12 research outputs found

    Counting Vertices in Isohedral Tilings

    Get PDF
    An isohedral tiling is a tiling of congruent polygons that are also transitive, which is to say the configuration of degrees of vertices around each face is identical. Regular tessellations, or tilings of congruent regular polygons, are a special case of isohedral tilings. Viewing these tilings as graphs in planes, both Euclidean and non-Euclidean, it is possible to pose various problems of enumeration on the respective graphs. In this paper, we investigate some near-regular isohedral tilings of triangles and quadrilaterals in the hyperbolic plane. For these tilings we enumerate vertices as classified by number of edges in the shortest path to a given origin, by combinatorially deriving their respective generating functions

    Determinant Formulae for some Tiling Problems and Application to Fully Packed Loops

    Full text link
    We present determinant formulae for the number of tilings of various domains in relation with Alternating Sign Matrix and Fully Packed Loop enumeration

    Flag arrangements and triangulations of products of simplices

    Full text link
    We investigate the line arrangement that results from intersecting d complete flags in C^n. We give a combinatorial description of the matroid T_{n,d} that keeps track of the linear dependence relations among these lines. We prove that the bases of the matroid T_{n,3} characterize the triangles with holes which can be tiled with unit rhombi. More generally, we provide evidence for a conjectural connection between the matroid T_{n,d}, the triangulations of the product of simplices Delta_{n-1} x \Delta_{d-1}, and the arrangements of d tropical hyperplanes in tropical (n-1)-space. Our work provides a simple and effective criterion to ensure the vanishing of many Schubert structure constants in the flag manifold, and a new perspective on Billey and Vakil's method for computing the non-vanishing ones.Comment: 39 pages, 12 figures, best viewed in colo

    Tilings of an Isosceles Triangle

    Full text link
    An N-tiling of triangle ABC by triangle T is a way of writing ABC as a union of N trianglescongruent to T, overlapping only at their boundaries. The triangle T is the "tile". The tile may or may not be similar to ABC. In this paper we study the case of isosceles (but not equilateral) ABC. We study three possible forms of the tile: right-angled, or with one angle double another, or with a 120 degree angle. In the case of a right-angled tile, we give a complete characterization of the tilings, for N even, but leave open whether N can be odd. In the latter two cases we prove the ratios of the sides of the tile are rational, and give a necessary condition for the existence of an N-tiling. For the case when the tile has one angle double another, we prove N cannot be prime or twice a prime.Comment: 34 pages, 18 figures. This version supplies corrections and simplification

    Emergent Rhombus Tilings from Molecular Interactions with M-fold Rotational Symmetry

    Get PDF
    © 2015 American Physical Society. We show that model molecules with particular rotational symmetries can self-assemble into network structures equivalent to rhombus tilings. This assembly happens in an emergent way, in the sense that molecules spontaneously select irregular fourfold local coordination from a larger set of possible local binding geometries. The existence of such networks can be rationalized by simple geometrical arguments, but the same arguments do not guarantee a network's spontaneous self-assembly. This class of structures must in certain regimes of parameter space be able to reconfigure into networks equivalent to triangular tilings
    corecore