37 research outputs found

    On the Geometry of IFS Fractals and its Applications

    Get PDF
    Visually complex objects with infinitesimally fine features, naturally call for mathematical representations. The geometrical property of self-similarity - the whole similar to its parts - when iterated to infinity generates such features. Finite sets of affine contractions called Iterated Function Systems (IFS), with their compact attractors IFS fractals, can be applied to represent detailed self-similar shapes, such as trees or mountains. The fine local features of such attractors prevent their straightforward geometrical handling, and often imply a non-integer Hausdorff dimension. The main goal of the thesis is to develop an alternative approach to the geometry of IFS fractals in the classical sense via bounding sets. The results are obtained with the objective of practical applicability. The thesis thus revolves around the central problem of determining bounding sets to IFS fractals - and the convex hull in particular - emphasizing the fundamental role of such sets in their geometry. This emphasis is supported throughout the thesis, from real-life and theoretical applications to numerical algorithms crucially dependent on bounding

    Self similar sets, entropy and additive combinatorics

    Full text link
    This article is an exposition of recent results on self-similar sets, asserting that if the dimension is smaller than the trivial upper bound then there are almost overlaps between cylinders. We give a heuristic derivation of the theorem using elementary arguments about covering numbers. We also give a short introduction to additive combinatorics, focusing on inverse theorems, which play a pivotal role in the proof. Our elementary approach avoids many of the technicalities in the original proof but also falls short of a complete proof. In the last section we discuss how the heuristic argument is turned into a rigorous one.Comment: 21 pages, 2 figures; submitted to Proceedings of AFRT 2012. v5: more typos correcte

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Modular Hopping and Running via Parallel Composition

    Get PDF
    Though multi-functional robot hardware has been created, the complexity in its functionality has been constrained by a lack of algorithms that appropriately manage flexible and autonomous reconfiguration of interconnections to physical and behavioral components. Raibert pioneered a paradigm for the synthesis of planar hopping using a composition of ``parts\u27\u27: controlled vertical hopping, controlled forward speed, and controlled body attitude. Such reduced degree-of-freedom compositions also seem to appear in running animals across several orders of magnitude of scale. Dynamical systems theory can offer a formal representation of such reductions in terms of ``anchored templates,\u27\u27 respecting which Raibert\u27s empirical synthesis (and the animals\u27 empirical performance) can be posed as a parallel composition. However, the orthodox notion (attracting invariant submanifold with restriction dynamics conjugate to a template system) has only been formally synthesized in a few isolated instances in engineering (juggling, brachiating, hexapedal running robots, etc.) and formally observed in biology only in similarly limited contexts. In order to bring Raibert\u27s 1980\u27s work into the 21st century and out of the laboratory, we design a new family of one-, two-, and four-legged robots with high power density, transparency, and control bandwidth. On these platforms, we demonstrate a growing collection of {\{body, behavior}\} pairs that successfully embody dynamical running / hopping ``gaits\u27\u27 specified using compositions of a few templates, with few parameters and a great deal of empirical robustness. We aim for and report substantial advances toward a formal notion of parallel composition---embodied behaviors that are correct by design even in the presence of nefarious coupling and perturbation---using a new analytical tool (hybrid dynamical averaging). With ideas of verifiable behavioral modularity and a firm understanding of the hardware tools required to implement them, we are closer to identifying the components required to flexibly program the exchange of work between machines and their environment. Knowing how to combine and sequence stable basins to solve arbitrarily complex tasks will result in improved foundations for robotics as it goes from ad-hoc practice to science (with predictive theories) in the next few decades

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    International Congress of Mathematicians: 2022 July 6–14: Proceedings of the ICM 2022

    Get PDF
    Following the long and illustrious tradition of the International Congress of Mathematicians, these proceedings include contributions based on the invited talks that were presented at the Congress in 2022. Published with the support of the International Mathematical Union and edited by Dmitry Beliaev and Stanislav Smirnov, these seven volumes present the most important developments in all fields of mathematics and its applications in the past four years. In particular, they include laudations and presentations of the 2022 Fields Medal winners and of the other prestigious prizes awarded at the Congress. The proceedings of the International Congress of Mathematicians provide an authoritative documentation of contemporary research in all branches of mathematics, and are an indispensable part of every mathematical library

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore