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We obtain a query lower bound for quantum algorithms solving the phase estimation problem.
Our analysis generalizes existing lower bound approaches to the case where the oracle Q is given by
controlled powers Qp of Q, as it is for example in Shor’s order finding algorithm. In this setting we
will prove a Ω(log 1/ǫ) lower bound for the number of applications of Qp1 , Qp2 , . . .. This bound is
tight due to a matching upper bound. We obtain the lower bound using a new technique based on
frequency analysis.
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I. INTRODUCTION

We study lower bounds for the phase estimation prob-
lem. In this problem we are given a unitary transfor-
mation Q as a black-box and we know that |q〉 is an
eigenvector of Q, i.e.

Q |q〉 = e2πiϕ |q〉 , ϕ ∈ [0, 1). (1)

We want to determine the phase ϕ up to precision ǫ.
The quantum phase estimation algorithm approxi-

mates ϕ given |q〉 and is the main building block in
Shor’s factoring algorithm, the counting algorithm, and
the eigenvalue estimation algorithm [1–7].

The main element of this algorithm are controlled pow-
ers of Q, which we define as follows. Let Q be a t qubit
unitary transformation and |ψ〉 an arbitrary t qubit state.
For l = 1, . . . , c, and p ∈ N we define the c+t qubit trans-
formation

W p
l (Q) |x1...xc〉 |ψ〉 =

{
|x1...xc〉 |ψ〉 xl = 0

|x1...xc〉Q
p |ψ〉 xl = 1

. (2)

We call W p
l (Q) a (controlled) power query. If the trans-

formation Q is clear from the context, we will just write
W p

l = W p
l (Q).

This notation allows us to write the phase estimation
algorithm in a compact form, see figure 1. The algorithm
returns an approximation ϕ̃ of the phase ϕ of |q〉.

|0〉 H⊗T . . . F−1

2T |ϕ̃〉

|q〉
W 2

0

T W 2
1

T−1

. . .
W 2

T−1

1

|q〉

FIG. 1: The quantum phase estimation algorithm in power
query notation. H is the Hadamard gate, W p

l a power query
as in equation (2), and F−1

2T is the inverse quantum Fourier
transform on T qubits.
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It is well known that T = O(log ǫ−1) power queries
suffice to approximate ϕ up to ǫ. In this paper we study
whether it is possible to improve on the performance of
the phase estimation procedure, i.e., we ask what is the
minimal number of applications of W p

l to estimate ϕ up
to ǫ.

Theorem 1. Any quantum algorithm estimating the
phase ϕ of an eigenvector |q〉 of matrices Q up to pre-
cision ǫ, with Q from the class

Q|q〉,t =
{
Q : Q is a unitary t qubit transform,

|q〉 is an eigenvector of Q
}
. (3)

has to use Ω(log 1
ǫ ) power queries.

We prove Theorem 1 in section IV.
The query cost of the phase estimation algorithm may

be given by counting each application of W p
l (Q) as p

applications of Q, i.e. the query cost of this algorithm is

1 + 2 + 4 + . . .+ 2T−1 = 2T − 1.

For certain problems, like order-finding, it is possible
to exploit some knowledge about Q. Here Q |y〉 =
|xy mod N〉 for a certain fixed x, and therefore

Q2j ∣∣y
〉

=
∣∣x2j

y mod N
〉

=
∣∣
(
x2j−1

)2

y mod N
〉

is easy to compute by repeated squaring and modular
multiplication, see e.g. [2]. In this case we can use power

queries W 2k

l with essentially the same cost as an applica-
tion of Q. Thus we can execute the phase estimation al-
gorithm with query cost T and have exponential speedup
for the query cost: from 2T − 1 to T . Let us stress that

this speedup only applies if the cost for computing Q2j

is similar to that for computing Q.

II. PRIOR WORK

Quantum query complexity has been important in
quantum computing since Grover’s search algorithm,
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which is provably superior to classical algorithms [8, 9]
in the number of queries. The first lower bound result
was given in [10], which used an adversary argument.

Our lower bound approach is based on the ideas of the
“polynomial approach” of Beals et. al., [11–14]. Other
approaches include the quantum adversary argument and
its generalizations [15–17].

These approaches only cover problems concerning Boo-
lean functions, so we have to extend them to numerical
problems. This has been done through extensions of the
polynomial method [18, 19] and has been applied widely
to integration [20–22], path integration [23], approxima-
tion [24–26], and eigenvalue estimation [6, 7].

In this paper we apply the approach of [19] to the phase
estimation problem. Instead of using a maximum degree
argument, which is not applicable in the case of arbitrary
powers, we will develop a new lower bound technique
based on frequency analysis.

III. QUANTUM ALGORITHMS WITH POWER

QUERIES FOR PHASE ESTIMATION

We would like to derive lower bounds for any quantum
algorithm with power queries that estimates the phase of
a matrix Q for a given eigenvector |q〉. In other words
the set of allowed inputs for our problem is

Q|q〉,t =
{
Q : Q is a unitary t qubit transform,

|q〉 is an eigenvector of Q
}
.

We now give a framework that is general enough to
allow us to analyze any algorithm with power queries
W p

l (Q) that solves this problem. The most general algo-
rithm will be of the following form:

∣∣ψ(T )(Q)
〉

= UTW
pT

lT
(Q)UT−1 . . .W

p1

l1
(Q)U0

∣∣ψ(0)
〉
. (4)

Here the U0, U1, . . ., UT are arbitrary but fixed c+t qubit
unitary transformations and

∣∣ψ(0)
〉

a fixed c + t qubit
state, for example |0〉 |q〉. In our analysis we neglect the
cost to implement the Uj or to prepare

∣∣ψ(0)
〉
.

The varying parts of algorithm (4) are the W
pj

lj
=

W
pj

lj
(Q): power queries of Q for pj ∈ N, lj = 1, . . . , c,

and c ∈ N arbitrary. A measurement of the final
state

∣∣ψ(T )(Q)
〉

in the standard basis yields a state |k〉,
k = 0, . . . , 2c+t − 1, with probability pk,Q, from which
we get a solution ϕ̃(k) ∈ [0, 1). If for all Q ∈ Q|q〉,t the
probability to get an ǫ-estimate to the correct phase ϕ of
Q

∑

k:‖ϕ−ϕ̃(k)‖<ǫ

pk,Q ≥
3

4
, (5)

then the algorithm (4) solves the phase estimation prob-
lem to within ǫ with probability 3

4 in T power queries.
We are interested in the smallest number T such that

a quantum power query algorithm of form (4) fulfills con-
dition (5) for all Q ∈ Q|q〉,t.

IV. GENERAL CONTROLLED ARBITRARY

POWER QUERIES

We consider arbitrary powers p1, . . ., pT . This requires
us to introduce a new proof technique. To illustrate the
idea consider the phase estimation algorithm, performed
as in figure 1 with c = T = 3 control qubits.

(F−1
23 ⊗ I)W 4

1W
2
2W

1
3 (H⊗3 ⊗ I)

∣∣0
〉
|q〉 .

Let us trace through each of the steps in this algorithm
(we neglect normalization factors).

1. (|0〉 + |1〉 + |2〉 + |3〉 + . . .+ |7〉) |q〉

2. (|0〉+ e2πiϕ |1〉+ |2〉+ e2πiϕ |3〉+ . . .+ e2πiϕ |7〉) |q〉

3. (|0〉 + e2πiϕ |1〉 + e2πi2ϕ |2〉 + . . .+ e2πi3ϕ |7〉) |q〉

The possible multiplicities j of ϕ in the coefficients
e2πijϕ are

J2 = {0, p1, p2, p1 + p2} = {0, 1, 2, 3}.

4. (|0〉 + e2πiϕ |1〉 + e2πi2ϕ |2〉 + . . .+ e2πi7ϕ |7〉) |q〉

The possible multiplicities after this step are

J3 = {j, j + p3 : j ∈ J2} = {0, 1, . . . , 7}.

The final step, the inverse Fourier transform, does not
depend on ϕ. It also does not change the possible mul-
tiplicities of ϕ, but just creates linear combinations of
them. Consider, e.g., the coefficient of the state |2〉:

7∑

j=0

e−2πi2j/8e2πijϕ |2〉 |q〉 =

7∑

j=0

e2πij(ϕ−1/4) |2〉 |q〉 ,

which gives the probability p2(ϕ) of measuring |2〉:

p2(ϕ) =
∣∣∣

7∑

j=0

e2πij(ϕ−1/4)
∣∣∣
2

=

7∑

j,l=0

e2πi(j−l)(ϕ−1/4),

which is plotted in figure 2. Figure 2 shows that the
probability that |2〉 is measured is high if ϕ is close to
0.25, which is the value represented by |2〉.

The figure indicates that the width of this probability
peak depends on the frequencies present in the proba-
bility function: higher frequencies allow sharper peaks.
The goal of this paper is to prove that every halving of
the width of the probability peak requires one additional
step of the algorithm.

The proof consists of three steps. The first is to
quantify the influence of each additional application of
W p

l on the frequencies present in the probability func-
tion (Theorem 2). Now consider a probability function
as in figure 2. It must have a high peak ≥ 3/4 with
small width ǫ and should be close to zero everywhere
else. We will show that such a function requires a large
range of frequencies to be present (lemma 3). Finally we
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FIG. 2: (Color online) The probability of measuring the state
|2〉 depending on ϕ for the algorithm depicted in figure 1 with
T = 2 and T = 3.

will show an upper bound on the number of frequencies
that a power query algorithm can generate with T power
queries, which proves Theorem 1.

In Theorem 2 consider a general Q, which acts on t
qubits and therefore has 2t eigenvectors |ψs〉 with eigen-
values e2πiϕs . We assume that the eigenvectors |ψs〉 are
fixed, but that the eigenvalues change. We will prove
that after T steps only coefficients like

αe2πi(j1ϕ1+...+j2t ϕ2t )

will occur. Here (j1, . . . , j2t) is from the set JT defined
by the recursion

JT+1 :=
{
(j1, ..., j2t), (j1 + pT+1, ..., j2t), ...,

(j1, ..., j2t + pT+1) : (j1, ..., j2t) ∈ JT

}
(6)

and J0 = {(0, . . . , 0)}.

Theorem 2. Let Q be a unitary operation with eigen-
vectors |ψs〉 and corresponding eigenvalues e2πiϕs , s =
1, . . . , 2t. Let the |ψs〉 be fixed and vary the phases
ϕs ∈ [0, 1). Any quantum algorithm with power queries
W p

l = W p
l (Q), fixed unitary transformations Uj and

starting state
∣∣ψ(0)

〉
, can be written as

UTW
pT

lT
...U1W

p1

l1
U0

∣∣ψ(0)
〉

=
∑

k

S
(T )
k (ϕ1, ..., ϕ2t) |k〉 (7)

for all ϕs ∈ [0, 1), where the S
(T )
k (ϕ1, . . . , ϕ2t) are

trigonometric polynomials of the following form:

S
(T )
k (ϕ1, . . . , ϕ2t)

=
∑

(j1,...,j2t )∈JT

α
(T )
k,(j1,...,j

2t )e
2πi(j1ϕ1+...+j

2t ϕ
2t ), (8)

with α
(T )
k,(j1,...,j2t ) ∈ C and JT defined by (6).

To shorten our proofs we will use the following short-
hand notations. We say that a trigonometric polynomial

S
(T )
k (ϕ1, . . . , ϕ2t) is of powers JT , indicated by the (T )

superscript, if it can be written as a sum over JT as in (8).

Furthermore we abbreviate the vectors ~j = (j1, . . . , j2t),
~ϕ = (ϕ1, . . . , ϕ2t), and define the following notation:

~j · ~ϕ = j1ϕ1 + . . .+ j2tϕ2t .

Proof of Theorem 2: To simplify the proof we choose a
different basis instead of the standard basis. We divide
the quantum state into a control part |m〉 and an eigen-
vector part |ψs〉 and show that we can write

UTW
pT

lT
...W p1

l1
U0

∣∣ψ(0)
〉

=

2c−1∑

m=0

2t∑

s=1

Ŝ(T )
m,s(~ϕ) |m,ψs〉 , (9)

for trigonometric polynomials of powers JT ,

Ŝ(T )
m,s(~ϕ) =

∑

~j∈JT

α̂
(T )

m,s,~j
e2πi~j·~ϕ. (10)

The proof is by induction on the number of queries T .

For T = 0 we have no dependence on ~ϕ and Ŝ
(0)
m,s(~ϕ) is

just a constant since Q was not applied:

U0

∣∣∣ψ(0)
〉

=
2c−1∑

m=0

2t∑

s=1

〈
m,ψs

∣∣U0

∣∣ψ(0)
〉
|m,ψs〉

=:
2c−1∑

m=0

2t∑

s=1

α̂
(0)
m,s,(0,...,0) |m,ψs〉

=

2c−1∑

m=0

2t∑

s=1

∑

~j∈J0

α̂
(0)

m,s,~j
e2πi~j·~ϕ |m,ψs〉 .

Let now T be arbitrary and let equations (9) and (10)
hold. If we apply W

pT+1

lT +1
to (9), only those states |m,ψs〉

are affected for which the lT+1-th control bit is set, i.e.
mlT+1

= 1. For these states we get

W
pT+1

lT+1
|m,ψs〉 = |m〉QpT+1 |ψs〉 = |m〉 e2πipT +1ϕs |ψs〉

and therefore the coefficient of |m,ψs〉 changes to

Ŝ(T )
m,s(~ϕ)e2πipT +1ϕs =

∑

~j∈JT

α̂
(T )

m,s,~j
e2πi~j·~ϕe2πipT +1ϕs

=
∑

~j∈JT

α̂
(T )

m,s,~j
e2πi(j1ϕ1+...+(js+pT+1)ϕs+...j2t ϕ2t ).

But this is a trigonometric polynomial of powers JT+1

(recall eqn. (6)), and we can write it as

S̃(T+1)
m,s (~ϕ) =

∑

~j∈JT+1

α̃
(T+1)

m,s,~j
e2πi~j·~ϕ
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if we define the coefficients α̃
(T+1)

m,s,~j
properly:

α̃
(T+1)
m,s,(j1,...,js,...,j

2t ) = α̂
(T )
m,s,(j1,...,js−pT+1,...,j

2t )

for pT+1 ≤ js and 0 otherwise.

Finally we define S̃
(T+1)
m,s (~ϕ) := Ŝ

(T )
m,s(~ϕ) for the states

for which the control bit is not set (mlt+1
= 0) and we

can write

W
pT+1

lT+1
UT . . .W

p1

l1
U0

∣∣ψ(0)
〉

=

2c−1∑

m=0

2t∑

s=1

S̃(T+1)
m,s (~ϕ) |m,ψs〉 .

Now we use that the transformation UT+1 and the
eigenvectors |ψs〉 are fixed for all algorithms we consider

and define u
(T+1)
m,s;n,t = 〈m,ψs|UT+1 |n, ψt〉. Then

UT+1

∑

n,t

S̃
(T+1)
n,t (~ϕ) |n, ψt〉

=
∑

m,s,n,t

S̃
(T+1)
n,t (~ϕ)u

(T+1)
m,s;n,t |m,ψs〉 , (11)

which gives the following coefficient for |m,ψs〉:

∑

n,t

∑

~j∈JT+1

α̃
(T+1)

n,t,~j
e2πi~j·~ϕu

(T+1)
m,s;n,t

=
∑

~j∈JT+1

[∑

n,t

u
(T+1)
m,s;n,tα̃

(T+1)

n,t,~j

]
e2πi~j·~ϕ

=:
∑

~j∈JT+1

α̂
(T+1)

m,s,~j
e2πi~j·~ϕ =: Ŝ(T+1)

m,s (~ϕ).

(12)

This completes the induction and establishes equations
(9) and (10).

Using the same argumentation as in equations (11) and
(12) we can finally rewrite the state in equation (9) in the
standard basis |k〉 ∈ {|0〉 , |1〉 , . . . , |2c+t − 1〉} through

α
(T+1)

k,~j
=

∑

m,s

〈k|m,ψs〉 α̂
(T+1)

m,s,~j

and S
(T )
k (~ϕ) is of the same powers as Ŝ

(T )
m,s(~ϕ), which is

of powers JT . This proves equation (7) and (8).

We now focus on the specific problem of phase esti-
mation. The next lemma provides us with a necessary
condition on the powers p1, p2, . . . such that a quantum
algorithm with power queries can solve the phase estima-
tion problem with precision ǫ.

Lemma 3. Any quantum algorithm estimating the phase
ϕ of an eigenvector |q〉 of matrices Q from the class

Q|q〉,t =
{
Q : Q is a unitary t qubit transform,

|q〉 is an eigenvector of Q
}
.

up to precision ǫ has to use power queries W p1

j1
, W p2

j2
, . . .,

W pT

jT
such that the set

MT =
{
l − l′ | l, l′ =

∑

k∈K

pk

∣∣K ⊆ {1, . . . , T}
}

(13)

has more than |MT | ≥
1
2ǫ elements.

Note that this is both a condition on p1, . . . , pT as well
as on T : by cleverly choosing the powers p1, . . . , pT we
can get away with a smaller T , e.g. for pj = 2j−1 we get

MT =
{
−2T + 1,−2T + 2, . . . , 2T − 1

}
,

while for the choice pj = 1 we only get

MT = {−T,−T + 1, . . . , T − 1, T } .

Proof of lemma 3: For simplicity assume that

2ǫ =
1

N
for some N ∈ N. (14)

We will analyze the behavior of all possible algorithms
for the phase estimation problem on a special subset of
Q|q〉,t. Fix some arbitrary vectors |ψ2〉 , . . . , |ψ2t〉 such
that |q〉 , |ψ2〉 , . . . , |ψ2t〉 form an orthonormal basis and
consider the following input:

Qr := e2πi2rǫ |q〉 〈q| +

2t∑

s=2

e2πiϕs |ψs〉 〈ψs| . (15)

The phase ϕ we are interested in is ϕ = 2rǫ for input Qr.
Since the difference between the phases of the matrices

Qr is 2ǫ and we require ǫ correctness, a measurement will
yield states |k〉 from the distinct sets Br:

Br =
{
k : ‖2rǫ− k̃‖ < ǫ

}
. (16)

Depending on the number of qubits we use in our quan-
tum algorithm, the sets Br can contain one or more
states.

By Theorem 2 we know that we can write the coeffi-
cient of a state |k〉 ∈ Br after T queries as

S
(T )
k (ϕ,ϕ2, . . . , ϕ2t)

=
∑

(j1,...,j
2t )∈JT

α
(T )
k,(j1,...,j

2t )e
2πi(j1ϕ+j2ϕ2+...+j

2t ϕ
2t ).

In this proof we are only interested in the behavior for the
Qr. Therefore we can drop the dependence on ϕ2, . . . , ϕ2t

and let

S
(T )
k (ϕ) := S

(T )
k (ϕ,ϕ2, . . . , ϕ2t) =

∑

l∈LT

β
(T )
k,l e

2πilϕ,

where L0 = {0} and

LT =
{
j1 : (j1, . . . , j2t) ∈ JT

}

=
{
j1, j1 + pT : (j1, . . . , j2t) ∈ JT−1

}

=
{ ∑

k∈K

pk

∣∣K ⊆ {1, . . . , T}
}
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and the coefficients (note that l is fixed on the right side)

β
(T )
k,l =

∑

(l,j2,...,j
2t)∈JT

α
(T )
k,(l,j2,...,j

2t)
e2πi(j2ϕ2+...+j

2tϕ
2t )

The probability pBr
(ϕ) of measuring a state from the

set Br defined in (16) of all ǫ approximations to ϕ = 2rǫ
is now given by:

pBr
(ϕ) :=

∑

k∈Br

∣∣∣S(T )
k (ϕ)

∣∣∣
2

=
∑

k∈Br

∑

l∈LT

∑

l′∈LT

β
(T )
k,l β

(T )
k,l′ e

2πi(l−l′)ϕ

=:
∑

l∈LT

∑

l′∈LT

γ
(T )
r,l,l′e

2πi(l−l′)ϕ

=:
∑

m∈MT

η(T )
r,me

2πimϕ

(17)

with the set MT given by

MT = {l − l′ | l, l′ ∈ LT }

and the coefficient

η(T )
r,m =

∑

l,l′∈LT

l−l′=m

γ
(T )
r,l,l′ =

∑

l,l′∈LT

l−l′=m

∑

k∈Br

β
(T )

k,l β
(T )
k,l′ .

For illustration recall figure 2, which shows exactly one
of these probability functions pBr

(ϕ) and also their highly
oscillatory behavior. In the case of the phase estimation
algorithm, Br = {|r〉} and the figure shows pB2

(ϕ).

We apply the Discrete Inverse Fourier Transform to
pBr

(ϕ) (evaluated at the points ϕ = n/N for n =
0, . . . , N − 1) and get for the k-th coefficient

N−1∑

n=0

pBr
(n/N)e−2πikn/N

=

N−1∑

n=0

∑

m∈MT

η(T )
r,me

2πi(m−k)n/N

=N
∑

m∈MT

m≡k mod N

η(T )
r,m,

(18)

since for m 6≡ k mod N

N−1∑

n=0

e2πi(m−k)n/N =
1 − e2πi(m−k)N/N

1 − e2πi(m−k)1/N
= 0. (19)

We can bound (18) by separating the part where a

state from Br is correctly returned from pBr
(ϕ),

∣∣∣
N−1∑

n=0

pBr
(
n

N
)e−

2πikn
N

∣∣∣

≥
∣∣∣pBr

(
r

N
)e−

2πikr
N

∣∣∣ −
∣∣∣

N−1∑

n=0
n6=r

pBr
(
n

N
)e−

2πikn
N

∣∣∣

≥
3

4
−

N−1∑

n=0
n6=r

pBr
(
n

N
),

(20)

since the probability pBr
(ϕ) has to obey pBr

(r/N) ≥ 3
4

(recall the definitions of pBr
and Qr). If we knew that

for the second term in (20)

N−1∑

n=0
n6=r

pBr
(n/N) <

3

4
(21)

we could establish that
∣∣∣∣∣

N−1∑

n=0

pBr
(n/N)e−

2πikn
N

∣∣∣∣∣ =

∣∣∣∣∣N
∑

m∈MT

m≡k mod N

η(T )
r,m

∣∣∣∣∣ > 0.

We will show that this property, while not necessarily
always true, will be true for at least most of the pBr

(ϕ).
There are N different possible outcome sets B0, . . .,

BN−1. We know that for any ϕ = n/N all mutually
exclusive probabilities of measuring a state from Br for
r = 0, . . . , N − 1 have to add up to at most 1:

N−1∑

r=0

pBr
(n/N) ≤ 1 for n = 0, . . . , N − 1,

Let R< ⊆ {0, . . . , N − 1} be the set of all r for which
(21) holds and R≥ the set for which it does not. |R<|
has to be greater than 1 since we can split

N =

N−1∑

n=0

1 ≥

N−1∑

n=0

N−1∑

r=0

pBr
(
n

N
)

into the following parts:

N−1∑

r=0

pBr
(
r

N
) +

∑

r∈R<

N−1∑

n=0
n6=r

pBr
(
n

N
) +

∑

r∈R≥

N−1∑

n=0
n6=r

pBr
(
n

N
)

≥
3

4
N + 0

∣∣R<
∣∣ +

3

4

∣∣R≥
∣∣ =

3

4
N +

3

4

∣∣R≥
∣∣

and therefore
∣∣R≥

∣∣ ≤ 1
3N or |R<| ≥ 2

3N .
Thus there is an r ∈ R< for which eqn. (21) holds and

0 <

∣∣∣∣∣N
∑

m∈MT

m≡k mod N

η(T )
r,m

∣∣∣∣∣ ≤ N
∑

m∈MT

m≡k mod N

∣∣∣η(T )
r,m

∣∣∣ (22)
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for all k = 0, . . . , N − 1.

This means at least N of the η
(T )
r,m have to be nonzero

and thus pBr
(ϕ) from eqn. (17) must have at least N

nonzero terms. In other words

|MT | ≥ N =
1

2ǫ
, (23)

where we used the definition of N in (14).

Lemma 3 now allows us to give a lower bound for the
phase estimation problem. The numbers of queries T
that is needed by any quantum algorithm is Ω(log 1

ǫ ).

Proof of Theorem 1: From lemma 3 we know that the set
MT has to have |MT | ≥ 1

2ǫ elements. We can easily

derive an upper bound on |MT |. There are at most 2T

elements in the set

LT =
{ ∑

k∈K

pk

∣∣K ⊆ {1, . . . , T}
}

and therefore we have |MT | ≤ |LT |
2
≤ (2T )2 = 22T .

Combining our estimates for |MT | we get

22T ≥ |MT | ≥
1

2ǫ
,

and the number of queries T must grow like

T ≥
1

2
log2

1

2ǫ
= Ω(log

1

ǫ
).

V. CONCLUSIONS AND EXTENSIONS

In this paper we have obtained lower bounds for quan-
tum algorithms that approximate the phase estimation
problem through the new lower bound proof technique
of frequency analysis. These lower bounds match the
known upper bounds for phase estimation.

The frequency analysis method can be used to give
lower bounds for the Sturm-Liouville eigenvalue problem
[7]. The results also extend to other forms of quantum
queries, e.g. the query

Qf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 = |x〉 |y + f(x) mod 2m〉 .

An application of the frequency analysis method to these
problems will be the subject of future work.

Acknowledgments

The author would like to thank J. Traub, H.
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Comput. Math. 4, 121 (2004), quant-ph/0206023.
[25] S. Heinrich, Journal of Complexity 20, 5 (2004), quant-

ph/0305030.
[26] S. Heinrich, Journal of Complexity 20, 27 (2004), quant-

ph/0305031.


