4,898 research outputs found

    Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors

    Get PDF
    We present the first demonstration of reproducible harmonic mode-locked operation from a novel design of monolithic semiconductor laser comprising a compound cavity formed by a 1-D photonic-bandgap (PBG) mirror. Mode-locking (ML) is achieved at a harmonic of the fundamental round-trip frequency with pulse repetition rates from 131 GHz up to a record high frequency of 2.1 THz. The devices are fabricated from GaAs-Al-GaAs material emitting at a wavelength of 860 nm and incorporate two gain sections with an etched PBG reflector between them, and a saturable absorber section. Autocorrelation studies are reported which allow the device behavior for different ML frequencies, compound cavity ratios, and type and number of intra-cavity reflectors to be analyzed. The highly reflective PBG microstructures are shown to be essential for subharmonic-free ML operation of the high-frequency devices. We have also demonstrated that the single PBG reflector can be replaced by two separate features with lower optical loss. These lasers may find applications in terahertz; imaging, medicine, ultrafast optical links, and atmospheric sensing

    Detailed comparison of injection-seeded and self-seeded performance of a 1060nm gain-switched Fabry-Perot laser diode

    No full text
    We investigate and compare the performance of a gain-switched picosecond Fabry-Perot laser diode operated at 1.06 ”m under both injection- and self-seeded conditions. Our experiments show that comparable performance can be obtained for both modes of operation, with the self-seeding arrangement offering overall benefits in terms of reduced system complexity and cost, providing the associated quantization of available pulse repetition rate can be tolerated

    SOA - NOLM in Reflective Configuration for Optical Regeneration in High Bit Rate Transmission Systems

    No full text
    This paper presents a theoretical and experimental investigation of optical signal regeneration properties of a non-linear optical loop mirror using a semiconductor optical amplifier as the active element (SOA-NOLM). While this device has been extensively studied for optical time division demultiplexing (OTDM) and wavelength conversion applications, our proposed approach, based on a reflective configuration, has not yet been investigated, particularly in the light of signal regeneration. The impact on the transfer function shape of different parameters, like SOA position in the interferometer and SOA input optical powers, are numerically studied to appreciate the regenerative capabilities of the device.Regenerative performances in association with a dual stage of SOA to create a 3R regenerator which preserves the data polarity and the wavelength are experimentally assessed. Thanks to this complete regenerative function, a 100.000 km error free transmission has experimentally been achieved at 10 Gb/s in a recirculating loop. The evolution of Bit Error Rate for multiple pass into the regenerator and the polarization insensitivity demonstration to input data are presented

    25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 106, 213501 (2015) and may be found at https://doi.org/10.1063/1.4921785.Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of −5 dBm. The QD SOAs emit in the 1.3-ÎŒm wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only −11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation

    Photon Counting OTDR : Advantages and Limitations

    Full text link
    We give detailed insight into photon counting OTDR (nu-OTDR) operation, ranging from Geiger mode operation of avalanche photodiodes (APD), analysis of different APD bias schemes, to the discussion of OTDR perspectives. Our results demonstrate that an InGaAs/InP APD based nu-OTDR has the potential of outperforming the dynamic range of a conventional state-of-the-art OTDR by 10 dB as well as the 2-point resolution by a factor of 20. Considering the trace acquisition speed of nu-OTDRs, we find that a combination of rapid gating for high photon flux and free running mode for low photon flux is the most efficient solution. Concerning dead zones, our results are less promising. Without additional measures, e.g. an optical shutter, the photon counting approach is not competitive.Comment: 12 pages, 13 figures, accepted for publication by IEEE Journal of Lightwave Technolog

    Optimized pulse source employing an externally injected gain-switched laser diode in conjunction with a nonlinearly chirped grating

    Get PDF
    In this paper, we demonstrate the generation of transform-limited short optical pulses, which display excellent spectral and temporal qualities by employing a novel technology, based on an externally injected gain-switched laser in conjunction with a nonlinearly chirped grating. Using this technique, 3.5-ps optical pulses exhibiting a time-bandwidth product (TBP) of 0.45 are generated, which are suitable for use in high-speed 80 Gb/s optical time-division multiplexing (OTDM) communications systems. The numerical integration of a set of rate equations using suitable parameters for the devices used in the experiments were carried out to further confirm the feasibility of the proposed method for developing an optimized pulse source for high-speed photonic systems

    Development of a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications

    Get PDF
    Novel avionic communication systems are required for various purposes, for example to increase the flight safety and operational integrity as well as to enhance the quality of service to passengers on board. To serve these purposes, a key technology that is essential to be developed is an antenna system that can provide broadband connectivity within aircraft cabins at an affordable price. Currently, in the European Commission (EC) 7th Framework Programme SANDRA project (SANDRA, 2011), a development of such an antenna system is being carried out. The system is an electronically-steered phased-array antenna (PAA) with a low aerodynamic profile. The reception of digital video broadcasting by satellite (DVB-S) signal which is in the frequency range of 10.7-12.75 GHz (Ku-band) is being considered. In order to ensure the quality of service provided to the passengers, the developed antenna should be able to receive the entire DVB-S band at once while complying with the requirements of the DVB-S system (Morello & Mignone, 2006). These requirements, as will be explained later, dictate a broadband antenna system where the beam is squint-free, i.e. no variation of beam pointing direction for all the frequencies in the desired band. Additionally, to track the satellite, the seamless tunability of the beam pointing direction of this antenna is also required. In this work, a concept of optical beamforming (Riza & Thompson, 1997) is implemented to provide a squint-free beam over the entire Ku-band for all the desired pointing directions. The optical beamformer itself consists of continuously tunable optical delay lines that enable seamless tunability of the beam pointing direction

    Performance improvement of SS-WDM passive optical networks using semiconductor optical amplifiers: Modeling and experiment

    Get PDF
    Les sources incohĂ©rentes sont proposĂ©es comme alternatives aux lasers stabilisĂ©s en longueur d'onde pour rĂ©duire le coĂ»t des rĂ©seaux optiques passifs utilisant le multiplexage par longueur d'onde dĂ©coupĂ©e dans le spectre (SS-WDM PONs). À cause de leur nature incohĂ©rente, ces sources gĂ©nĂšrent au rĂ©cepteur un large bruit d'intensitĂ©. Ce bruit limite l'efficacitĂ© spectrale et/ou le taux binaire pouvant ĂȘtre achevĂ©. Cette thĂšse Ă©tudie l'utilisation des amplificateurs optique Ă  semi-conducteur SOAs pour nettoyer le bruit d'intensitĂ©. De plus, lors de cette thĂšse, nous explorons les outils numĂ©riques et expĂ©rimentaux qui nous permettent d'analyser les performances des SOAs dans le cadre de systĂšmes de communication multi-canaux, incluant le SS-WDM. Nous prĂ©sentons des modĂšles mathĂ©matiques pour le bruit d'intensitĂ©, ce bruit Ă©tant celui qui limite les performances des systĂšmes de communication utilisant des sources incohĂ©rentes. Nous discutons les dynamiques complexes des SOAs et prĂ©sentons les Ă©quations qui gouvernent l'Ă©volution des porteurs de charges dans ces amplificateurs. Nous identifions et soulignons l'effet des paramĂštres les plus importants, qui affectent le processus ainsi que la dynamique de nettoyage du bruit d'intensitĂ©. Nous passons en revue, les diffĂ©rentes techniques de nettoyage de bruit avec les SOAs, qui ont dĂ©montrĂ© les meilleurs rĂ©sultats connus. De plus, nous effectuons une revue de littĂ©rature poussĂ©e pour ce qui a attrait au problĂšme de post-filtrage lorsque le SOA est placĂ© au transmetteur, avant la modulation. Notre premiĂšre contribution pendant ce travail de recherche est de dĂ©montrer, en utilisant l'intermodulation de gain d'un SOA au rĂ©cepteur pour convertir le signal incohĂ©rent en laser cohĂ©rent, une amĂ©lioration significative du taux d'erreur binaire BER. Cette mĂ©thode est spectralement efficace, d'autant plus qu'elle ne souffre point la limitation occasionnĂ©e par le post-filtrage au rĂ©cepteur. En contre partie elle nĂ©cessite un ample budget de puissance qui doit assurer une saturation suffisante de l'amplificateur au rĂ©cepteur. Une source laser est aussi nĂ©cessaire au rĂ©cepteur. Ceci est un inconvĂ©nient, mĂȘme si une telle source n'ait pas besoin d'une quelconque stabilisation. Pour contourner le problĂšme causĂ© par le post-filtrage quand le SOA est au transmetteur, nous proposons un nouveau rĂ©cepteur pour les systĂšmes de communication WDM, qui permet de mieux garder le nettoyage de bruit, et ce malgrĂ© le filtrage optique au rĂ©cepteur. La nouvelle mĂ©thode consiste en un dĂ©tecteur balancĂ© utilisĂ© au rĂ©cepteur: d'un bord, tous les canaux sont dĂ©tectĂ©s sans distinction. De l'autre, le signal dĂ©sirĂ© est bloquĂ© pendant que tous les autres canaux sont dĂ©tectĂ©s. Avec cette mĂ©thode, il est facile de saturer l'amplificateur pour une meilleure suppression de bruit tout en Ă©vitant en grande partie la dĂ©gradation causĂ© par le post-filtrage. Nous avons expĂ©rimentalement dĂ©montrĂ© un systĂšme WDM dense de 8 x 10 Gbps avec une source incohĂ©rente et un SOA en saturation. Une autre contribution originale de ce travail est le dĂ©veloppement d'un outil de simulation pour les SOAs qui est numĂ©riquement plus efficace et lĂ©ger que les modĂšles connus Ă  ce jour. Nous avons donc dĂ©veloppĂ© un modĂšle thĂ©orique simple, pouvant ĂȘtre implĂ©mentĂ© par diagramme block, dans le but de simuler les performances des hens de communications WDM. Notre modĂšle dĂ©montre une bonne concordance avec les rĂ©sultats expĂ©rimentaux ainsi qu'une diminution de temps de calcul de l'ordre de 20 fois. Finalement, lors de la derniĂšre partie de ces travaux, nous nous sommes occupĂ©s de mesurer, de façon prĂ©cise, le temps de recouvrement du gain dans un SOA. Le temps de recouvrement des porteurs dans un SOA est un des paramĂštres les plus importants qui sont Ă  l'origine du phĂ©nomĂšne de nettoyage de bruit et qui rĂ©gissent le comportement ainsi que les dynamiques de l'amplificateur. Nous avons Ă©tudiĂ© en particulier, la dĂ©pendance de ce temps de recouvrement r de la longueur d'onde. Pour le SOA utilisĂ© lors de notre Ă©tude expĂ©rimentale, nous avons dĂ©montrĂ© que r dĂ©pendait de la longueur d'onde de façon similaire au spectre de gain. Ces mesures ont Ă©tĂ© possibles grĂące au dĂ©veloppement d'un nouveau dispositif de mesure pompe/sonde, qui permettait de mesurer le recouvrement du gain pour une pompe et une sonde Ă  la mĂȘme longueur d'onde et ayant le mĂȘme Ă©tat de polarisation
    • 

    corecore