135,573 research outputs found

    On Edge-Disjoint Pairs Of Matchings

    Get PDF
    For a graph G, consider the pairs of edge-disjoint matchings whose union consists of as many edges as possible. Let H be the largest matching among such pairs. Let M be a maximum matching of G. We show that 5/4 is a tight upper bound for |M|/|H|.Comment: 8 pages, 2 figures, Submitted to Discrete Mathematic

    A Lower Bound for Quantum Phase Estimation

    Get PDF
    We obtain a query lower bound for quantum algorithms solving the phase estimation problem. Our analysis generalizes existing lower bound approaches to the case where the oracle Q is given by controlled powers Q^p of Q, as it is for example in Shor's order finding algorithm. In this setting we will prove a log (1/epsilon) lower bound for the number of applications of Q^p1, Q^p2, ... This bound is tight due to a matching upper bound. We obtain the lower bound using a new technique based on frequency analysis.Comment: 7 pages, 1 figur

    Improved Bounds for Online Preemptive Matching

    Get PDF
    When designing a preemptive online algorithm for the maximum matching problem, we wish to maintain a valid matching M while edges of the underlying graph are presented one after the other. When presented with an edge e, the algorithm should decide whether to augment the matching M by adding e (in which case e may be removed later on) or to keep M in its current form without adding e (in which case e is lost for good). The objective is to eventually hold a matching M with maximum weight. The main contribution of this paper is to establish new lower and upper bounds on the competitive ratio achievable by preemptive online algorithms: 1. We provide a lower bound of 1+ln 2~1.693 on the competitive ratio of any randomized algorithm for the maximum cardinality matching problem, thus improving on the currently best known bound of e/(e-1)~1.581 due to Karp, Vazirani, and Vazirani [STOC'90]. 2. We devise a randomized algorithm that achieves an expected competitive ratio of 5.356 for maximum weight matching. This finding demonstrates the power of randomization in this context, showing how to beat the tight bound of 3 +2\sqrt{2}~5.828 for deterministic algorithms, obtained by combining the 5.828 upper bound of McGregor [APPROX'05] and the recent 5.828 lower bound of Varadaraja [ICALP'11]

    The Cost of Perfection for Matchings in Graphs

    Full text link
    Perfect matchings and maximum weight matchings are two fundamental combinatorial structures. We consider the ratio between the maximum weight of a perfect matching and the maximum weight of a general matching. Motivated by the computer graphics application in triangle meshes, where we seek to convert a triangulation into a quadrangulation by merging pairs of adjacent triangles, we focus mainly on bridgeless cubic graphs. First, we characterize graphs that attain the extreme ratios. Second, we present a lower bound for all bridgeless cubic graphs. Third, we present upper bounds for subclasses of bridgeless cubic graphs, most of which are shown to be tight. Additionally, we present tight bounds for the class of regular bipartite graphs
    • …
    corecore