51 research outputs found

    Tight t-Designs and Squarefree Integers

    Get PDF
    The authors prove, using a variety of number-theoretical methods, that tight t-designs in the projective spaces FPn of ‘lines’ through the origin in Fn+1 (F = ℂ, or the quarternions H) satisfy t ⩽ 5.Such a design is a generalisation of a combinatorial t-design. It is known that t ⩽ 5 in the cases F=ℝ,O (the octonions) and that t ⩽ 11 for tight spherical t-designs; hence the author's result essentially completes the classification of tight t-designs in compact connected symmetric spaces of rank 1

    Weighted complex projective 2-designs from bases: optimal state determination by orthogonal measurements

    Get PDF
    We introduce the problem of constructing weighted complex projective 2-designs from the union of a family of orthonormal bases. If the weight remains constant across elements of the same basis, then such designs can be interpreted as generalizations of complete sets of mutually unbiased bases, being equivalent whenever the design is composed of d+1 bases in dimension d. We show that, for the purpose of quantum state determination, these designs specify an optimal collection of orthogonal measurements. Using highly nonlinear functions on abelian groups, we construct explicit examples from d+2 orthonormal bases whenever d+1 is a prime power, covering dimensions d=6, 10, and 12, for example, where no complete sets of mutually unbiased bases have thus far been found.Comment: 28 pages, to appear in J. Math. Phy

    On the minimum diameter of plane integral point sets

    Get PDF
    Since ancient times mathematicians consider geometrical objects with integral side lengths. We consider plane integral point sets P\mathcal{P}, which are sets of nn points in the plane with pairwise integral distances where not all the points are collinear. The largest occurring distance is called its diameter. Naturally the question about the minimum possible diameter d(2,n)d(2,n) of a plane integral point set consisting of nn points arises. We give some new exact values and describe state-of-the-art algorithms to obtain them. It turns out that plane integral point sets with minimum diameter consist very likely of subsets with many collinear points. For this special kind of point sets we prove a lower bound for d(2,n)d(2,n) achieving the known upper bound nc2loglognn^{c_2\log\log n} up to a constant in the exponent. A famous question of Erd\H{o}s asks for plane integral point sets with no 3 points on a line and no 4 points on a circle. Here, we talk of point sets in general position and denote the corresponding minimum diameter by d˙(2,n)\dot{d}(2,n). Recently d˙(2,7)=22270\dot{d}(2,7)=22 270 could be determined via an exhaustive search.Comment: 12 pages, 5 figure

    Tight informationally complete quantum measurements

    Get PDF
    We introduce a class of informationally complete positive-operator-valued measures which are, in analogy with a tight frame, "as close as possible" to orthonormal bases for the space of quantum states. These measures are distinguished by an exceptionally simple state-reconstruction formula which allows "painless" quantum state tomography. Complete sets of mutually unbiased bases and symmetric informationally complete positive-operator-valued measures are both members of this class, the latter being the unique minimal rank-one members. Recast as ensembles of pure quantum states, the rank-one members are in fact equivalent to weighted 2-designs in complex projective space. These measures are shown to be optimal for quantum cloning and linear quantum state tomography.Comment: 20 pages. Final versio

    Fibonacci-Lucas SIC-POVMs

    Full text link
    We present a conjectured family of SIC-POVMs which have an additional symmetry group whose size is growing with the dimension. The symmetry group is related to Fibonacci numbers, while the dimension is related to Lucas numbers. The conjecture is supported by exact solutions for dimensions d=4,8,19,48,124,323, as well as a numerical solution for dimension d=844.Comment: The fiducial vectors can be obtained from http://sicpovm.markus-grassl.de as well as from the source files. v2: precision for the numerical solution in dimension 844 increased to 150 digits and new exact solution for dimension 323 adde
    corecore