100,804 research outputs found

    Distributive Network Utility Maximization (NUM) over Time-Varying Fading Channels

    Full text link
    Distributed network utility maximization (NUM) has received an increasing intensity of interest over the past few years. Distributed solutions (e.g., the primal-dual gradient method) have been intensively investigated under fading channels. As such distributed solutions involve iterative updating and explicit message passing, it is unrealistic to assume that the wireless channel remains unchanged during the iterations. Unfortunately, the behavior of those distributed solutions under time-varying channels is in general unknown. In this paper, we shall investigate the convergence behavior and tracking errors of the iterative primal-dual scaled gradient algorithm (PDSGA) with dynamic scaling matrices (DSC) for solving distributive NUM problems under time-varying fading channels. We shall also study a specific application example, namely the multi-commodity flow control and multi-carrier power allocation problem in multi-hop ad hoc networks. Our analysis shows that the PDSGA converges to a limit region rather than a single point under the finite state Markov chain (FSMC) fading channels. We also show that the order of growth of the tracking errors is given by O(T/N), where T and N are the update interval and the average sojourn time of the FSMC, respectively. Based on this analysis, we derive a low complexity distributive adaptation algorithm for determining the adaptive scaling matrices, which can be implemented distributively at each transmitter. The numerical results show the superior performance of the proposed dynamic scaling matrix algorithm over several baseline schemes, such as the regular primal-dual gradient algorithm

    Adaptive Momentum for Neural Network Optimization

    Get PDF
    In this thesis, we develop a novel and efficient algorithm for optimizing neural networks inspired by a recently proposed geodesic optimization algorithm. Our algorithm, which we call Stochastic Geodesic Optimization (SGeO), utilizes an adaptive coefficient on top of Polyaks Heavy Ball method effectively controlling the amount of weight put on the previous update to the parameters based on the change of direction in the optimization path. Experimental results on strongly convex functions with Lipschitz gradients and deep Autoencoder benchmarks show that SGeO reaches lower errors than established first-order methods and competes well with lower or similar errors to a recent second-order method called K-FAC (Kronecker-Factored Approximate Curvature). We also incorporate Nesterov style lookahead gradient into our algorithm (SGeO-N) and observe notable improvements. We believe that our research will open up new directions for high-dimensional neural network optimization where combining the efficiency of first-order methods and the effectiveness of second-order methods proves a promising avenue to explore

    Connections Between Adaptive Control and Optimization in Machine Learning

    Full text link
    This paper demonstrates many immediate connections between adaptive control and optimization methods commonly employed in machine learning. Starting from common output error formulations, similarities in update law modifications are examined. Concepts in stability, performance, and learning, common to both fields are then discussed. Building on the similarities in update laws and common concepts, new intersections and opportunities for improved algorithm analysis are provided. In particular, a specific problem related to higher order learning is solved through insights obtained from these intersections.Comment: 18 page

    Path integral policy improvement with differential dynamic programming

    Get PDF
    Path Integral Policy Improvement with Covariance Matrix Adaptation (PI2-CMA) is a step-based model free reinforcement learning approach that combines statistical estimation techniques with fundamental results from Stochastic Optimal Control. Basically, a policy distribution is improved iteratively using reward weighted averaging of the corresponding rollouts. It was assumed that PI2-CMA somehow exploited gradient information that was contained by the reward weighted statistics. To our knowledge we are the first to expose the principle of this gradient extraction rigorously. Our findings reveal that PI2-CMA essentially obtains gradient information similar to the forward and backward passes in the Differential Dynamic Programming (DDP) method. It is then straightforward to extend the analogy with DDP by introducing a feedback term in the policy update. This suggests a novel algorithm which we coin Path Integral Policy Improvement with Differential Dynamic Programming (PI2-DDP). The resulting algorithm is similar to the previously proposed Sampled Differential Dynamic Programming (SaDDP) but we derive the method independently as a generalization of the framework of PI2-CMA. Our derivations suggest to implement some small variations to SaDDP so to increase performance. We validated our claims on a robot trajectory learning task

    A Novel Family of Adaptive Filtering Algorithms Based on The Logarithmic Cost

    Get PDF
    We introduce a novel family of adaptive filtering algorithms based on a relative logarithmic cost. The new family intrinsically combines the higher and lower order measures of the error into a single continuous update based on the error amount. We introduce important members of this family of algorithms such as the least mean logarithmic square (LMLS) and least logarithmic absolute difference (LLAD) algorithms that improve the convergence performance of the conventional algorithms. However, our approach and analysis are generic such that they cover other well-known cost functions as described in the paper. The LMLS algorithm achieves comparable convergence performance with the least mean fourth (LMF) algorithm and extends the stability bound on the step size. The LLAD and least mean square (LMS) algorithms demonstrate similar convergence performance in impulse-free noise environments while the LLAD algorithm is robust against impulsive interferences and outperforms the sign algorithm (SA). We analyze the transient, steady state and tracking performance of the introduced algorithms and demonstrate the match of the theoretical analyzes and simulation results. We show the extended stability bound of the LMLS algorithm and analyze the robustness of the LLAD algorithm against impulsive interferences. Finally, we demonstrate the performance of our algorithms in different scenarios through numerical examples.Comment: Submitted to IEEE Transactions on Signal Processin

    Low-Complexity Reduced-Rank Beamforming Algorithms

    Full text link
    A reduced-rank framework with set-membership filtering (SMF) techniques is presented for adaptive beamforming problems encountered in radar systems. We develop and analyze stochastic gradient (SG) and recursive least squares (RLS)-type adaptive algorithms, which achieve an enhanced convergence and tracking performance with low computational cost as compared to existing techniques. Simulations show that the proposed algorithms have a superior performance to prior methods, while the complexity is lower.Comment: 7 figure
    corecore