were

trained with un-quantified relative returns (Table 6.12).

Concluding Remarks

The predictions obtained from the SVM algorithm used (SVM-Light), are poorer than

those obtained by the FNNs and the PNNs. The reason may be that the ability of the

SVM algorithm to produce precise predictions is weaken by the imbalanced distribution

of the data used.

The results produced by the SVM algorithm are not precise enough to suggest that the

inputs with the un-quantified relative returns are better than their quantified counterparts,

to predict trading signals.

6.7 Shortcomings of the Algorithms

The experiments results suggest that the SVM algorithm used did not perform well as a

classification algorithm to forecast the trading signals. The predictions produced by the

PNN are also not as satisfactory as those produced by the FNNs. According to Criterion

A (Section 6.2), the hold class dominates creating an imbalance in the data. This seems

to be the main reason for the low performance of the two algorithms, the SVM and PNN.

The FNN proved to be a better algorithm to classify trading signals in that sense.

As mentioned earlier (Section 6.6.1) Matlab Neural Network Toolbox [14] was em-

ployed to develop the FNNs used for forecasting. Layers’ weights and biases were ini-

tialised using the Nguyen-Widrow function [61] and gradient descent algorithm with mo-

mentum was employed for weight modification. The FNNs were trained by the Resilient

backpropagation training algorithm [71].

The Nguyen-Widrow function uses different initial values for network parameters

(weights and biases) [61]. This results in different solutions for network parameters.

Since the network parameters vary according to their initial values, the network output

120



CHAPTER 6 Predicting Trading Signals of the AORD

also varies. The general practice to overcome this problem is to train neural networks for

a number of times and calculate the average output.

In the experiments, we trained the networks 1000 times (Section 6.6.1). Each time

the network gave one local solution to the error function. Figure 6.1 and 6.2 present the

bar charts corresponding to windows 1 and 5. These windows were arbitrarily selected

out of the six windows considered. These figures depict the distribution of the 1000 local

solutions of the error function relevant to each window. The input set GFFG-q was

selected as the input features, as this set gave the best forecasting performance for FNNs.

Figure 6.1: Bar chart for the distribution of the local optimal values of the error function

corresponding to window 1 (The local optimal values vary in the interval [4.458×10−5,

0.0079].)

Both charts confirm that the solution to the error function varies (Figure 6.1 and

6.2). For example, in window 1, almost all the local solutions are far from the global

solution. In window 5, the solutions relating to the first bar might be close to the global

solution; however, a significant number of local solutions are located far from the global
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Figure 6.2: Bar chart for the distribution of the local optimal values of the error function

corresponding to window 5 (The local optimal values vary in the interval [2.3973×10−5,

0.01742].)

solution. Therefore, it can be suggested that the majority of the predictions produced by

the feedforward neural networks used by this study, are based on local solutions which

are far from the global solutions.

The other disadvantage of the standard FNNs, is the usage of the OLS function (see

(3.3)) as the error function to be minimised. A standard FNN tries to minimise the

deviation between the actual value and the predicted value, and it does not agree with

the objective of the classification problem of interest of this study (Section 2.3.1).

Although, this study assumed the distribution of the input features, which are relative

returns of stock market indices, as Gaussian, the literature argues that the relative returns

have heavy tailed distributions [3, 24, 50]. Apart from the imbalanced distribution of data

among three classes, the deviation of the distribution of data within each class from the

Gaussian, may resulted in bias predictions by PNNs.
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As discussed earlier in Section 2.3.3, the SVM algorithm does not perform well when

data shows imbalanced distribution among the classes of interest.

6.8 Summary

This chapter aimed to forecast whether it is best to buy, hold or sell shares (trading

signals) of the AORD. The algorithms used for forecasting were FNN, PNN, and SVM.

The forecasting results were evaluated by the classification rate /misclassification rate

(predictability) and rate of return (profitability) obtained from performing trading sim-

ulations. A new trading simulation method was proposed. The special feature in this

proposed simulation is that it searches for the proportion of money to be invested as well

as the proportion of shares to be sold in order to obtain higher profits.

In this study, both the PNN and SVM did not produce results as accurate as those

of the FNN. The reason for poor performance of the the PNN and SVM may be the

imbalanced distribution of the data.

The results obtained from the FNN suggested that better results can be achieved by

employing multiple quantified relative returns of the Close prices of day t of the GSPC,

the European market indices and the AORD, as input features. This fact indicates the ef-

fectiveness of the proposed technique (Section 4.2) for quantifying intermarket influences.

However, there are some drawbacks associated with the FNNs used for forecasting.

The next chapter (Chapter 7) focuses on overcoming these drawbacks in order to improve

the forecasting accuracy.
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Chapter 7

Development of New Algorithms for

Predicting Trading Signals

7.1 Introduction

One of the algorithms that was employed to predict the trading signals in the previous

chapter (Chapter 6) was the FNN. The FNN produced predictions results with higher

accuracy than other two algorithms used.

The FNN uses backpropagation learning procedure to minimise the OLS error function

(see (3.3) in Chapter 3). The distribution of the minimal values of this error function

demonstrated that the networks used in the previous chapter provided solutions that

could be far away from the global solution (Section 6.7). Literature [15, 32] also reveals

the possibily of FNN finding suboptimal solutions as a result of being trapped in local

minima (Section 2.3.1).

To overcome this problem, finding a global solution to the error minimisation function

is required. Several attempts to find global solutions for the parameters of the FNNs, by

developing new algorithms, are found in the literature (Section 2.3.1).

The main aim of this chapter is to develop new prediction algorithms which improve

the prediction accuracy of trading signals. Obtaining a global solution as the network
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output may lead to an improvement of prediction accuracy to some extend. Another

possible way to improve the prediction accuracy is to consider new or modified error func-

tions (Section 2.3.1). Therefore, this chapter focuses on developing new neural network

algorithms using:

1. a global optimization algorithm for neural network training;

2. modifications to the OLS error function.

This chapter describes the development of new neural network algorithms. The pre-

diction results obtained with these new algorithms is presented and compared with those

of FNNs. The improvements in the prediction accuracy made by these new networks is

also highlighted.

7.2 Development of New Neural Network Algorithms

The new neural network algorithms were developed by : (1) using the OLS error function

(see 3.3) as well as the modified least squares error functions; and, (2) employing a global

optimization algorithm to training the networks. The structure of these algorithms are

based on FNN. The structure of FNN is already described in Section 3.2.1.

The reason for using a global optimization technique for network training is to obtain

a better single solution for the weights and biases of the network. The global optimiza-

tion algorithm (described in Section 4.2.2), which was used in the process of quantifying

intermarket influences, was used as the network training algorithm.

In addition to the OLS error function, the alternative least squares error functions

found in the literature were considered (Section 2.3.1). Some of these alternative error

function were modified to suit the prediction problem of interest; predicting whether it

is best to buy, hold or sell (predicting trading signals). By considering alternative error

functions, this study aimed at improving the predicting accuracy.
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7.2.1 Alternative Error Functions

In financial applications, it is more important to predict the direction of a time series

rather than its value. Therefore, the minimisation of the absolute errors between the

target and the output may not produce the desired results [101, 102]. Having this idea

in mind, some past studies aimed to modify the error function associated with the FNNs

(for instance [7, 69, 101, 102]). These studies incorporated factors which represent the

direction of the prediction (for example [7, 101, 102]) and contribution from the historical

data that used as inputs (for example [69, 101, 102]).

This study considered the suitable alternatives to the OLS error function found in the

literature as well as modified error functions.

Alternative Error Functions

The functions proposed in [7, 101, 102] penalised the incorrectly predicted directions more

heavily, than the correct predictions. In other words, higher penalty was applied if the

predicted value (oi) is negative when the target (ai) is positive or vice-versa.

Caldwell [7] proposed The Weighted Directional Symmetry (WDS) function which is

given below:

fWDS(i) =
100

N

N∑
i=1

wds(i)|ai − oi| (7.1)

where

wds(i) =

 1.5 if (ai − ai−1)(oi − oi−1) ≤ 0,

0.5 otherwise,
(7.2)

and N is the total number of observations.

Yao and Tan [101, 102] argued that weight associated with fWDS (that is wds(i)) should

be adjusted more if a wrong direction is predicted for a larger change, while, it should be

adjusted less if a wrong direction is predicted for a smaller change and so on. Based on
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this argument, they proposed the Directional Profit adjustment factor:

fDP (i) =



c1 if (∆ai ×∆oi) > 0 and ∆ai ≤ σ,

c2 if (∆ai ×∆oi) > 0 and ∆ai > σ,

c3 if (∆ai ×∆oi) < 0 and ∆ai ≤ σ,

c4 if (∆ai ×∆oi) < 0 and ∆ai > σ.

(7.3)

where ∆ai=ai − ai−1, ∆oi=oi − ai−1 and σ is the standard deviation of the training data

(including validation set). For their experiments, Yao and Tan [101, 102] used c1 = 0.5,

c2 = 0.8, c3 = 1.2 and c4 = 1.5.

Based on this Directional Profit adjustment factor (see (7.3)), they proposed Direc-

tional Profit (DP) model [101, 102]:

EDP =
1

N

N∑
i=1

fDP (i)(ai − oi)2. (7.4)

Refenes at el. [69] proposed Discounted Least Squares (LDS) function by taking the

recency of the observations (that is, representation of the contribution of past data of a

time series) into account.

EDLS =
1

N

N∑
i=1

wb(i)(ai − oi)2 (7.5)

where wb(i) is an adjustment relating to the contribution of the ith observation and is

described by the following equation:

wb(i) =
1

1 + exp(b− 2bi
N

)
. (7.6)

Discount rate b, decides the recency of the observation. Refenes at el. [69] suggested b =

6.

Yao and Tan [101, 102] proposed another error function, Time Dependent Directional

Profit (TDP) model, by incorporating the approach suggested by Refenes at el. [69] to

their Directional Profit model (see (7.4)):

ETDP =
1

N

N∑
i=1

fTDP (i)(ai − oi)2 (7.7)

127



CHAPTER 7 New Algorithms for Prediction

where fTDP (i)=fDP (i)×wb(i). fDP (i) and wb(i) are described by (7.3) and (7.6), respec-

tively.

Note: In [69, 101, 102], 1
2N

was used instead of 1
N

in the formulas given by (7.4), (7.5)

and (7.7).

Modified Error Functions

This study considers three classes: buy, hold and sell. The hold class includes both positive

and negative values (refer Criterion A in Section 6.2). Therefore, the error functions in

which the cases with incorrectly predicted directions (positive or negative) are penalised

(for example (7.4) and (7.7)), will not give the desired prediction accuracy for this study.

Instead of the weighing schemes suggested by previous studies, this study proposes a novel

scheme of weighing.

This novel scheme is based on the correctness of the classification of trading signals.

If the predicted trading signal is correct, we assign a very small (close to zero) weight,

otherwise, assign weight equal to 1.

Therefore, the proposed weighing scheme is:

wd(i) =

 δ if the predicted trading signal is correct,

1 otherwise.
(7.8)

where δ is a very small value. The value of δ needs to be decided according to the

distribution of data.

Proposed Error Function 1

The weighing scheme, fDP (i), incorporated in the DP error function (7.4) considers only

two classes, upward and downward trend (direction) which are corresponding to buy and

sell signals. In order to deal with three classes, buy, hold and sell, we modified this error

function by replacing fDP (i) with the new weighing scheme, wd(i) (see (7.8)). Hence, the
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new error function (ECC) is defined as:

ECC =
1

N

N∑
i=1

wd(i)(ai − oi)2 (7.9)

When training backpropagation neural networks using (7.9) as the error minimisation

function, the error is forced to take a smaller value, if the predicted trading signal is

correct. On the other hand, the actual size of the error is considered in the cases of

misclassifications.

Proposed Error Function 2

Recency of the data (contribution of the past data of the corresponding time series) also

plays an important role in the prediction accuracy of financial time series. Therefore,

[101, 102] went further, by combining DP error function (7.4) with LDS error function

(7.5) and proposed TDP error function (7.7).

Following Yao and Tan[101, 102], this study also proposed a second new error function,

ETCC , by combining first new error function (ECC) described by 7.9 with the DLS function

(EDLS). Hence the second proposed error minimisation function is:

ETCC =
1

N

N∑
i=1

wb(i)× wd(i)(ti − oi)2 (7.10)

where wb(i) is defined by Equation 7.6 while Equation 7.8 defines wd(i).

7.3 New Neural Network Algorithms

In these experiments, four types of neural network algorithms were employed. These four

networks were based on four error functions described by (3.3), (7.5), (7.9) and (7.10).

Following notations were used to denote the algorithms:

NNOLS - Neural network algorithm based on OLS error function, EOLS (see (3.3))

NNDLS - Neural network algorithm based on DLS error function, EDLS (see (7.5))
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NNCC - Neural network algorithm based on the newly proposed error function 1, ECC

(see (7.9))

NNTCC Neural network algorithm based on the newly proposed error function 2, ETCC

(see (7.10))

The global optimization algorithm (Section 4.2.2), which was used in the process of

quantifying intermarket influences, was used to train these networks. Unlike the FNNs

described in the previous chapter, each network produces a single but deep solution which

minimises the respective error function. The main advantage of having one (global)

solution is that proper estimates of the network parameters (weights and biases) can be

obtained.

The structure of the new networks is the same as that of the FNNs employed in the

previous chapter. These new networks also consist of three layers: an input, hidden

and output layer. The layers are connected using the same structure as the FNN (Sec-

tion 3.2.1). A tan-sigmoid function was used as the transfer function between the input

layer and the hidden layer while the linear transformation function was employed between

the hidden and the output layers.

7.3.1 Network Training

The new networks introduced (Section 7.3) were trained with the same six sets of in-

puts (Section 6.5) which were used as the input features of the FNNs in the previous

experiments:

1. Four input features consisting of the relative returns of day t of the Close prices of

the market combination (1) (denoted by GFFG)

- (GSPC(t), FTSE(t), FCHI(t), GDAXI(t));

2. Four input features consisting of the quantified relative returns of day t of the Close

prices of the market combination (1) (denoted by GFFG-q)

- (ξ1GSPC(t), ξ2FTSE(t), ξ3FCHI(t), ξ4GDAXI(t));
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3. Single input feature consisting of the sum of the quantified relative returns of day t

of the Close prices of the market combination (1) (denoted by GFFG-sq)

- (ξ1GSPC(t)+ξ2FTSE(t)+ξ3FCHI(t)+ξ4GDAXI(t));

4. Five input features consisting of the relative returns of day t of the Close prices of

the market combination (2) (denoted by GFFGA)

- (GSPC(t), FTSE(t), FCHI(t), GDAXI(t), AORD(t));

5. Five input features consisting of the quantified relative returns of the Close prices

of day t of the market combination (2) (denoted by GFFGA-q)

- (ξA1 GSPC(t), ξA2 FTSE(t), ξA3 FCHI(t), ξA4 GDAXI(t), ξ5AORD(t));

6. Single input feature consisting of the sum of the quantified relative returns of the

Close prices of day t of the market combination (2) (denoted by GFFGA-sq)

- (ξA1 GSPC(t)+ξA2 FTSE(t)+ξA3 FCHI(t)+ξA4 GDAXI(t)+ξA5 AORD(t)).

The values of ξi, i = 1, 2, 3, 4 and ξAi , i = 1, 2, 3, 4, 5 are shown in the Table 4.3 and 4.4

(in Section 4.6), respectively.

Different numbers of neurons for the hidden layer were tested when training the net-

works with each input set.

The same six moving windows used in the previous chapter (Section 6.6) were consid-

ered for these experiments. Each of these windows consists of a test set (the most recent

76 samples) and a training set (the remaining 692 samples).

The minimum and the maximum values of the data (relative returns) used for network

training are -0.137 and 0.057, respectively. Therefore we selected the value of δ (see (7.8))

as 0.01. This value is small enough to set the value of the proposed error functions (7.9

and 7.10) approximately zero, if the trading signals are correctly predicted.

As described in Section 7.2.1, the error function, EDLS (see (7.5)), consists of a pa-

rameter b (discount rate) which decides the recency of the observations in the time series.

Refenes at el. [69] fixed b=6 for their experiments. However, the discount rate may vary

from one stock market index to another. Therefore, this study tested different values for
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b when training network NNDLS. Observing the results, the best value for b (that is, b=5;

see Section 7.4) was selected and this best value was used as b when training network

NNTCC .

7.3.2 Evaluation Measures

As with the FNNs used in the previous chapter, these networks (Section 7.3) also output

the relative returns of the Close price of day (t + 1) of the AORD. Subsequently, the

output was classified into trading signals according to Criterion A with lu = −ll = 0.005

(Section 6.2).

The performance of the networks was evaluated by the overall classification rate (rCA)

as well as by the overall misclassification rates (rE1 and rE2) which are defined as follows:

rCA =
N0

NT

× 100 (7.11)

where N0 and NT are the number of test cases with correctly predicted trading signals

and the total number of cases in the test sample, respectively.

rE1 =
N1

NT

× 100 (7.12)

rE2 =
N2

NT

× 100 (7.13)

where N1 is the number of test cases where a buy/sell signal is misclassified as a hold

signals or vice versa. N2 is the test cases where a sell signal is classified as a buy signal

and vice versa. Because of the seriousness of the mistake, rE2 plays a more important role

in performance evaluation than rE1 (more detailed explanation is given in Section 6.4).

7.4 Results Obtained from Network Training

As mentioned in Section 7.3.1, different values for the discount rate, b (see (7.5) and

(7.6)), were tested. b=1, 2, ..., 12 was considered when training NNDLS. The prediction

results improved with the value of b up to b=5. For b ≥ 5 the prediction results remained
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unchanged. Therefore, value of b was fixed at 5. This value was used as the discount rate

also in NNTCC algorithm (see (7.10)).

The best four prediction results corresponding to the four networks were obtained when

the number of hidden neurons was equal to two. Therefore, only the results relevant to

networks with two hidden neurons are presented. Table 7.1 to 7.4 present the results

relating to neural networks, NNOLS, NNDLS, NNCC and NNTCC , respectively.

Table 7.1: Results obtained from training neural network, NNOLS (The best prediction

result produced by the network is shown in bold colour)

Input set Average rCA Average rE2 Average rE1

GFFG 64.25% 0.00% 35.75%

GFFGA 64.25% 0.00% 35.75%

GFFG-q 64.69% 0.00% 35.31%

GFFGA-q 64.04% 0.00% 35.96%

GFFG-sq 63.82% 0.00% 36.18%

GFFGA-sq 63.60% 0.00% 36.40%

Table 7.2: Results obtained from training neural network, NNDLS (The best prediction

result produced by the network is shown in bold colour)

Input set Average rCA Average rE2 Average rE1

GFFG 64.25% 0.44% 35.31%

GFFGA 64.04% 0.44% 35.53%

GFFG-q 64.47% 0.22% 35.31%

GFFGA-q 64.25% 0.22% 35.53%

GFFG-sq 63.82% 0.00% 36.18%

GFFGA-sq 64.04% 0.00% 35.96%
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Table 7.3: Results obtained from training neural network, NNCC (The best prediction

result produced by the network is shown in bold colour)

Input set Average rCA Average rE2 Average rE1

GFFG 65.35% 0.00% 34.65%

GFFGA 64.04% 0.22% 35.75%

GFFG-q 63.82% 0.00% 36.18%

GFFGA-q 64.04% 0.00% 35.96%

GFFG-sq 64.25% 0.00% 35.75%

GFFGA-sq 63.82% 0.00% 36.18%

Table 7.4: Results obtained from training neural network, NNTCC (The best prediction

result produced by the network is shown in bold colour)

Input set Average rCA Average rE2 Average rE1

GFFG 66.67% 0.44% 32.89%

GFFGA 64.91% 0.22% 34.87%

GFFG-q 66.23% 0.00% 33.77%

GFFGA-q 63.82% 0.22% 35.96%

GFFG-sq 64.25% 0.44% 35.31%

GFFGA-sq 64.69% 0.22% 35.09%

The best prediction from NNOLS was obtained when the input set GFFG-q (Sec-

tion 7.3.1) was used as the input features (Table 7.1). This input set consists of four

inputs of the quantified relative returns of the Close price of day t of the GSPC and the

European stock indices.

NNDLS yielded non-zero values for the more serious classification error, rE2, when

multiple inputs (either quantified or not) were used as the input features (Table 7.2). The

best results were obtained when the networks were trained with a single input represent-

ing the sum of the quantified relative returns of the Close prices of day t of the GSPC,
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the European market indices and the AORD (input set GFFGA-sq; Section 7.3.1). When

the networks were trained with single inputs (input sets GFFG-sq and GFFGA-sq; Sec-

tion 7.3.1) the serious misclassifications were prevented.

The overall prediction results obtained from the NNOLS seem to be better than those

relating to NNDLS error function (Table 7.1 and 7.2).

Compared to the predictions obtained from NNDLS, those relating to NNCC are better

(Table 7.2 and 7.3). In this case the best prediction results were obtained when the relative

returns of the Close price of day t of the GSPC and the three European stock market

indices (input set GFFG) were used as the input features (Table 7.3). The classification

rate was increased by 1.02% compared to that of the best prediction results produced by

NNOLS (Table 7.1 and 7.3).

Table 7.4 shows that NNTCC also produced serious misclassifications. However, these

networks produced high overall classification accuracy and prevented serious misclassifica-

tions when the quantified relative returns of the Close prices of day t of the GSPC and the

European stock market indices (input set GFFG-q) were used as the input features. The

accuracy was the best among all four types of new neural network algorithms considered

in this study.

NNTCC yielded 1.34% increase in the overall classification rate compared to NNCC .

When compared withNNOLS, NNTCC showed a 2.37% increase in the overall classification

rate and this can be considered as a good improvement in predicting trading signals.

7.4.1 Comparison of NNOLS and the FNNs

Both the FNNs used in the previous chapter and NNOLS use a common error function: the

OLS error function. The usage of this common error function made it possible to compare

the performance of the two types networks. Comparison is twofold: (1) Comparison of

prediction results and (2) Comparison of the optimal values of the error function.

135



CHAPTER 7 New Algorithms for Prediction

Comparison of Prediction Results Obtained from NNOLS and the FNNs

Table 7.5 to Table 7.7 show the average (over the six windows) classification/ misclas-

sification rates obtained from NNOLS which included two neurons in the hidden layer.

Table 7.5 compares the results of the two un-quantified input sets GFFG and GFFGA

(Section 7.3.1). The results obtained from the networks trained with the sets of multiple

quantified input features, GFFG-q and GFFGA-q (Section 7.3.1) are presented in Ta-

ble 7.6 while those corresponding to the input sets consist single inputs, GFFG-sq and

GFFGA-sq are given in Table 7.7.

Table 7.5: Average (over the six windows) classification rate /misclassification rate cor-

responding to the results obtained from the NNOLS trained with input sets GFFG and

GFFGA

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG rates for input set GFFGA

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 23.46% 76.54% 0.00% 23.46% 76.54% 0.00%

Hold 5.02% 87.46% 7.52% 5.02% 87.46% 7.52%

Sell 0.00% 79.79% 20.21% 0.00% 79.79% 20.21%

Compared to the FNNs trained with input sets with input features which are not quan-

tified (GFFG and GFFGA), NNOLS trained with the respective inputs showed a lower

classification accuracy when predicting buy signals (Table 6.1 and Table 7.5). However,

unlike the FNNs, NNOLS eliminated the serious misclassifications such as misclassification

of buy signals to sell signals.

NNOLS trained with the quantified multiple input sets, GFFG-q and GFFGA-q, also

predicted a lower number of correct buy signals with compared to their respective FNN

counterparts (Table 6.2 and Table 7.6). As with the FNNs, these networks also did not
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produced serious misclassifications.

When trained with the single input sets (that is the sum of the quantified relative

returns), GFFG-sq and GFFGA-sq, NNOLS produced a lower number of correct buy as

well as correct sell signals, compared to their respective FNN counterparts (Table 6.3

Table 7.6: Average (over the six windows) classification rate /misclassification rate cor-

responding to the results obtained from the NNOLS trained with input sets GFFG-q and

GFFGA-q (The best prediction results obtained from NNOLS are shown in bold colour)

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-q rates for input set GFFGA-q

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 23.46% 76.54% 0.00% 22.11% 77.89% 0.00%

Hold 5.00% 88.74% 6.27% 5.00% 87.48% 7.52%

Sell 0.00% 79.79% 20.21% 0.00% 79.79% 20.21%

Table 7.7: Average (over the six windows) classification rate /misclassification rate corre-

sponding to the results obtained from the NNOLS trained with input sets GFFG-sq and

GFFGA-sq

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-sq rates for input set GFFGA-sq

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 21.16% 78.84% 0.00% 21.16% 78.84% 0.00%

Hold 5.00% 88.73% 6.27% 4.93% 88.42% 6.65%

Sell 0.00% 81.94% 18.06% 0.00% 81.94% 18.06%
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and Table 7.7). Both types of networks did not produced serious misclassifications when

trained with the above mentioned input sets.

The overall prediction performance of NNOLS was poorer than that of the FNNs.

However, NNOLS always generated a single solution to the network parameters, while

FNN produced 1000 solutions for 1000 trials which also required a longer computer time.

Comparison of Optimal Values of the Error Function of NNOLS and FNNs

Table 7.8 compares the optimal values of the error function OLS generated by NNOLS

and the FNN. The optimal value corresponding to the FNN is the minimum of 1000 such

values resulted from 1000 trials.

Table 7.8: Comparison of the Optimal Value of the Error Function Obtained by NNOLS

and FNN (The optimal value corresponding to FNN is the minimum value of 1000 trials)

Input NNOLS Window Number

set /FNN 1 2 3 4 5 6

GFFG NNOLS 2.347E-5 2.218E-5 1.971E-5 1.738E-5 1.108E-5 9.053E-6

FNN 4.577E-5 3.669E-5 3.534E-5 3.417E-5 2.407E-5 1.557E-5

GFFGA NNOLS 2.347E-5 2.218E-5 1.971E-5 1.738E-5 1.108E-5 9.053E-6

FNN 4.510E-5 3.608E-5 3.510E-5 3.322E-5 2.293E-5 1.523E-5

GFFG-q NNOLS 2.348E-5 2.228E-5 1.981E-5 1.746E-5 1.108E-5 9.095E-6

FNN 4.522E-5 3.676E-5 3.480E-5 3.390E-5 2.385E-5 1.519E-5

GFFGA-q NNOLS 2.348E-5 2.220E-5 1.971E-5 1.746E-5 1.108E-5 9.111E-6

FNN 4.458E-5 3.613E-5 3.458E-5 3.435E-5 2.397E-5 1.478E-5

GFFG-sq NNOLS 2.381E-5 2.235E-5 1.992E-5 1.772E-5 1.158E-5 9.398E-6

FNN 4.755E-5 3.803E-5 3.927E-5 3.854E-5 2.590E-5 1.446E-5

GFFGA-sq NNOLS 2.387E-5 2.235E-5 2.003E-5 1.773E-5 1.116E-5 9.416E-6

FNN 4.776E-5 3.823E-5 3.943E-5 3.871E-5 2.601E-5 1.654E-5
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Irrespective of the window or the input set, the optimal value of the error function

produced by the NNOLS is lower than the minimum of the respective values corresponding

FNN (Table 7.8). This indicates for that NNOLS is capable in finding better solutions for

the OLS error function.

7.4.2 Results Obtained from NNDLS

Table 7.9 and Table 7.10 present the prediction accuracies of the results obtained from

NNDLS trained with input sets contain multiple inputs which are not quantified (GFFG

and GFFGA) and multiple quantified input features (GFFG-q and GFFGA-q) , respec-

tively. Those results related to the same network trained with input sets consist of single

inputs with sum of the quantified input features (GFFG-sq and GFFGA-sq) are shown

in Table 7.11.

Table 7.9: Average (over the six windows) classification rate /misclassification rate cor-

responding to the results obtained from the NNDLS trained with input sets GFFG and

GFFGA

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG rates for input set GFFGA

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 27.32% 71.85% 0.83% 26.53% 72.64% 0.83%

Hold 5.81% 86.34% 7.84% 5.81% 86.34% 7.84%

Sell 1.39% 78.40% 20.21% 1.39% 78.40% 20.21%

NNDLS made serious errors such as misclassification of buy signals to sell signals

and vice-versa, when they were trained with input sets which consists of multiple (either

quantified or un-quantified) input features (Table 7.9 and Table 7.10). Compared to the

respective FNN counterparts, NNDLS generated higher number of correct buy signals, but
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Table 7.10: Average (over the six windows) classification rate /misclassification rate cor-

responding to the results obtained from the NNDLS trained with input sets GFFG-q and

GFFGA-q

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-q rates for input set GFFGA-q

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 23.54% 76.46% 0.00% 25.93% 74.07% 0.00%

Hold 4.97% 89.26% 5.77% 5.79% 87.24% 6.97%

Sell 1.39% 80.62% 17.99% 1.39% 79.51% 19.10%

Table 7.11: Average (over the six windows) classification rate /misclassification rate cor-

responding to the results obtained from the NNDLS trained with input sets GFFG-sq and

GFFGA-sq (The best prediction results obtained from NNDLS are shown in bold colour)

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-sq rates for input set GFFGA-sq

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 21.23% 78.77% 0.00% 22.10% 77.90% 0.00%

Hold 5.39% 89.22% 5.39% 4.97% 89.20% 5.83%

Sell 0.00% 83.06% 16.94% 0.00% 83.06% 16.94%

a lower number of correct sell signals (Table 7.5 to Table 7.7 and Table 7.9 to Table 7.11).

In overall, the performance of NNDLS is poorer than that of NNOLS.

140



CHAPTER 7 New Algorithms for Prediction

7.4.3 Results Obtained from NNCC

Table 7.12 and Table 7.13 show the average (over the six windows) values of the overall

classification and misclassification rates associated with NNCC when trained with input

sets which contain multiple inputs which are not quantified (GFFG and GFFGA) and

multiple quantified input features (GFFG-q and GFFGA-q), respectively. The corre-

sponding results of the NNCC trained with single inputs which represent the sum of the

quantified input features (GFFG-sq and GFFGA-sq) are presented in Table 7.14.

Table 7.12: Average (over the six windows) classification rate /misclassification rate cor-

responding to the results obtained from the NNCC trained with input sets GFFG and

GFFGA (The best prediction results obtained from NNCC are shown in bold colour)

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG rates for input set GFFGA

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 23.94% 76.06% 0.00% 20.44% 78.73% 0.83%

Hold 5.00% 89.59% 6.66% 4.86% 88.45% 6.69%

Sell 0.00% 77.71% 22.29% 0.00% 79.79% 20.21%

Except in the case where the network was trained with the five input features which

are not quantified (input set 4), NNCC did not produce serious misclassifications (Ta-

ble 7.12 to Table 7.14). In all other cases the performance of this algorithm was better

than or equal to the respective cases of NNOLS. Particularly, NNCC showed an improve-

ment in prediction accuracy compared to the respective NNOLS algorithm, when trained

with the four input features which are not quantified (input set GFFG; Table 7.5 and Ta-

ble 7.12). Overall, this algorithm showed an improvement compared to NNDLS (Table 7.9

to Table 7.11).
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Table 7.13: Average (over the six windows) classification rate /misclassification rate cor-

responding to the results obtained from the NNCC trained with input sets GFFG-q and

GFFGA-q

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-q rates for input set GFFGA-q

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 21.68% 78.32% 0.00% 22.49% 77.51% 0.00%

Hold 4.58% 87.90% 7.52% 4.20% 88.22% 7.58%

Sell 0.00% 79.72% 20.28% 0.00% 79.72% 20.28%

Table 7.14: Average (over the six windows) classification rate /misclassification rate cor-

responding to the results obtained from the NNCC trained with input sets GFFG-sq and

GFFGA-sq

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-sq rates for input set GFFGA-sq

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 21.05% 78.95% 0.00% 22.44% 77.56% 0.00%

Hold 4.58% 89.57% 5.85% 5.40% 87.02% 7.58%

Sell 0.00% 81.94% 18.06% 0.00% 78.61% 21.39%

7.4.4 Results Obtained from NNTCC

The average (over the six windows) Classification rate /Misclassification rate correspond-

ing to the results obtained from the NNTCC are shown in Table 7.15 to Table 7.17.
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Table 7.15 corresponds to the input sets with multiple input features which are not quan-

tified (input sets GFFG and GFFGA). The results corresponding to the input sets consist

of multiple quantified input features and single inputs which represent the sum of the

quantified input features are presented in Table 7.16 and Table 7.17, respectively.

Table 7.15: Average (over the six windows) classification rate /misclassification rate cor-

responding to the results obtained from the NNTCC trained with input sets GFFG and

GFFGA

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG rates for input set GFFGA

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 30.89% 68.28% 0.83% 28.72% 71.28% 0.00%

Hold 5.03% 89.98% 4.99% 4.48% 88.99% 6.53%

Sell 1.39% 79.39% 19.24% 1.39% 82.57% 16.04%

Overall, the prediction performance of NNTCC is poorer than that of NNOLS and

NNCC , because, except for the case where four quantified input features used as inputs

(input set GFFGA-q), it produced serious misclassifications (Table 7.15 to Table 7.17).

However, when trained with the input set GFFGA-q, not only it produced the highest

prediction accuracies for buy and sell signals among all algorithms considered, but also

did not produce series misclassifications (Table 7.16).

Comparison of the Results Obtained from NNTCC and the FNNs

Table 7.18 compares the best prediction results obtained from NNTCC with those obtained

from the FNNs. NNTCC produced the best results when it was trained with the four inputs

of the quantified relative returns of the Close prices of day t of the US and the European

stock markets indices (input set GFFG-q) while the FNN gave the best results when it
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Table 7.16: Average (over the six windows) classification rate /misclassification rate cor-

responding to the results obtained from the NNTCC trained with input sets GFFG-q and

GFFGA-q (The best prediction results obtained from NNTCC are shown in bold colour)

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-q rates for input set GFFGA-q

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 27.00% 73.00% 0.00% 23.15% 76.85% 0.00%

Hold 4.56% 89.22% 6.22% 4.16% 88.28% 7.56%

Sell 0.00% 75.49% 24.51% 1.39% 80.42% 18.19%

Table 7.17: Average (over the six windows) classification rate /misclassification rate cor-

responding to the results obtained from the NNTCC trained with input sets GFFG-sq and

GFFGA-sq

Average Average

classification/misclassification classification/misclassification

rates for input set GFFG-sq rates for input set GFFGA-sq

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 27.04% 72.24% 0.72% 25.48% 74.52% 0.00%

Hold 6.27% 85.71% 8.02% 5.85% 86.51% 7.64%

Sell 1.11% 77.08% 21.81% 1.11% 75.97% 22.92%

was trained with the five inputs of quantified relative returns of the Close prices of day t

of the US, the European and the AORD (input set GFFGA-q).

There is a slight improvement of prediction accuracy of buy signals when NNTCC was

employed. However, the prediction accuracy of sell signals corresponding to NNTCC shows
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Table 7.18: Average (over the six windows) classification rate /misclassification rate cor-

responding to the results obtained from the NNTCC trained with input sets GFFG-q and

the FNNs trained with input set GFFGA-q

Average Average

classification/misclassification classification/misclassification

rates for NNTCC trained with rates for the FNN trained with

input set GFFG-q input set GFFGA-q

Actual class Predicted class Predicted class

Buy Hold Sell Buy Hold Sell

Buy 27.00% 73.00% 0.00% 26.40% 73.60% 0.00%

Hold 4.56% 89.22% 6.22% 5.00% 87.86% 7.14%

Sell 0.00% 75.49% 24.51% 0.00% 79.80% 20.21%

a substantial increment when compared to respective value of the FNN. Misclassification

of hold signals to buy/sell signals decreased when NNTCC was used. Therefore, it can be

suggested that better predictions can be obtained by using the algorithm NNTCC than

the FNN. Finally, it can be suggested that the attempt to improve the prediction accuracy

was successful.

7.5 Results from the Trading Simulations

The trading simulations proposed in Section 6.4.1 were applied to the trading signals

obtained by the four newly proposed neural network algorithms (Section 7.3). Table 7.19

shows the average (over the six windows) rates of returns obtained by performing the

proposed trading simulation on the predictions obtained by the best network of the each

algorithm considered.

According to Table 7.19, the trading signals produced by best network corresponding

to NNTCC gave the highest rate of return. The second highest rate of return relates
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Table 7.19: Average (over the six windows) rate of return for the best predictions relating

to each neural network algorithm (The annual average rate of return relating to the benchmark

simulation = 9.57% )

Algorithm Rate of return Annual

for test period rate of return

NNOLS 7.16% 24.12%

NNDLS 7.71% 25.97%

NNCC 7.92% 26.68%

NNTCC 8.27% 27.86%

to the best network corresponding to NNCC followed by those of NNDLS and NNOLS.

28% of annual profit can be made by responding the trading signals predicted by the

best network corresponding to NNTCC . This value is also higher than the highest rate

of return (25.9%; Table 6.4) related to the standard FNNs used in the previous chapter

(Chapter 6).

Comparing the annual rate of returns from the two trading simulations, it can be

suggested that traders can make more profits by responding the trading signals generated

by the four algorithms considered in this study. The profits relating to NNTCC are the

highest.

7.6 Conclusions Derived from the Results Obtained

by Network Training

The results obtained from the experiments show that the neural network algorithms based

on the modified OLS error functions introduced by this study (7.9 and 7.10) produced

better predictions for trading signals corresponding to day (t+ 1) of the AORD. Among

these two algorithms, the one based on (7.10) is the best.

This algorithm produced the best prediction results when the network consisted of
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one hidden layer with two neurons. The quantified relative returns of the Close prices of

day t of the GSPC and the three European stock market indices were used as the input

features. This network prevented serious misclassifications such as misclassification of

buy signals to sell signals and vice-versa and also predicted trading signals with a higher

degree of accuracy.

Proposed trading simulations suggest that a trader can gain substantially high (28%)

annual return by responding to the trading signals produced by this best neural network

algorithm.

These results also indicates the following:

• The quantified influences from the above mentioned four market indices can be used

effectively to produced more accurate trading signals.

• The application of the global optimization algorithm, which is described in Sec-

tion 4.2.2, to minimise the error functions was quite successful. Although, there is

no guarantee that the solutions generated by the new algorithms are global solu-

tions, they are much better than the best solutions (out of 1000 trials) obtained by

the FNNs trained with the Resilient backpropagation training algorithm.

7.7 Summary

This chapter focused on developing new algorithms in order to produce better predictions

for trading signals of the AORD. An attempt was made to develop new neural network

algorithms by employing a global optimization technique to train the networks as well

as introducing modified error functions. These error functions include the traditional

ordinary least squares error function, the discounted least squares error function proposed

by Refenes at el. [69] and two modified functions introduced by this study. Four new

algorithms: (1) NNOLS, (2) NNDLS, (3) NNCC and (4) NNTCC were tested.

These algorithms were successful in finding an optimal value of the respective error

functions. Results suggest that the algorithms based on the modified error functions
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introduced by this study (NNCC and NNTCC) showed better performance compared to

the FNNs (used in Chapter 6), by producing prediction results with better accuracy,

provided that they were trained with proper input features and the proper number of

neurons were included in the hidden layer. NNTCC which was based on error function

described by Equation 7.10, produced the best results in predicting trading signals of the

AORD. The other important matter that suggested by the results produced by NNTCC is

that the quantified intermarket influences on the AORD can be used effectively to predict

trading signals.

The next and the final chapter provides the conclusions of the study together with

suggestions for future research.

148



Chapter 8

Conclusions and Recommendations

This chapter includes the research findings and the key contributions this research has

made to knowledge. The limitations of the study together with suggestions for further

research are also presented.

8.1 Conclusions

The conclusions of the study can be summarised as below:

1. The Close price of day (t− 1) of the US S&P 500 index (GSPC) had the strongest

influence on the Close price of day t of the Australian All Ordinary Index (AORD),

during the whole study period (from 2nd July 1997 to 30th December 2005). The

Close prices of day (t−1) of the UK FTSE 100 Index (FTSE), French CAC 40 Index

(FCHI), German DAX Index (GDAXI) and the AORD itself, showed a significant

impact on the Close price of day t of the AORD, at different time periods. The

Close prices of two or more days in the past of any markets considered did not

show a substantial influence on the Close price of day t of the AORD. These results

suggest the successfulness of the proposed technique for quantification of intermarket

influences.

2. The quantified intermarket influences on the AORD can be effectively used to predict
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the direction of the Close price of of day (t+1) the AORD. The sum of the quantified

relative return of the Close prices of day t of the influential markets are useful for this

directional prediction. This matter supports the effectiveness of applying quantified

intermarket influences for the directional prediction.

3. The quantified relative returns of the Close prices of the influential markets can

effectively be used to predict the trading signals, buy, hold and sell, of the AORD.

This is an indication for the usefulness of the quantified intermarket influences on

AORD for predicting the trading signals of day (t+ 1) of the AORD.

4. The neural network algorithms, designed by incorporating the modified Ordinary

Least Squares error functions, improved the prediction accuracy of trading signals.

Among these algorithms, NNTCC (Section 7.3) was the best. NNTCC uses the

modified error function for which an adjustment relating to the contribution from

the historical data used for training the networks, and the penalisation of incorrectly

classified trading signals were incorporated. This algorithm gave better prediction

accuracy when trained with the quantified relative returns of the Close prices of the

influential markets. Trading simulations demonstrated that this algorithm produced

trading signals which are more profitable. These matters confirm that the quantified

intermarket influences on the AORD can be effectively used to predict the trading

signals of day (t+ 1) of the AORD.

The approach developed in this study, which involves quantification of intermarket

influences and its applications for prediction of the direction of price level, and the trading

signals, can be applied to perform similar predictions related to any given stock market

index or stock index.

8.2 Comparison with Previous Studies

Incorporating intermarket influences for predictions relating to stock market indices is

a very interesting aspect in finance. There are only a few studies (Section 2.5) which
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incorporated the possible influence from foreign stock markets when predicting a selected

stock market index. However, no techniques were introduced to quantify intermarket

influences (Section 2.4).

We developed a technique for quantifying intermarket influences from a selected set

of potential influential (global) stock market indices on a given dependent market. We

also investigated how the quantified intermarket influences can be used for prediction

(directional prediction and prediction of trading signals).

This study employed a new measure (Section 5.2.2) which is more appropriate for

evaluating the accuracy of the directional prediction, than the measure used in previous

research [65, 82].

A few studies done in the past considered the prediction of three trading signals: buy,

hold and sell (Section 2.2.2). Furthermore, literature does not provide evidence about any

attempt in the past, to predict these three trading signals corresponding to the AORD.

Unlike many previous studies, this study aimed at predicting three trading signals.

Consideration of these three classes (signals) resulted in an imbalance of data and this

imbalance caused many classification algorithms (which are commonly used) to be less

successful. Feedforward neural networks (FNN) provided better results compared to PNN

and SVM. However, it is well known that the standard FNN provides solutions far from

the global optimal solutions (Section 7.1). Therefore, we developed new neural network

algorithms for predicting trading signals.

When developing the new algorithms, main concern was to modify the available error

minimisation function in the literature (Section 7.2.1), in a way that made it suitable for

the problem of interest: classification of trading signals into three classes, buy, hold and

sell.

As mentioned earlier, literature (section 2.2.2) shows only a few studies (for exam-

ple [11, 40, 44, 56]) which aimed at predicting the trading signals of the other international

stock markets. Since, every stock market is different, and has its own unique ‘personality’

and unique position in the international economic systems [65], the comparison of the
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results of this study with those of other studies, is not appropriate.

This study is novel in aiming to carry out a formal quantification of intermarket

influences from the world’s major stock markets on the AORD and then predicting the

direction of the Close price of the AORD as well as its trading signals, using the quantified

intermarket influences as input features to the prediction models.

8.2.1 Contribution to the Knowledge

This study made the following contributions to the knowledge:

• Developed a new technique for quantifying intermarket influences from a set of

potential influential stock markets on a given stock market.

• Quantified influence from major global stock markets on the AORD using this quan-

tification technique.

• Identified how the quantified intermarket influences on the AORD can be incorpo-

rated for predicting the direction (up or down) of the Close price of day t as well as

trading signals (buy, hold or sell) of the AORD.

• Developed neural network algorithms to predict the daily trading signals of a given

stock market.

• The proposed prediction approach can be applied to do similar predictions related

to any stock market.

8.3 Further Studies

In this study, the quantified relative return of the Close price of a given market is defined

as the actual relative return of the Close price of this market multiplied by the respective

quantification coefficient. We used the sum of the quantified relative returns of the Close

prices of a set of influential markets as a single input feature as well as the quantified
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relative returns of the Close prices of these markets as separate input features, for pre-

dictions. There may be other alternative ways that the quantification coefficients (that

is the strength of the influence) can be incorporated into predictive models. However,

this may depend on the predictive models (or algorithms) that are applied to perform

the predictions. The algorithms designed for time series predictions might be of special

interest.

Another alternative approach for future research is that the consideration of a moving

average (for example five day, 22 days, etc.), instead of the relative return of the Close

prices of the stock markets, when quantifying the intermarket influences. Use of moving

averages would be appropriate, since the moving average smooths the series removing the

random fluctuations (noise), and therefore, results in higher correlation between series.

Traders’ concerns may be to identify five trading signals: strong buy, buy, hold, sell,

strong sell (instead of buy, hold and sell). Therefore, another direction of further research

is to consider five trading signals for predictions and modify the error function (7.10)

accordingly.
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Table A.1 to A.6 present the quantification coefficients corresponding to different market

combinations, at time lag 1. In these tables, ’-’ indicates that a particular stock index is

not included in the combination of interest. For example, the first row in Table A.1 shows

the quantification coefficients relevant to the market combination which includes only the

GSPC and the GDAXI while the last row in the same table shows those relevant to the

market combination of the GSPC, FTSE, FCHI, HSI, and AORD. Also it is noteworthy

that any one of the indices: STI, N225, SSEC, and TWII, did not include in any of the

combinations considered. This is because that the Close price of these markets at time

lag 1 did not show any significant impact on the Close price of the AORD.
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Table A.1: Quantification coefficients at time lag 1 for different market combinations for

the 1st training window

Stock Market Index

GSPC IXIC FTSE FCHI GDAXI HSI AORD

0.9254 - - - 0.0746 - -

0.6856 - 0.3144 - - - -

0.9129 - - 0.0871 - - -

0.7228 0.2772 - - - - -

0.9486 - - - - 0.0514 -

0.6218 - 0.3309 - 0.0473 - -

0.7584 - - 0.1913 0.0503 - -

0.6099 - 0.3374 0.0528 - - -

0.6856 0.0000 0.3144 - - - -

0.9767 - - - 0.0122 0.0111 -

0.8431 0.0546 - - 0.1023 - -

0.5720 - 0.2905 0.1140 0.0233 - -

0.5715 0.0090 0.3005 0.1190 - - -

0.5716 - 0.2961 0.1261 - 0.0061 -

0.6208 - 0.3327 - 0.0465 0.0000 -

0.6308 0.0000 0.3316 - - 0.0376 -

0.5729 - 0.2882 0.1143 0.0246 0.0000 -

0.5310 0.0520 0.2879 0.1041 0.0249 - -

0.5729 - 0.2882 0.1143 0.0246 0.0000 -

0.6857 - 0.3143 - - - 0.0000

0.9305 - - - 0.0288 - 0.0407

0.5387 - 0.3083 0.1118 - - 0.0413

0.6377 - 0.3221 - - 0.0402 0.0000

0.5621 - 0.2929 0.0997 0.0283 - 0.0170

0.6174 - 0.3425 0.0320 - 0.0000 0.0080
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Table A.2: Quantification coefficients at time lag 1 for different market combinations for

the 2nd training window

Stock Market Index

GSPC IXIC FTSE FCHI GDAXI HSI AORD

0.7860 - - - 0.2140 - -

0.7457 - 0.2543 - - - -

0.7275 - - 0.2725 - - -

0.8974 0.1026 - - - - -

0.9435 - - - - 0.0565 -

0.5802 - 0.2589 - 0.1609 - -

0.6150 - - 0.0837 0.3013 - -

0.5947 - 0.0857 0.3197 - - -

0.7309 0.0129 0.2562 - - - -

0.7394 - - - 0.2086 0.0521 -

0.7720 0.0576 - - 0.1704 - -

0.6124 - 0.1825 0.0787 0.1264 - -

0.6161 0.1011 0.0426 0.2402 - - -

0.7749 - 0.1492 0.0344 - 0.0414 -

0.5809 - 0.2557 - 0.1633 0.0000 -

0.7666 0.0000 0.1867 - - 0.0467 -

0.6128 - 0.1658 0.0812 0.1402 0.0000 -

0.5886 0.0000 0.1886 0.0639 0.1590 - -

0.6128 - 0.1658 0.0812 0.1402 0.0000 -

0.7356 - 0.2535 - - - 0.0109

0.7536 - - - 0.2178 - 0.0286

0.7618 - 0.1285 0.0670 - - 0.0427

0.7562 - 0.1654 - - 0.0301 0.0483

0.5780 - 0.1083 0.1266 0.1688 - 0.0183

0.5812 - 0.2564 0.1624 - 0.0000 0.0000
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Table A.3: Quantification coefficients at time lag 1 for different market combinations for

the 3rd training window

Stock Market Index

GSPC IXIC FTSE FCHI GDAXI HSI AORD

0.8376 - - - 0.1624 - -

0.7816 - 0.2184 - - - -

0.7127 - - 0.2873 - - -

0.9300 0.0701 - - - - -

0.9792 - - - - 0.0208 -

0.7824 - 0.1575 - 0.0601 - -

0.6624 - - 0.3205 0.0171 - -

0.7520 - 0.1565 0.0915 - - -

0.7827 0.0000 0.2173 - - - -

0.8869 - - - 0.0982 0.0150 -

0.8809 0.0873 - - 0.0318 - -

0.7656 - 0.0931 0.1328 0.0085 - -

0.7469 0.0151 0.1278 0.1102 - - -

0.7534 - 0.1544 0.0922 - 0.0000 -

0.7887 - 0.1547 - 0.0566 0.0000 -

0.7822 0.0000 0.2178 - - 0.0000 -

0.7525 - 0.1545 0.0930 0.0000 0.0000 -

0.4864 0.0353 0.3308 0.1267 0.0207 - -

0.7525 - 0.1545 0.0930 0.0000 0.0000 -

0.7209 - 0.1280 - - - 0.1511

0.6794 - - - 0.1446 - 0.1760

0.7960 - 0.0108 0.1316 - - 0.0616

0.7191 - 0.1303 - - 0.0000 0.1507

0.7369 - 0.0000 0.1730 0.0175 - 0.0726

0.7193 - 0.0489 0.1225 - 0.0033 0.1060
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Table A.4: Quantification coefficients at time lag 1 for different market combinations for

the 4th training window

Stock Market Index

GSPC IXIC FTSE FCHI GDAXI HSI AORD

0.7427 - - - 0.2573 - -

0.8062 - 0.1938 - - - -

0.8703 - - 0.1297 - - -

1.0000 0.0000 - - - - -

0.9872 - - - - 0.0128 -

0.6454 - 0.0836 - 0.2710 - -

0.8682 - - 0.1318 0.0000 - -

0.7932 - 0.0640 0.1429 - - -

0.7996 0.0062 0.1942 - - - -

0.7289 - - - 0.2514 0.0197 -

0.7282 0.0209 - - 0.2509 - -

0.7946 - 0.0562 0.1492 0.0000 - -

0.7946 0.0000 0.0593 0.1461 - - -

0.7778 - 0.0527 0.1491 - 0.0204 -

0.7374 - 0.0232 - 0.2393 0.0000 -

0.8016 0.0052 0.1932 - - 0.0000 -

0.7795 - 0.0345 0.1687 0.0000 0.0172 -

0.8707 0.0000 0.0000 0.1293 0.0000 - -

0.7795 - 0.0345 0.1687 0.0000 0.0172 -

0.8065 - 0.1935 - - - 0.0000

0.7434 - - - 0.2566 - 0.0000

0.7910 - 0.0640 0.1450 - - 0.0000

0.8049 - 0.1951 - - 0.0000 0.0000

0.7898 - 0.0700 0.1401 0.0000 - 0.0000

0.6419 - 0.0695 0.2736 - 0.0000 0.0150
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Table A.5: Quantification coefficients at time lag 1 for different market combinations for

the 5th training window

Stock Market Index

GSPC IXIC FTSE FCHI GDAXI HSI AORD

0.8043 - - - 0.1957 - -

0.6250 - 0.3750 - - - -

0.8174 - - 0.1826 - - -

0.7270 0.2730 - - - - -

0.9951 - - - - 0.0049 -

0.5629 - 0.2202 - 0.2169 - -

0.7039 - - 0.0661 0.2300 - -

0.6940 - 0.1369 0.1691 - - -

0.4565 0.2190 0.3245 - - - -

0.7939 - - - 0.1866 0.0194 -

0.8024 0.0000 - - 0.1976 - -

0.5572 - 0.1720 0.0346 0.2362 - -

0.4307 0.1831 0.2057 0.1805 - - -

0.6045 - 0.0922 0.2359 - 0.0674 -

0.5656 - 0.2184 - 0.2160 0.0000 -

0.7492 0.0203 0.1122 - - 0.1183 -

0.5680 - 0.2115 0.0000 0.2204 0.0000 -

0.4426 0.1870 0.1997 0.1510 0.0197 - -

0.5680 - 0.2115 0.0000 0.2204 0.0000 -

0.6662 - 0.1885 - - - 0.1452

0.7259 - - - 0.2556 - 0.0185

0.7240 - 0.0683 0.1378 - - 0.0700

0.6664 - 0.1887 - - 0.0000 0.1449

0.5569 - 0.1699 0.0394 0.2338 - 0.0000

0.5662 - 0.2175 0.2163 - 0.0000 0.0000
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Table A.6: Quantification coefficients at time lag 1 for different market combinations for

the 6th training window

Stock Market Index

GSPC IXIC FTSE FCHI GDAXI HSI AORD

0.7609 - - - 0.2391 - -

0.6668 - 0.3332 - - - -

0.7833 - - 0.2167 - - -

0.7834 0.2166 - - - - -

0.9830 - - - - 0.0170 -

0.7219 - 0.2016 - 0.0765 - -

0.6781 - - 0.1063 0.2156 - -

0.7086 - 0.1834 0.1080 - - -

0.5497 0.1456 0.3047 - - - -

0.7589 - - - 0.2410 0.0000 -

0.7428 0.0226 - - 0.2346 - -

0.6658 - 0.0583 0.0795 0.1964 - -

0.6221 0.0450 0.3160 0.0169 - - -

0.7069 - 0.1844 0.1087 - 0.0000 -

0.5904 - 0.2040 - 0.1352 0.0704 -

0.4592 0.2128 0.2393 - - 0.0887 -

0.6628 - 0.0522 0.0859 0.1926 0.0065 -

0.5473 0.1200 0.3163 0.0163 0.0000 - -

0.6628 - 0.0522 0.0859 0.1926 0.0065 -

0.6862 - 0.3013 - - - 0.0125

0.7583 - - - 0.2417 - 0.0000

0.7077 - 0.1818 0.1105 - - 0.0000

0.6164 - 0.1985 - - 0.0394 0.1456

0.6592 - 0.0431 0.0900 0.1957 - 0.0120

0.5945 - 0.2057 0.1301 - 0.0697 0.0000
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