21 research outputs found

    PAC-Bayesian Theory Meets Bayesian Inference

    Get PDF
    We exhibit a strong link between frequentist PAC-Bayesian risk bounds and the Bayesian marginal likelihood. That is, for the negative log-likelihood loss function, we show that the minimization of PAC-Bayesian generalization risk bounds maximizes the Bayesian marginal likelihood. This provides an alternative explanation to the Bayesian Occam's razor criteria, under the assumption that the data is generated by an i.i.d distribution. Moreover, as the negative log-likelihood is an unbounded loss function, we motivate and propose a PAC-Bayesian theorem tailored for the sub-gamma loss family, and we show that our approach is sound on classical Bayesian linear regression tasks.Comment: Published at NIPS 2015 (http://papers.nips.cc/paper/6569-pac-bayesian-theory-meets-bayesian-inference

    Random deep neural networks are biased towards simple functions

    Full text link
    We prove that the binary classifiers of bit strings generated by random wide deep neural networks with ReLU activation function are biased towards simple functions. The simplicity is captured by the following two properties. For any given input bit string, the average Hamming distance of the closest input bit string with a different classification is at least sqrt(n / (2{\pi} log n)), where n is the length of the string. Moreover, if the bits of the initial string are flipped randomly, the average number of flips required to change the classification grows linearly with n. These results are confirmed by numerical experiments on deep neural networks with two hidden layers, and settle the conjecture stating that random deep neural networks are biased towards simple functions. This conjecture was proposed and numerically explored in [Valle P\'erez et al., ICLR 2019] to explain the unreasonably good generalization properties of deep learning algorithms. The probability distribution of the functions generated by random deep neural networks is a good choice for the prior probability distribution in the PAC-Bayesian generalization bounds. Our results constitute a fundamental step forward in the characterization of this distribution, therefore contributing to the understanding of the generalization properties of deep learning algorithms

    PAC-Bayes Analysis of Multi-view Learning

    Get PDF
    This paper presents eight PAC-Bayes bounds to analyze the generalization performance of multi-view classifiers. These bounds adopt data dependent Gaussian priors which emphasize classifiers with high view agreements. The center of the prior for the first two bounds is the origin, while the center of the prior for the third and fourth bounds is given by a data dependent vector. An important technique to obtain these bounds is two derived logarithmic determinant inequalities whose difference lies in whether the dimensionality of data is involved. The centers of the fifth and sixth bounds are calculated on a separate subset of the training set. The last two bounds use unlabeled data to represent view agreements and are thus applicable to semi-supervised multi-view learning. We evaluate all the presented multi-view PAC-Bayes bounds on benchmark data and compare them with previous single-view PAC-Bayes bounds. The usefulness and performance of the multi-view bounds are discussed.Comment: 35 page

    A Primer on PAC-Bayesian Learning

    Get PDF
    International audienc

    PAC-Bayes unleashed: generalisation bounds with unbounded losses

    Get PDF
    We present new PAC-Bayesian generalisation bounds for learning problems with unbounded loss functions. This extends the relevance and applicability of the PAC-Bayes learning framework, where most of the existing literature focuses on supervised learning problems with a bounded loss function (typically assumed to take values in the interval [0;1]). In order to relax this assumption, we propose a new notion called HYPE (standing for \emph{HYPothesis-dependent rangE}), which effectively allows the range of the loss to depend on each predictor. Based on this new notion we derive a novel PAC-Bayesian generalisation bound for unbounded loss functions, and we instantiate it on a linear regression problem. To make our theory usable by the largest audience possible, we include discussions on actual computation, practicality and limitations of our assumptions.Comment: 24 page
    corecore