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Abstract: We present new PAC-Bayesian generalisation bounds for learning problems with un-
bounded loss functions. This extends the relevance and applicability of the PAC-Bayes learning
framework, where most of the existing literature focuses on supervised learning problems with a
bounded loss function (typically assumed to take values in the interval [0;1]). In order to relax this
classical assumption, we propose to allow the range of the loss to depend on each predictor. This
relaxation is captured by our new notion of HYPothesis-dependent rangE (HYPE). Based on this, we
derive a novel PAC-Bayesian generalisation bound for unbounded loss functions, and we instantiate
it on a linear regression problem. To make our theory usable by the largest audience possible, we
include discussions on actual computation, practicality and limitations of our assumptions.

Keywords: statistical learning theory; PAC-Bayes; generalisation bounds

1. Introduction

Since its emergence in the late 1990s, the PAC-Bayes theory (see the seminal works
of [1–3], the recent survey by [4] and work by [5]) has been a powerful tool to obtain gener-
alisation bounds and to derive efficient learning algorithms. Generalisation bounds are
helpful for understanding how a learning algorithm may perform on future similar batches
of data. While the classical generalization bounds typically address the performance of
individual predictors from a given hypothesis class, PAC-Bayes bounds typically address a
randomized predictor defined by a distribution over the hypothesis class.

PAC-Bayes bounds were originally meant for binary classification problems [6–8],
but the literature now includes many contributions involving any bounded loss function
(without loss of generality, with values in [0; 1]), not just the binary loss. Our goal is to
provide new PAC-Bayes bounds that are valid for unbounded loss functions, and thus
extend the usability of PAC-Bayes to a much larger class of learning problems. To do so,
we reformulate the general PAC-Bayes theorem of [9] and use it as basic building block to
derive our new PAC-Bayes bound.

Some ways to circumvent the bounded range assumption on the losses have been
explored in the recent literature. For instance, one approach consists of assuming a tail
decay rate on the loss, such as sub-gaussian or sub-exponential tails [10,11]; however,
this approach requires the knowledge of additional parameters. Some other works have
also looked into the analysis for heavy-tailed losses, e.g., ref. [12] proposed a polynomial
moment-dependent bound with f -divergences, while [13] devised an exponential bound
that assumes the second (uncentered) moment of the loss is bounded by a constant (with
a truncated risk estimator, as recalled in Section 4 below). A somewhat related approach
was explored by [14], who do not assume boundedness of the loss, but instead control
higher-order moments of the generalization gap through the Efron-Stein variance proxy.
See also [5].

Entropy 2021, 23, 1330. https://doi.org/10.3390/e23101330 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1237-7430
https://doi.org/10.3390/e23101330
https://doi.org/10.3390/e23101330
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23101330
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23101330?type=check_update&version=1


Entropy 2021, 23, 1330 2 of 20

We investigate a different route here. We introduce the HYPothesis-dependent rangE
(HYPE) condition, which means that the loss is upper-bounded by a term that depends
on the chosen predictor (but does not depend on the data). Thus, effectively, the loss
may have an arbitrarily large range. The HYPE condition allows us to derive an upper
bound on the exponential moment of a suitably chosen functional, which, combined with
the general PAC-Bayes theorem, leads to our new PAC-Bayes bound. To illustrate it,
we instantiate the new bound on a linear regression problem, which additionally serves
the purpose of illustrating that our HYPE condition is easy to verify in practice, given an
explicit formulation of the loss function. In particular, we shall see in the linear regression
setting that a mere use of the triangle inequality is enough to check the HYPE condition.
The technical assumptions on which our results are based are comparable to those of the
classical PAC-Bayes bounds; we state them in full detail, with discussions, for the sake of
clarity and to make our work accessible.

Our contributions are twofold. (i) We propose PAC-Bayesian bounds holding with
unbounded loss functions, therefore overcoming a limitation of the mainstream PAC-
Bayesian literature for which a bounded loss is usually assumed. (ii) We analyse the bound,
its implications, limitations of our assumptions, and their usability by practitioners. We
hope this will extend the PAC-Bayes framework into a widely usable tool for a significantly
wider range of problems, such as unbounded regression or reinforcement learning problems
with unbounded rewards.

Outline. Section 2 introduces our notation and definition of the HYPE condition and
provides a general PAC-Bayesian bound, which is valid for any learning problem comply-
ing with a mild assumption. For the sake of completeness, we present how our approach
(designed for the unbounded case) behaves in the bounded case (Section 3). This section is
not the core of our work, but rather serves as a safety check and particularises our bound
to more classical PAC-Bayesian assumptions. We also provide numerical experiments.
Section 4 introduces the notion of softening functions and particularises Section 2’s PAC-
Bayesian bound. In particular, we make explicit all terms in the right-hand side. Section 5.1
extends our results to linear regression (which has been studied from the perspective of
PAC-Bayes in the literature, most recently by [15]). We also experimentally illustrate the
behaviour of our bound. Finally, Section 6 presents, in detail, related works and Section 7
contains all proofs of the original claims we make in the paper.

2. Framework and Preliminary Results

The learning problem is specified by three variables (H,Z , `) consisting of a setH of
predictors, the data space Z , and a loss function ` : H×Z → R+.

For a given positive integer m, we consider size-m datasets. The space of all possible
datasets of this fixed size is S = Zm; an arbitrary element of this space is s = (z1, . . . , zm).
We denote S as a random dataset: S = (Z1, . . . , Zm) where the random data points Zi are in-
dependent and sampled from the same distribution µ over Z . We call µ the data-generating
distribution. The assumption that the Zi’s are independent and identically distributed is typi-
cally called the i.i.d. data assumption. It means that the random sample S (of size m) has
distribution µ⊗m which is the product of m copies of µ.

For any predictor h ∈ H, we define the empirical risk of h over a sample s, denoted
Rs(h), and the theoretical risk of h, denoted R(h), as:

Rs(h) =
1
m

m

∑
i=1

`(h, zi) and R(h) = Eµ[`(h, Z)]

respectively, where Eµ[`(h, Z)] denotes the expectation with respect to Z ∼ µ. Finally, we
define the risk gap ∆s(h) = R(h)− Rs(h) for any h ∈ H and s ∈ S . Often, ∆s(h) is referred
to as the generalisation gap.

Notice that for a random dataset S, the empirical risk RS(h) is random, with expected
value Eµ⊗m [RS(h)] = R(h), where Eµ⊗m the expectation under the distribution of the
random sample S.
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In general, Eµ[·] denotes an expectation under the distribution µ. When we want to
emphasize the role of the random variable Z ∼ µ we write EZ[·] or EZ∼µ[·] instead of Eµ[·].
We use a similar convention for expectations related to any other distributions and random
quantities. We now introduce the key concept to our analysis.

Definition 1. (HYPE). A loss function ` : H × Z → R+ is said to satisfy the hypothesis-
dependent range (HYPE) condition if there exists a function K : H → R+\{0} such that
supz∈Z `(h, z) ≤ K(h) for every predictor h. We then say that ` is HYPE(K) compliant.

LetM+
1 (H) be the set of probability distributions onH. We assume that all considered

probability measures on H are defined on a fixed σ-algebra over H, while the notation
M+

1 (H) hides the σ-algebra, for simplicity. For P, P′ ∈ M+
1 (H), the notation P′ � P

indicates that P′ is absolutely continuous with respect to P (i.e., P′(A) = 0 if P(A) = 0 for
measurable A ⊂ H). We write P′ ∼ P to indicate that P′ � P and P� P′, i.e., these two
distributions are absolutely continuous with respect to each other.

We now recall a result from Germain et al. [9]. Note that while implicit in many
PAC-Bayes works (including theirs), we make it explicit that both the prior P and the
posterior Q must be absolutely continuous with respect to each other. We discuss this
restriction below.

Theorem 1. (Adapted from [9], Theorem 2.1.) For any P ∈ M+
1 (H) with no dependency on

data, for any function F : R+ ×R+ → R, define the exponential moment:

χ := ESEh∼P
[
eF(RS(h),R(h))

]
.

If F is convex, then for any δ ∈ [0; 1], with probability of at least 1− δ over random samples
S, simultaneously for all Q ∈ M+

1 (H) such that Q ∼ P we have:

F
(
Eh∼Q[RS(h)],Eh∼Q[R(h)]

)
≤ KL(Q||P) + log

(χ

δ

)
.

The proof is deferred to Section 7.1. Note that the proof in [9] requires that P � Q,
although it is not explicitly stated; we highlight this in our own proof. While Q � P is
classical and necessary for the KL(Q||P) to be meaningful, P � Q appears to be more
restrictive. In particular, we have to choose Q such that it has the exact same support as P
(e.g., choosing a Gaussian and a truncated Gaussian is not possible). However, we can still
apply our theorem when P and Q belong to the same parametric family of distributions,
e.g., both ‘full-support’ Gaussian or Laplace distributions, but these are just two examples
and there are many others.

Note that Alquier et al. [10] (Theorem 4.1) adapted a result from Catoni [8], which
only requires Q� P. This comes at the expense of what Alquier et al. [10] (Definition 2.3)
called a Hoeffding’s assumption, which means that the exponential moment χ is assumed to
be bounded by a function depending only on the hyperparameters (such as the dataset
size m or parameters given by Hoeffding’s assumption). Our analysis does not require this
assumption, which might prove restrictive in practice.

Theorem 1 may be seen as a basis to recover many classical PAC-Bayesian bounds.
For instance, F(x, y) = 2m(x− y)2, recovers McAllester’s bound as recalled in [4] (Theo-
rem 1). To get a usable bound, the outstanding task is to bound the exponential moment
χ. Note that a previous attempt has been made in [11], as described in Section 6.1 below.
Furthermore, under the assumption that the distribution P has no dependency on the data,
we may swap the order of integration in the exponential moment thanks to Fubini-Tonelli’s
theorem and the positiveness of the exponential:

χ = Eh∼PES
[
eF(RS(h),R(h))

]
.
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This is the starting point for the way that the exponential moment was handled in sev-
eral works in the PAC-Bayes literature. Essentially, for a fixed h, one may upper-bound the
innermost expectation (with respect to S) using standard exponential moment inequalities.

In this work, we will use Theorem 1 with F(x, y) = mαD(x, y), where α > 0, and
D : R+ ×R+ → R is a convex function. In this case, the high-probability inequality of the
theorem takes the form:

D
(
Eh∼Q[RS(h)],Eh∼Q[R(h)]

)
≤

1
mα

(
KL(Q||P) + log

(
1
δ
Eh∼PES emαD(RS(h),R(h))

))
. (1)

Our goal is to control ES emαD(RS(h),R(h)) for a fixed h, when D(x, y) = y− x. This
will readily give us control on the exponential moment χ. To do so, we propose the
following theorem:

Theorem 2. Let h ∈ H be a fixed predictor and α ∈ R. If the loss function ` is HYPE(K) compliant,
then for ∆S(h) = R(h)− RS(h) we have:

ES

[
emα∆S(h)

]
≤ exp

(
K(h)2

2m1−2α

)
.

Proof. Let h ∈ H. Then:

ES

[
emα∆S(h)

]
= E

[
exp

(
mα−1

m

∑
i=1

(l(h, Zi)− R(h))

)]

= E
[

m

∏
i=1

exp
(

mα−1(`(h, Zi)− R(h))
)]

=
m

∏
i=1

E
[
exp

(
mα−1(`(h, Zi)− R(h))

)]
.

We now apply Hoeffding’s lemma, for any i ∈ {1..m}, the random (in Zi) variable
`(h, Zi)− R(h) is centered, taking values in [−K(h); K(h)], so that:

E
[
exp

(
mα−1(`(h, Zi)− R(h))

)]
≤ exp

(
m2α−2 4K(h)2

8

)
and finally:

ES

[
emα∆S(h)

]
≤

m

∏
i=1

exp
(

m2α−2 4K(h)2

8

)
= exp

(
K(h)2

2m1−2α

)
.

The strength of this result lies in the fact that K(h)2

m1−2α , is a decreasing factor in m, when
α ≤ 1/2, and more generally, one can control how fast the exponential moment will explode
when m grows by the choice of the hyperparameter α.

For convenient cross-referencing, we state the following rewriting of Theorem 1.

Theorem 3. Let the loss ` be HYPE(K) compliant. For any P ∈ M+
1 (H) with no data dependency,

for any α ∈ R and for any δ ∈ [0; 1], with probability of at least 1− δ over size-m random samples
S, simultaneously for all Q such that Q ∼ P we have:

Eh∼Q[R(h)] ≤ Eh∼Q[RS(h)] +
1

mα

KL(Q||P) + log
Eh∼P

[
exp

(
K(h)2

2m1−2α

)]
δ

.



Entropy 2021, 23, 1330 5 of 20

Proof. We first apply Theorem 1 with F(x, y) = mα(y − x). More precisely, we use
Equation (1) with D(x, y) = y− x. We then conclude with Theorem 2.

3. Safety Check: The Bounded Loss Case
3.1. Theoretical Results

At this stage, the reader might wonder whether this new approach allows for the
recovery of known results in the bounded case: the answer is yes.

In this section, we study the case where ` is bounded by some constant C ∈ R+ \ {0}.
In other words, we consider the case that suph supz `(h, z) ≤ C. We provide a bound, valid
for any choice of “priors” P and “posteriors” Q such that P ∼ Q, which is an immediate
corollary of Theorem 3.

Proposition 1. Let ` be HYPE(K) compliant, with K(h) = C constant, and let α ∈ R. Let
P ∈ M+

1 (H) be a distribution with no data dependency. Then, for any δ ∈ [0; 1], with probability
of at least 1− δ over random m-samples S, simultaneously for all Q ∈ M+

1 (H) such that Q ∼ P
we have:

Eh∼Q[R(h)] ≤ Eh∼Q[RS(h)] +
KL(Q||P) + log(1/δ)

mα
+

C2

2m1−α
.

Remark 1. We provide Proposition 1 to evaluate the robustness of our approach. For instance, by
comparing it with the PAC-Bayesian bound found in Germain et al. [11]. This discussion can be
found in Section 6.1, where the bound from Germain et al. [11] is presented in detail.

Remark 2. At first glance, a naive remark: in order to control the rate of convergence of all the
terms of the bound in Proposition 1 (as is often the case in classical PAC-Bayesian bounds), then the
only case of interest is in fact α = 1

2 . However, one could notice that the factor C2 is not optimisable,
while the KL is. In this way, if it appears that C2 is too big, in practice, one wants to have the
ability to attenuate its influence as much as possible and this may lead us to consider α < 1/2. The
following lemma answers this question.

Lemma 1. For any given K1 > 0, the function fK1(α) := K1
mα + C2

m1−α reaches its minimum at

α0 =
1
2
+

1
2 log(m)

log
(

2K1

C2

)
.

Proof. The explicit calculus of the f
′
K1

and the resolution of f
′
K1
(α) = 0 provides the result.

Remark 3. Lemma 1 indicates that with a fixed “prior” P and “posterior” Q, taking K1 =
KL(Q||P) + log(1/δ), gives the optimised value of the bound in Proposition 1. We numerically
show in Section 3.2 (first experiment there) that optimising α leads to significantly better results.

Now the only remaining question is how to optimise the KL divergence. To do so, we
may need to fix an “informed prior” to minimise the KL divergence with an interesting pos-
terior. This idea has been studied by [16,17] and, more recently, by Mhammedi et al. [18],
Rivasplata et al. [5], among others. We will adapt it to our problem in the simplest way.

We now introduce some additional notation. For a sample s = (z1, . . . , zm) and
k ∈ {1..m}, we define s≤k := {z1, . . . , zk} and s>k := {zk+1, . . . , zm}. Then, similarly, for a
random sample S, we have the splits S≤k and S>k.

Proposition 2. Let ` be HYPE(K) compliant, with constant K(h) = C, and α1, α2 ∈ R. Consider
any “priors” P1 ∈ M+

1 (H) (possibly dependent on S>m/2) and P2 ∈ M+
1 (H) (possibly dependent
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on S≤m/2). Then, for any δ ∈ [0; 1], with probability of at least 1− δ over random size-m samples
S, simultaneously for all Q ∈ M+

1 (H) such that Q ∼ P1 and Q ∼ P2 we have:

Eh∼Q[R(h)] ≤ Eh∼Q[RS(h)] +
1
2

(
KL(Q||P1) + log(2/δ)

(m/2)α1
+

C2

2(m/2)1−α1

)
+

1
2

(
KL(Q||P2) + log(2/δ)

(m/2)α2
+

C2

2(m/2)1−α2

)
.

Proof. Let P1, P2, Q be as stated in Proposition 2. We first notice that by using Proposition
1 on the two halves of the sample, we obtain, with a probability of at least 1− δ/2:

Eh∼Q[R(h)] ≤ Eh∼Q

[
1

m/2

m/2

∑
i=1

`(h, Zi)

]
+

KL(Q||P1) + log(2/δ)

(m/2)α1
+

C2

2(m/2)1−α1

and also with probability at least 1− δ/2:

Eh∼Q[R(h)] ≤ Eh∼Q

[
1

m/2

m/2

∑
i=1

`(h, Zm/2+i)

]
+

KL(Q||P2) + log(2/δ)

(m/2)α2
+

C2

2(m/2)1−α2
.

Hence, with a probability of at least 1− δ, both inequalities hold, and the result follows
by adding them and dividing by 2.

Remark 4. One can notice that the main difference between Proposition 2 and Proposition 1 lies in
the implicit PAC-Bayesian paradigm that our priors must not depend on the data. With this last
proposition, we implicitly allow P1 to depend on S>m/2 and P2 on S≤m/2, which can in practice lead
to far more accurate priors. We numerically show this fact in Section 3.2’s second experiment. Note
that this idea is not new and has been studied, for instance, in [19] for the specific case of SVMs.

3.2. Numerical Experiments

Our experimental framework has been inspired by the work of [18].
Settings. We generate synthetic data for classification, and we are using the 0–1

loss. The data space is Z = X × Y = Rd × {0, 1} with d ∈ N. The set of predictors H
is parameterised with d-dimensional ‘weight’ vectors: H = {hw : X → Y | w ∈ Rd}.
For simplicity, we identify hw with w and we also identify the space H, with the weight
space W = Rd. For z = (x, y) ∈ Z and w ∈ W , we define the loss as `(w, z) :=
|1
{

φ(w>x) > 1/2
}
− y|, where φ(r) = 1

1+e−r . We want to learn an optimised predictor
given a dataset S = (Zi)i=1..m where Zi = (Xi, Yi). To do so, we use regularised logistic
regression and compute:

ŵ(S) := arg min
w∈W

λ
||w||2

2
− 1

m

m

∑
i=1

yi log
(

φ(w>xi)
)
+ (1− yi) log

(
1− φ(w>xi)

)
(2)

where λ is a fixed regularisation parameter.
We also restrict the probability distributions (over W = Rd), considered for this

learning problem. We consider the Gaussian distribution N (w, σ2 Id) with centre w ∈ Rd

and diagonal covariance σ2 Id ∈ Rd×d with σ2 > 0.
Parameters. We set δ = 0.05, λ = 0.01. We approximately solve Equation (2) by using

the minimize function of the optimisation module in Python, with the Powell method. To
approximate gaussian expectations, we use Monte-Carlo sampling.

Synthetic data. We generate synthetic data for d = 10 according to the following
process: for a fixed sample size m, we draw X1, ..., Xm under the multivariate Gaussian
distributionN (0, Id) and for each i we compute the label if Xi as: Yi = 1{φ(w∗>xi) > 1/2}
where w∗ is the vector formed by the d first digits of the number π.
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Normalisation trick. Given the predictors shape, we notice that for any w ∈ W :

1{φ(w>x) > 1/2} = 1 ⇔ 1
1 + exp(−w>x)

>
1
2
⇔ w>x < 0.

Thus, the value of the prediction is exclusively determined by the sign of the inner
product, and this quantity is definitely not influenced by the norm of the vector. Then,
for any sample S, we call the normalisation trick the fact of considering ŵ(S)/||ŵ(S)||
instead of ŵ(S) in our calculations. This process will not deteriorate the quality of the
prediction and will considerably enhance the value of the KL divergence.

3.2.1. First experiment

Our goal here is to highlight the point discussed in Remark 2, e.g., the influence of
the parameter α in Proposition 1. We arbitrarily fix σ2

0 = 1/2, and define our naive prior as
P0 = N (0, σ2

0 Id). For a fixed dataset S, we define our posterior as P(S) := N (ĥ(S), σ2 Id),
with σ2 ∈ {1/2, . . . , 1/2J} (for J = log2(m)) such that it is minimising the bound among
candidates. We computed two curves: first, Proposition 1 with α = 1/2 second, Proposition
1 again with α equals to the value proposed in Lemma 1. Notice that to compute this last
bound, we first optimised our choice of posterior with α = 1/2 and then optimised α,
to be consistent with Lemma 1. Indeed, we proved this lemma by assuming that the KL
divergence was already fixed, hence our optimisation process is in two steps. Note that we
chose to apply the normalisation trick here, we then obtained the left curve of Figure 1.

Discussion. From this curve, we formulate several remarks. First, we remark on this
specific case, our theorem provides a tight result in practice (with an error rate lesser than
10% for the bound with optimised alpha). Second, we can now confirm that choosing an
optimised α leads to a tighter bound. In further studies, it will be relevant to adjust α with
regards to the different terms of our bound instead of looking for an identical convergence
rate for all terms.

3.2.2. Second Experiment

We now study Proposition 2 to see if an informed prior effectively provides a tighter
bound than a naive one. We will use the notations introduced in Proposition 2. For a
dataset S, we define w1(S) = w(S>m/2) as the vector resulting from the optimisation
of Equation (2) on S>m/2. Similarly, we define w2(S) := w(S≤m/2). We arbitrarily fix
σ2

0 = 1/2, and define our informed priors as: P1 = N (w1(S), σ2
0 Id) and P2 = N (w2(S), σ2

0 Id).
Finally, we define our posterior as P(S) := N (ŵ(S), σ2 Id), with σ2 ∈ {1/2, ..., 1/2J} (for
J = log2(m)) with σ2 optimising the bound among the same candidate than the first
experiment. We computed two curves: first, Proposition 1 with α optimised accordingly
to Lemma 1 secondly, Proposition 2 with α1, α2 optimised as well, and informed priors as
defined above. We chose to not apply the normalisation trick here, we then obtained the
right curve of Figure 1.

Discussion. It is clear, that with this framework, having an informed prior is a
powerful tool to enhance the quality of our bound. Notice that we voluntarily chose to
not apply the normalisation trick here. The reason is that this trick appears to be too
powerful in practice, and applying it leads to counterproductive results; to highlight our
point: the bound without informed prior would be tighter than the one with informed
prior. Furthermore, this trick is linked to the specific structure of our problem and is not
valid for any classification problem. Thus, the idea of providing informed priors remains
an interesting tool for most cases.
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Figure 1. Above, result of the first experiment which highlight the importance of optimising α. Below,
result of the second experiment which show how effective an informed prior is.

4. PAC Bayesian Bounds with Smoothed Estimator

We now move on to control the right-hand side term in Theorem 3 when K is not
constant. A first step is to consider a transformed estimate of the risk, inspired by the
truncated estimator from [20], also used in [21], and more recently in [13]. The following is
inspired by the results of [13], which we summarise in Section 6.

The idea is to modify the estimator RS(h) for any h by introducing a threshold t and a
function ψ which will attenuate the influence of the empirical losses (`(h, Zi))i=1..m that
exceed t.

Definition 2. ψ-risks. For every t > 0, ψ : R+ → R+, for any h ∈ H, we define the empirical
ψ-risk RS,ψ,t and the theoretical ψ-risk Rψ,t as follows:

RS,ψ,t(h) :=
t
m

m

∑
i=1

ψ

(
`(h, Zi)

t

)
and Rψ,t(h) = Eµ

[
t ψ

(
`(h, Z)

t

)]
where Z ∼ µ. Notice that ES

[
RS,ψ,t(h)

]
= Rψ,t(h).

We now focus on what we call softening functions, i.e., functions that will temper high
values of the loss function `.

Definition 3. (Softening function). We say that ψ : R+ → R+ is a softening function if:

• ∀x ∈ [0; 1], ψ(x) = x,
• ψ is non-decreasing,
• ∀x ≥ 1, ψ(x) ≤ x.
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We let F denote the set of all softening functions.

Remark 5. Notice that those three assumptions ensure that ψ is continuous at 1. For instance, the
functions f : x 7→ x1{x ≤ 1}+ 1{x > 1} and g : x 7→ x1{x ≤ 1}+ (2

√
x− 1)1{x > 1} are

in F . In Section 6 we compare these softening functions and those used by Holland [13].

Using ψ ∈ F , for a fixed threshold t > 0, the softened loss function tψ
(
`(h,z)

t

)
verifies

for any h ∈ H, z ∈ Z :

t ψ

(
`(h, z)

t

)
≤ t ψ

(
K(h)

t

)
because ψ is non-decreasing. In this way, the exponential moment in Theorem 3 can be far
more controllable. The trade-off lies in the fact that softening ` (instead of taking directly `)
will deteriorate our ability to distinguish between two bad predictions when both of them
are greater than t. For instance, if we choose ψ ∈ F such as ψ = 1 on [1;+∞) and t > 0, if
ψ(`(h, z)/t) = 1 for a certain pair (h, z), then we cannot tell how far `(h, z) is from t and
we only can affirm that `(h, z) ≥ t.

We now move on to the following lemma, which controls the shortfall between
Eh∼Q[R(h)] and Eh∼Q[Rψ,t(h)] for all Q ∈ M+

1 (H), for a given ψ and t > 0. To do that, we
assume that K admits a finite moment under any posterior distribution:

∀Q ∈ M+
1 (H), Eh∼Q[K(h)] < +∞. (3)

For instance, in the case of H identified with a weight space W = RN , and if K is
polynomial in ||w|| (where ||.|| denotes the Euclidean norm), then this assumption holds if
we consider Gaussian priors and posteriors.

Lemma 2. Assume that Equation (3) holds, and let ψ ∈ F , Q ∈ M+
1 (H), t > 0. We have:

Eh∼Q[R(h)] ≤ Eh∼Q[Rψ,t(h)] +Eh∼Q[K(h)1{K(h) ≥ t}].

Proof. Let ψ ∈ F , Q ∈ M+
1 (H), t > 0. We have, for h ∈ H :

R(h)− Rψ,t(h)

= EZ∼µ

[
`(h, Z)− tψ

(
`(h, Z)

t

)]

and using that ∀x ∈ [0, 1], ψ(x) = x,

= EZ∼µ

[(
`(h, Z)− tψ

(
`(h, Z)

t

))
1{`(h, Z) ≥ t}

]
while using that `(h, z) ≤ K(h),

= EZ∼µ

[(
`(h, Z)− tψ

(
`(h, Z)

t

))
1{`(h, Z) ≥ t}1{K(h) ≥ t}

]
and continuing:

≤ EZ∼µ[`(h, Z)1{`(h, Z) ≥ t}]1{K(h) ≥ t} (ψ ≥ 0)

≤ K(h)PZ∼µ{`(h, Z) ≥ t}1{K(h) ≥ t} ( `(h, Z) ≤ K(h))
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Finally, by crudely bounding the probability by 1, we get:

R(h) ≤ Rψ,t(h) + K(h)1{K(h) ≥ t}.

Hence the result by integrating overH with respect to Q.

Finally we present the following theorem, which provides a PAC-Bayesian inequality
bounding the theoretical risk by the empirical ψ-risk for ψ ∈ F .

Theorem 4. Let ` be HYPE(K) compliant, and assume K satisfies Equation (3). Then for any
P ∈ M+

1 (H) with no data dependency, for any α ∈ R, for any ψ ∈ F and for any δ ∈ [0; 1],
with probability of at least 1− δ over size-m random samples S, simultaneously for all Q such that
Q ∼ P we have:

Eh∼Q[R(h)] ≤ Eh∼Q
[
RS,ψ,t(h)

]
+Eh∼Q[K(h)1{K(h) ≥ t}]

+
KL(Q||P) + log

(
1
δ

)
mα

+
1

mα
log

(
Eh∼P

[
exp

(
t2

2m1−2α
ψ

(
K(h)

t

)2
)])

.

Proof. Let ψ ∈ F , we define the ψ-loss:

`2(h, z) = tψ
(
`(h, z)

t

)
.

Since ψ is non decreasing, we have for all (h, z) ∈ H×Z :

`2(h, z) ≤ tψ
(

K(h)
t

)
:= K2(h).

Thus, we apply Theorem 3 to the learning problem defined with `2: for any α and
δ ∈ (0, 1), with probability at least 1− δ over size-m random samples S, simultaneously for
all Q such that Q ∼ P we have:

Eh∼Q
[
Rψ,t(h)

]
≤ Eh∼Q

[
RS,ψ,t(h)

]
+

KL(Q||P) + log
(

1
δ

)
mα

+
1

mα
log
(
Eh∼P

[
exp

(
K2(h)2

2m1−2α

)])
.

We then add Eh∼Q[K(h)1{K(h) ≥ t}] on both sides of the latter inequality and apply
Lemma 2.

Remark 6. Notice that the function ψ : x 7→ x1{x ≤ 1} + 1{x > 1} is such that for any

given prior P we have Eh∼P

[
exp

(
t2

2m1−2α ψ
(

K(h)
t

)2
)]

< +∞. So the exponential moment can be

controlled with a good choice of ψ. Thus the strength of Theorem 4 is to provide a PAC-Bayesian
bound valid for any set of posterior measures verifying Equation (3). The choice of ψ minimising
the bound is still an open problem.

5. The Linear Regression Problem
5.1. Theoretical Result

We now focus on the celebrated linear regression problem and see how our theory
translates to that particular learning problem. We assume that the data is a size-m ran-
dom sample S = (Zi)i=1..m where the Zi are i.i.d. drawn from the distribution µ, and
Zi = (Xi, Yi) with Xi ∈ RN , Yi ∈ R.
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Our goal here is to find the most accurate predictor hw (with w ∈ RN), with respect
to the loss function `(hw, z) = |〈w, x〉 − y|, where z = (x, y). We will make the following
mild assumption: there exists B, C ∈ R+\{0} such that for all z = (x, y) drawn under µ:

||x|| ≤ B and |y| ≤ C

where ||.|| is the norm associated to the classical inner product of RN . Under this assump-
tion we note that for all z = (x, y) drawn according to µ, we have:

`(hw, z) = |〈w, x〉 − y| ≤ |〈w, x〉|+ |y] ≤ ||w||.||x||+ |y| ≤ B||w||+ C.

Thus we define K(hw) = B||w||+ C for w ∈ RN . If we first restrict ourselves to the
framework of Section 2, we want to use Theorem 3 and doing so, our goal is to bound

ξ := Ew∼P

[
exp

(
K(w)2

2m1−2α

)]
. The shape of K invites us to consider a Gaussian prior. Indeed,

we notice that if P = N (0, σ2IN) with 0 < σ2 < m1−2α

B2 , then ξ < +∞. Notice that we cannot

take just any Gaussian prior, however with a small α, the condition 0 < σ2 < m1−2α

B2 may
become quite loose. Thus, we have the following:

Theorem 5. Let α ∈ R and N ≥ 6. Assume that the loss ` is HYPE(K) compliant with K(h) =
B||h||+ C, with B > 0, C ≥ 0. For a prior distribution, consider any Gaussian P = N (0, σ2IN)

with σ2 = t m1−2α

B2 , 0 < t < 1. Then, for any δ ∈ [0; 1], with probability of at least 1− δ over
size-m random samples S, simultaneously for all Q ∈ M+

1 (H) such that P ∼ Q we have:

Eh∼Q[R(h)] ≤ Eh∼Q[RS(h)] +
KL(Q||P) + log(2/δ)

mα
+

C2

2m1−α

(
1 + f (t)−1

)
+

N
mα

(
log

(
1 +

(
C√

2 f (t)m1−2α

))
+ log

(
1√

1− t

))

where f (t) = 1−t
t .

The proof is deferred to Section 7.2. To compare our result with those found in the
literature, we can fix α = 1/2. Doing so, we lose the dependency in m for the choice of the
variance of the prior (which now only depends on B), but we recover the classic decreasing
factor 1/

√
m.

Remark 7. Notice that for now we did not use Section 4, even if we could (because K is polynomial
in ||w|| and we consider Gaussian priors and posteriors, so Equation (3) is satisfied). Doing so,
we obtained a bound which appears to depend linearly on the dimension N. In practice, N may be
too big, and in this case, introducing an adapted softening function ψ (one can think for instance
of ψ(x) = x1{x ≤ 1}+ 1{x > 1}) is a powerful tool to attenuate the weight of the exponential
moment. This also extends the class of authorised Gaussian priors by avoidance, to stick with a
variance σ2 = t m1−2α

B2 , 0 < t < 1.

5.2. Numerical Experiment
5.2.1. Setting

In this section we apply Theorem 5 on a concrete linear regression problem. The
situation is as follows: we want to approximate the function f (x) =

√
〈w∗, x〉, where

w∗ ∈ Rd. We assume that W = [−c, c]d so that w∗ lies in an hypercube centred at 0 of
half-side c > 0, i.e., the set {(wi)i=1,...,d | ∀i, |wi| ≤ c}. Doing so we have ||w∗|| ≤ c

√
d.

Furthermore, we assume that input data are drawn inside a hypercube of half-side
e > 0, i.e., X = [−e, e]d. Doing so we have for any data x, ||x|| ≤ e

√
d.
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For any data x ∈ Rd, we define y = f (x). As before, we identify the hypothesis setH
with the weight spaceW = Rd. As described in Section 5.1, we set `(hw, x, y) = |〈w, x〉− y|.
We then remark that for any (w, x, y):

`(hw, x, y) ≤ |〈w, x〉|+ |y| ≤ ||w||||x||+ |
√
〈w∗, x〉|

≤ e
√

d||w||+
√
||w∗||.||x|| ≤ e

√
d||w||+

√
c
√

d.e
√

d

≤ e
√

d||w||+
√

cde.

Then we can define B = e
√

d and C =
√

cde to apply Theorem 5. We restrict (as before)
the class of distributions overW to be d-dimensional Gaussians:{

N (w, σ2 Id) | w ∈ H, σ2 ∈ R+
}

,

which is the set of candidate distributions for this learning problem. Recall that in practice,
given a fixed α ∈ R, we are only allowed to consider priors such that their variance
σ2 ∈

]
0; m1−2α

B2

[
. We want to learn an optimised predictor (posterior) given a random

dataset S = ((Xi, Yi))i=1,...,m. To do so, we consider synthetic data.

5.2.2. Synthetic Data

We draw w∗ under a Gaussian (with mean 0 and standard deviation equal to 5)
truncated to the hypercube centered at 0 of the half-side c > 0. We generate synthetic data
according to the following process: for a fixed sample size m, we draw X1, . . . , Xm under
a Gaussian (with mean 0 and standard deviation equal to 5) truncated to the hypercube
centered at 0 of the half-side e > 0.

5.2.3. Experiment

First, we fix c = e = 10. Our goal here is to obtain a generalisation bound on
our problem. We fix arbitrarily, for a fixed α ∈ R, t0 = 1/2 and σ2

0 = t0
m1−2α

B2 and we
define our naive prior as P0 = N (0, σ2

0 Id). For a given dataset S, we define our posterior
as Q(S) := N (ŵ(S), σ2 Id), with σ2 ∈ {σ2

0 /2, ..., σ2
0 /2J} (J = log2(m)), such that it is

minimising the bound among candidates. Note that all the previously defined parameters
are dependent on α, which is why we choose α ∈ {i/step | 0 ≤ i ≤ step} for step a
fixed integer (in practice step = 8 or 16) and we take the value of α minimising the bound
among the candidates as well. Figure 2 contains two figures, one with d = 10, the other
with d = 50. On each figure are computed the right-hand side term in Theorem 5 with an
optimised α for each step.

5.2.4. Discussion

To the the best of our knowledge, this is the first attempt to numerically compute PAC-
Bayes bounds for unbounded problems, making it impossible to compare to other results.
We stress, however, that obtaining numerical values for the bound without assuming a
bounded loss is a significant first step. Furthermore, we consider a rather hard problem:
f is not linear, so we cannot rely on a linear approximation fitting perfectly data, and
the larger the dimension, the larger the error, as illustrated by Figure 2. Thus, for any
posterior Q, the quantity Eh∼Q[R(h)] is potentially large in practice and our bound might
not be tight. Finally, notice that optimising α (instead of taking α = 1/2 to recover a
classic convergence rate) leads to a significantly better bound. A numerical example of
this assertion is presented in Section 3.2. We aim to conduct further studies to consider the
convergence rate as an hyperparameter to optimise, rather than selecting the same rate for
all terms in the bound.
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Figure 2. Evaluation of the right hand side in Theorem 5 with d = 10 and d = 50.

6. Existing Work
6.1. Germain et al., 2016

In Germain et al. [11] (Section 4), a PAC-Bayesian bound has been provided for all
sub-gamma losses with a variance t2 and scale parameter c > 0, under a data distribution µ

and a prior P, i.e. losses such that for every λ ∈
(

0, 1
c

)
the following is satisfied:

log
(

1
δ
Eh∼PES eλ(R(h)−RS(h))

)
≤ t2

c2 (− log(1− cλ)− λc) ≤ λ2t2

2(1− cλ)
.

Note that a sub-gamma loss (with regards to µ and P) is potentially unbounded.
Germain et al. then propose the following PAC-Bayesian bound:

Theorem 6. Ref. [11]. If the loss ` is sub-gamma with a variance t2 and scale parameter c, under
the data distribution µ and a fixed prior P ∈ H, then for any δ ∈ [0; 1], with probability 1− δ over
size-m random samples, simultaneously for all Q� P we have:

Eh∼Q[R(h)] ≤ Eh∼Q[RS(h)] +
KL(Q||P) + log(1/δ)

m
+

t2

2(1− c)
.

Theorem 6 will be quoted several times in this paper given that it is a concrete PAC
Bayesian bound provided with the will to overcome the constraint of a bounded loss. It is
also one of the only one found in the literature.

Can we apply this theorem to the bounded case? The answer is yes: we remark
that thanks to Hoeffding’s lemma, if ` is bounded by C > 0, then for any h ∈ H it holds
that RS(h)− R(h) ∈ [−C, C] almost surely. So, ∀λ ∈ R, logEz∼µ

[
eλ(R(h)−RS(h)

]
≤ λ2C2

2 .
Therefore, for any prior P, we have:

logEh∼PEz∼µ

[
eλ(R(h)−RS(h)

]
≤ λ2C2

2
.

Thus, ` is sub-gamma with variance C2 and scale parameter 0. Then, Theorem 6 can
be applied with t2 = C2, c = 0.

Comparison with Proposition 1. We remark that by taking K = C and α = 1 in
Proposition 1, we are recovering Theorem 6. However, our approach allows us to say that if
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we can obtain a more precise form of K such that ∀h ∈ H, K(h) ≤ C and K is non-constant,
Theorem 3, will ensure that:

1
mα

log
(
Eh∼P

[
exp

(
K(h)2

2m1−2α

)])
≤ C2

2m1−α
.

Thus, having precise information on the behavior of the loss function `, with regards
to the predictor h, allows us to obtain a tighter control of the exponential moment, and
hence a tighter bound.

Remark 8. We can see that Theorem 6 cannot control the factor C2/2. However, Ref. [11]
remarked on this apparent weakness and partially corrected this issue [11] (Section 4, Equations
(13) and (14)). Indeed, they proposed to balance the influence of m between the different terms of the
PAC-Bayes bound by providing the same convergence rate in 1/

√
m to all terms.

We can then see Proposition 1 as a proper generalisation of Germain et al. [11] (Section 4,
Equations (13) and (14)). Indeed, our bound exhibits properly the influence of the parameter α.
Thus, we understand (and Lemma 1 proves it) that the choice of α deserves a study in itself in the
way it is now a parameter of our optimisation problem. This fact has already been highlighted in
Alquier et al. [10] (Theorem 4.1) (where λ := mα).

6.2. Holland, 2019

In [13], Holland proposed a PAC Bayesian inequality with unbounded loss. For that,
he introduced a function ψ verifying a few specific conditions, different to those used
in Section 4 to define our set of softening functions. Indeed, he considered a function ψ
such that:

• ψ is bounded,
• ψ is non decreasing,
• it exists b > 0 such that for all u ∈ R:

− log
(

1− u +
u2

b

)
≤ ψ(u) ≤ log

(
1 + u +

u2

b

)
. (4)

We remark that, as Holland did, we supposed that our softening functions are non-
decreasing. We chose softening functions to be equal to the identity function (x 7→ x) on
[0, 1], which is quite restrictive. However, we are imposing softening functions to be lesser
than the identity on [1,+∞); whereas, Holland supposed ψ to be bounded and satisfy
Equation (4). A concrete example of such a function ψ, lies in the piecewise polynomial
function of Catoni and Giulini [21], defined by:

ψ(u) =


−2
√

2/3 if u ≤ −
√

2
u− u3/6 if u ∈ [−2

√
2/3, 2

√
2/3]

2
√

2/3 otherwise.

As in Section 4, we are considering the ψ-empirical risk RS,ψ,t for any t > 0. Holland
provided his theorem given the fact the following assumptions are realised:

• Bounds on lower-order moments. For all h ∈ H, we have EZ∼µ[`(h, Z)2] ≤ M2 < +∞
and EZ∼µ[`(h, Z)3] ≤ M3 < +∞.

• Bounds on the risk. For all h ∈ H, we suppose R(h) ≤
√

mM2/(4 log(δ−1).
• Large enough confidence, we require δ ≤ e−1/9.

Now we can state Holland’s theorem.
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Theorem 7. Ref. [13]. Let P be a prior distribution on modelH. Let the three assumptions listed
above hold. Setting t2 = mM2/(2 log(δ−1)), then for any δ ∈ [0; 1], with probability of at least
1− δ over the random draw of the size-m sample S, simultaneously for all Q it holds that:

Eh∼Q[R(h)] ≤ Eh∼Q
[
RS,ψ,t(h)

]
+

1√
m

(
KL(Q||P) + 1

2
log
(

8πM2

δ2

)
− 1
)

+
1√
m

ν∗(H) + O
(

1
m

)
where:

ν∗(H) :=
Eh∼P

[
exp

(√
m(R(h)− RS,ψ,t(h))

)]
Eh∼P

[
exp

(
R(h)− RS,ψ,t(h)

)] .

7. Proofs
7.1. Proof of Theorem 1

Proof. Let F : R+ ×R+ 7→ R be a convex function, P a fixed prior, and δ ∈ [0, 1]. Since
Eh∼P

[
eF(RS(h),R(h))

]
is a nonnegative random variable, we know that, by Markov’s inequal-

ity, for any h ∈ H :

P
(
Eh∼P

[
eF(RS(h),R(h))

]
>

1
δ
ES Eh∼P

[
eF(RS(h),R(h))

])
≤ δ.

So with probability of at least 1− δ, we have:

Eh∼P

[
eF(RS(h),R(h))

]
≤ 1

δ
ES Eh∼P

[
eF(RS(h),R(h))

]
=

χ

δ
.

Applying the log function on each side of this inequality gives us with probability of
at least 1− δ over samples S:

log
(
Eh∼P

[
eF(RS(h),R(h))

])
≤ log

(χ

δ

)
.

We now rename A := log
(
Eh∼P

[
eF(RS(h),R(h))

])
.

Furthermore, if we denote by dQ
dP the Radon-Nikodym derivative of Q with respect to

P when Q� P, we then have, for all Q such that Q ∼ P:

A = log
(
Eh∼Q

[
dP
dQ

eF(RS(h),R(h))
])

= log

(
Eh∼Q

[(
dQ
dP

)−1
eF(RS(h),R(h))

])
( dP

dQ =
(

dQ
dP

)−1
)

and by concavity of log and Jensen’s inequality,

≥ −Eh∼Q

[
log
(

dQ
dP

)]
+Eh∼Q[F(RS(h), R(h))]

= −KL(Q||P) +Eh∼Q[F(RS(h), R(h))]

while by convexity of F with Jensen’s inequality,

≥ −KL(Q||P) + F
(
Eh∼Q[RS(h)],Eh∼Q[R(h)]

)
.
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Hence, for Q such that Q ∼ P,

F
(
Eh∼Q[RS(h)],Eh∼Q[R(h)]

)
≤ KL(Q||P) + A.

So with probability 1− δ, for Q such that Q ∼ P,

F
(
Eh∼Q[RS(h)],Eh∼Q[R(h)]

)
≤ KL(Q||P) + log

(χ

δ

)
.

This completes the proof of Theorem 1.

7.2. Proof of Theorem 5

We first provide a technical property. Recall that:

ξ = Eh∼P

[
exp

(
K(h)2

2m1−2α

)]
.

Proposition 3. Let α ∈ R. Suppose the loss ` is HYPE(K) compliant with K(h) = B||h||+ C,
with B > 0, C ≥ 0. Then, for any Gaussian prior P = N (0, σ2IN) with σ2 = t m1−2α

B2 , 0 < t < 1
and N ≥ 6 we have:

ξ ≤ 2 exp
(

C2

2m1−2α f (t)
(1 + f (t))

)
1(√

1− t
)N

(
1 +

(
C√

2 f (t)m1−2α

))N−1

with f (t) = 1−t
t .

Proof. We recall that σ2 = t m1−2α

B2 . By expliciting the expectation and K(h) we thus obtain:

ξ =

(
1√

2πσ2

)N ∫
h∈RN

exp
(
(B||h||+ C)2

2m1−2α
− ||h||

2B2

2tm1−2α

)
dh

=

(
1√

2πσ2

)N ∫
h∈RN

exp
(
− 1

2m1−2α

(
f (t)B2||h||2 − 2BC||h|| − C2

))
dh

=

(
1√

2πσ2

)N ∫
h∈RN

exp
(
− B2 f (t)

2m1−2α

(
||h||2 − 2C||h||

B f (t)
− C2

B2 f (t)

))
dh

= exp
(

C2

2m1−2α f (t)
(1 + f (t))

)
1

(
√

2πσ2)N

∫
h∈RN

exp

(
− B2 f (t)

2m1−2α

(
||h|| − C

B f (t)

)2
)

dh.

We will use the spherical coordinates in N-dimensional Euclidean space given in [22]:

ϕ : (h1, ..., hN)→ (r, ϕ1, ..., ϕN−1)

where especially r = ||h|| and also the Jacobian of φ is given by:

dNV = rN−1
N−2

∏
k=1

sink(ϕN−1−k) = rN−1dSN−1 V.

Let us also precise that as given in Blumenson [22] (page 66), we have that the surface of
the sphere of radius 1 in N-dimensional space is:

∫
ϕ1,...,ϕN−1

dSN−1 V dϕ1 . . . dϕN−1 =
2
√

π
N

Γ
(

N
2

)
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where Γ is the Gamma function defined as:

Γ(x) =
∫ +∞

0
tx−1e−tdt for x > −1.

Then, if we set:

A :=
∫

h∈RN
exp

(
− B2 f (t)

2m1−2α

(
||h|| − C

B f (t)

)2
)

dh

we obtain by a change of variable:

A =
∫

r,ϕ1,...,ϕN−1

exp

(
− B2 f (t)

2m1−2α

(
r− C

B f (t)

)2
)

dNV drdϕ1...dϕN−1

=

2
√

π
N

Γ
(

N
2

)
 ∫ +∞

r=0
exp

(
− B2 f (t)

2m1−2α

(
r− C

B f (t)

)2
)

rN−1dr

=

2
√

π
N

Γ
(

N
2

)
 ∫ +∞

r=− C
B f (t)

(
r +

C
B f (t)

)N−1
exp

(
− B2 f (t)

2m1−2α
r2
)

dr

=

2
√

π
N

Γ
(

N
2

)
 N−1

∑
k=0

(
N − 1

k

)(
C

B f (t)

)N−k−1 ∫ +∞

r=− C
B f (t)

rk exp
(
− B2 f (t)

2m1−2α
r2
)

dr.

We fix a random variable X such that:

X ∼ N
(

0,
m1−2α

B2( f (t)

)
.

We then have for any k positive integer, if k is even:

∫ +∞

r=− C
B f (t)

rk exp
(
− B2 f (t)

2m1−2α
r2
)

dr ≤
∫ +∞

r=−∞
rk exp

(
− B2 f (t)

2m1−2α
r2
)

dr

≤

√
2π

m1−2α

B2 f (t)
E[|X|k].

And if k is odd:∫ +∞

r=− C
B f (t)

rk exp
(
− B2 f (t)

2m1−2α
r2
)

dr ≤
∫ +∞

r=0
rk exp

(
− B2 f (t)

2m1−2α
r2
)

dr

≤

√
2π

m1−2α

B2 f (t)
E[|X|k1(X ≥ 0)]

≤

√
2π

m1−2α

B2 f (t)
E[|X|k].

So we have:

A ≤

2
√

π
N

Γ
(

N
2

)
 N−1

∑
k=0

(
N − 1

k

)(
C

B f (t)

)N−k−1
√

2π
m1−2α

B2 f (t)
E[|X|k].

As precised in [23], we have for any k:

E[|X|k] =
(√

m1−2α

B2 f (t)

)k

2k/2
Γ
(

k+1
2

)
√

π
.
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So finally:

A ≤ 2
√

π
N

N−1

∑
k=0

(
N − 1

k

)(
C

B f (t)

)N−k−1
(√

2m1−2α

B2 f (t)

)k+1 Γ
(

k+1
2

)
Γ
(

N
2

) .

Lemma 3. If N ≥ 6, then:

max
k=0..N−1

Γ
(

k+1
2

)
Γ
(

N
2

) = 1.

Proof. As precised in the introduction of Srinivasan and Zvengrowski [24], Gauss [25]
(page 147) proved that on the interval [x0,+∞) where x0 ∈ [1.46, 1.47], Γ is a monotonic
increasing function. So, for N − 1 ≥ k ≥ 2, Γ( k+1

2 ) ≤ Γ(N
2 ). And because Γ(1/2) =√

π, Γ(1) = 1, we have:

max
k=0..N−1

Γ
(

k+1
2

)
Γ
(

N
2

) = max

 √
π

Γ
(

N
2

) ,
Γ
(

N−1+1
2

)
Γ
(

N
2

)
 = max

 √
π

Γ
(

N
2

) , 1


Because N ≥ 6, and Γ is monotone and increasing on [3;+∞], we have Γ(N/2) ≥

Γ(3) ≥
√

π. Hence the result.

Using Lemma 3 allows us to write:

A ≤ 2
√

π
N

N−1

∑
k=0

(
N − 1

k

)(
C

B f (t)

)N−k−1
(√

2m1−2α

B2 f (t)

)k+1

.

We recall that σ2 = t m1−2α

B2 and f (t) = 1−t
t . Then we can write:

A ≤ 2
√

π
N

N−1

∑
k=0

(
N − 1

k

)(
C

B f (t)

)N−k−1
√ 2σ2

1− t

k+1

.

We now conclude with the final bound on ξ:

ξ ≤ exp
(

C2

2m1−2α f (t) (1 + f (t))
)

1
(
√

2πσ2)N A

≤ exp
(

C2

2m1−2α f (t) (1 + f (t))
)

1
(
√

2πσ2)N 2
√

π
N

∑N−1
k=0 (N−1

k )
(

C
B f (t)

)N−k−1
(√

2σ2

1−t

)k+1

≤ 2 exp
(

C2

2m1−2α f (t) (1 + f (t))
)

∑N−1
k=0 (N−1

k )
(

C
B f (t)

)N−k−1(√ 1
1−t

)k+1(√
B2

2tm1−2α

)N−k−1

≤ 2 exp
(

C2

2m1−2α f (t) (1 + f (t))
)

∑N−1
k=0 (N−1

k )

(
C
√

t
(1−t)

√
2m1−2α

)N−k−1(√
1

1−t

)k+1

≤ 2
exp

(
C2

2m1−2α f (t)
(1+ f (t))

)
(
√

1−t)
N ∑N−1

k=0 (N−1
k )

(
C√

2 f (t)m1−2α

)N−k−1

≤ 2
exp

(
C2

2m1−2α f (t)
(1+ f (t))

)
(
√

1−t)
N

(
1 +

(
C√

2 f (t)m1−2α

))N−1
.

This completes the proof of Proposition 3.

Proof of Theorem 5. We combine Theorem 3 with Proposition 3. We also upper-bound
N − 1 by N.
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