Note

On edge-disjoint pairs of matchings ${ }^{\text {sin }}$

V.V. Mkrtchyan ${ }^{\text {ab, }, 1}$, V.L. Musoyan ${ }^{\text {a }}$, A.V. Tserunyan ${ }^{\text {a,c }}$
${ }^{\text {a }}$ Department of Informatics and Applied Mathematics, Yerevan State University, Yerevan, 0025, Armenia
${ }^{\mathrm{b}}$ Institute for Informatics and Automation Problems of National Academy of Sciences of Armenia, 0014, Armenia
${ }^{\text {c }}$ Department of Mathematics, University of California, LA, United States
Received 10 October 2006; received in revised form 5 May 2007; accepted 26 September 2007
Available online 3 December 2007
Dedicated to the 35th anniversary of Discrete Mathematics

Abstract

For a graph G, consider the pairs of edge-disjoint matchings whose union consists of as many edges as possible. Let H be the largest matching among such pairs. Let M be a maximum matching of G. We show that $5 / 4$ is a tight upper bound for $|M| /|H|$. (C) 2007 Elsevier B.V. All rights reserved.

Keywords: Matching; Maximum matching; Pair of edge-disjoint matchings

We consider finite, undirected graphs without multiple edges or loops. Let $V(G)$ and $E(G)$ denote the sets of vertices and edges of a graph G, respectively. The cardinality of a maximum matching of a graph G is denoted by $\nu(G)$.

For a graph G define $B_{2}(G)$ as follows:

$$
B_{2}(G) \equiv\left\{\left(H, H^{\prime}\right): H, H^{\prime} \text { are edge-disjoint matchings of } G\right\}
$$

and set:

$$
\lambda_{2}(G) \equiv \max \left\{|H|+\left|H^{\prime}\right|:\left(H, H^{\prime}\right) \in B_{2}(G)\right\}
$$

Define:

$$
\begin{aligned}
& \alpha_{2}(G) \equiv \max \left\{|H|,\left|H^{\prime}\right|:\left(H, H^{\prime}\right) \in B_{2}(G) \text { and }|H|+\left|H^{\prime}\right|=\lambda_{2}(G)\right\} \\
& M_{2}(G) \equiv\left\{\left(H, H^{\prime}\right):\left(H, H^{\prime}\right) \in B_{2}(G),|H|+\left|H^{\prime}\right|=\lambda_{2}(G),|H|=\alpha_{2}(G)\right\}
\end{aligned}
$$

[^0]It is clear that $\alpha_{2}(G) \leq \nu(G)$ for all G. By Mkrtchyan's result [4], reformulated as in [2], if G is a matching covered tree then the inequality turns to an equality. Note that a graph is said to be matching covered (see [5]) if its every edge belongs to a maximum matching (not necessarily a perfect matching as it is usually defined, see e.g. [3]).

The aim of this paper is to obtain a tight upper bound for $\frac{\nu(G)}{\alpha_{2}(G)}$. We prove that $\frac{5}{4}$ is an upper bound for $\frac{\nu(G)}{\alpha_{2}(G)}$, and exhibit a family of graphs, which shows that $\frac{5}{4}$ cannot be replaced by any smaller constant. Terms and concepts that we do not define can be found in $[1,3,7]$.

Let A and B be matchings of a graph G.
Definition. A path (cycle) $e_{1}, e_{2}, \ldots, e_{l}(l \geq 1)$ is called $A-B$ alternating if the edges with odd indices belong to $A \backslash B$ and the others to $B \backslash A$, or vice versa.

Definition. An $A-B$ alternating path P is called maximal if there is no other $A-B$ alternating path that contains P as a proper subpath.

The sets of $A-B$ alternating cycles and maximal alternating paths are denoted by $C(A, B)$ and $P(A, B)$, respectively.

The set of the paths from $P(A, B)$ that have even (odd) length is denoted by $P_{e}(A, B)\left(P_{o}(A, B)\right)$.
The set of the paths from $P_{o}(A, B)$ starting from an edge of $A(B)$ is denoted by $P_{o}^{A}(A, B)\left(P_{o}^{B}(A, B)\right)$.
Note that every edge $e \in A \cup B$ either belongs to $A \cap B$ or lies on a cycle from $C(A, B)$ or lies on a path from $P(A, B)$.

Moreover,
Property 1. (a) if $F \in C(A, B) \cup P_{e}(A, B)$, then A and B have the same number of edges that belong to F, (b) if $P \in P_{o}^{A}(A, B)$, then the difference between the numbers of edges that lie on P and belong to A and B is one.

This property immediately implies:
Property 2. If A and B are matchings of a graph G then

$$
|A|-|B|=\left|P_{o}^{A}(A, B)\right|-\left|P_{o}^{B}(A, B)\right|
$$

Berge's well-known theorem states that a matching M of a graph G is maximum if and only if G does not contain an M-augmenting path $[1,3,7]$. This theorem immediately implies:

Property 3. If M is a maximum matching and H is a matching of a graph G then

$$
P_{o}^{H}(M, H)=\emptyset
$$

and therefore $|M|-|H|=\left|P_{o}^{M}(M, H)\right|$.
The proof of the following property is similar to the one of Property 3:
Property 4. If $\left(H, H^{\prime}\right) \in M_{2}(G)$, then $P_{o}^{H^{\prime}}\left(H, H^{\prime}\right)=\emptyset$.
Let G be a graph. Over all $\left(H, H^{\prime}\right) \in M_{2}(G)$ and all maximum matchings M of G, consider the pairs $\left(\left(H, H^{\prime}\right), M\right)$ for which $|M \cap H|$ is maximized. Among these, choose a pair $\left(\left(H, H^{\prime}\right), M\right)$ such that $\left|M \cap H^{\prime}\right|$ is maximized.

From now on H, H^{\prime} and M are assumed to be chosen as described above. For this choice of H, H^{\prime} and M, consider the paths from $P_{o}^{M}(M, H)$ and define M_{A} and H_{A} as the sets of edges lying on these paths that belong to M and H, respectively.

Lemma 1. $C(M, H)=P_{e}(M, H)=P_{o}^{H}(M, H)=\emptyset$.
Proof. Property 3 implies $P_{o}^{H}(M, H)=\emptyset$. Let us show that $C(M, H)=P_{e}(M, H)=\emptyset$. Suppose that there is $F_{0} \in C(M, H) \cup P_{e}(M, H)$. Define:

$$
M^{\prime} \equiv\left[M \backslash E\left(F_{0}\right)\right] \cup\left[H \cap E\left(F_{0}\right)\right]
$$

Consider the pair $\left(\left(H, H^{\prime}\right), M^{\prime}\right)$. Note that M^{\prime} is a maximum matching, and

$$
\left|H \cap M^{\prime}\right|>|H \cap M|
$$

which contradicts $|H \cap M|$ being maximum.
Corollary 1. $M \cap H=M \backslash M_{A}=H \backslash H_{A}$.
Lemma 2. Each edge of $M_{A} \backslash H^{\prime}$ is adjacent to two edges of H^{\prime}.
Proof. Let e be an arbitrary edge from $M_{A} \backslash H^{\prime}$. Note that $e \in M, e \notin H, e \notin H^{\prime}$. Now, if e is not adjacent to an edge of H^{\prime}, then $H \cap\left(H^{\prime} \cup\{e\}\right)=\emptyset$ and

$$
|H|+\left|H^{\prime} \cup\{e\}\right|>|H|+\left|H^{\prime}\right|=\lambda_{2}(G),
$$

which contradicts $\left(H, H^{\prime}\right) \in M_{2}(G)$.
On the other hand, if e is adjacent to only one edge $f \in H^{\prime}$, then consider the pair ($H, H^{\prime \prime}$), where $H^{\prime \prime} \equiv$ $\left(H^{\prime} \backslash\{f\}\right) \cup\{e\}$. Note that

$$
H \cap H^{\prime \prime}=\emptyset, \quad\left|H^{\prime \prime}\right|=\left|H^{\prime}\right|
$$

and

$$
\left|H^{\prime \prime} \cap M\right|>\left|H^{\prime} \cap M\right|,
$$

which contradicts $\left|H^{\prime} \cap M\right|$ being maximum.
Lemma 3. $C\left(M_{A}, H^{\prime}\right)=P_{e}\left(M_{A}, H^{\prime}\right)=P_{o}^{M_{A}}\left(M_{A}, H^{\prime}\right)=\emptyset$.
Proof. First of all, let us show that $C\left(M_{A}, H^{\prime}\right)=P_{e}\left(M_{A}, H^{\prime}\right)=\emptyset$. For the sake of contradiction, suppose that there is $F_{0} \in C\left(M_{A}, H^{\prime}\right) \cup P_{e}\left(M_{A}, H^{\prime}\right)$. Define:

$$
H^{\prime \prime} \equiv\left[H^{\prime} \backslash E\left(F_{0}\right)\right] \cup\left[M_{A} \cap E\left(F_{0}\right)\right] .
$$

Consider the pair of matchings $\left(H, H^{\prime \prime}\right)$. Note that due to the definition of an alternating path or cycle we have $M_{A} \cap H=\emptyset$, therefore

$$
\begin{aligned}
& H \cap H^{\prime \prime}=\emptyset \\
& |H|+\left|H^{\prime \prime}\right|=|H|+\left|H^{\prime}\right|=\lambda_{2}(G)
\end{aligned}
$$

(see (a) of Property 1).
Thus $\left(H, H^{\prime \prime}\right) \in M_{2}(G)$ and

$$
\left|H^{\prime \prime} \cap M\right|>\left|H^{\prime} \cap M\right|,
$$

which contradicts $\left|H^{\prime} \cap M\right|$ being maximum.
On the other hand, the end-edges of a path from $P_{o}^{M_{A}}\left(M_{A}, H^{\prime}\right)$ are from M_{A} and are adjacent to only one edge from H^{\prime} contradicting Lemma 2. Therefore $P_{o}^{M_{A}}\left(M_{A}, H^{\prime}\right)=\emptyset$.

Lemma 4. $\left|H^{\prime}\right|=\left|P_{o}^{H^{\prime}}\left(M_{A}, H^{\prime}\right)\right|+\left|H_{A}\right|+v(G)-\alpha_{2}(G)$.
Proof. Due to Property 2

$$
\left|H^{\prime}\right|-\left|M_{A}\right|=\left|P_{o}^{H^{\prime}}\left(M_{A}, H^{\prime}\right)\right|-\left|P_{o}^{M_{A}}\left(M_{A}, H^{\prime}\right)\right|,
$$

and due to (b) of Property 1 and Property 3

$$
\left|M_{A}\right|-\left|H_{A}\right|=\left|P_{o}^{M}(M, H)\right|=|M|-|H|=v(G)-\alpha_{2}(G) .
$$

By Lemma 3, $P_{o}^{M_{A}}\left(M_{A}, H^{\prime}\right)=\emptyset$, therefore

$$
\left|H^{\prime}\right|=\left|P_{o}^{H^{\prime}}\left(M_{A}, H^{\prime}\right)\right|+\left|M_{A}\right|=\left|P_{o}^{H^{\prime}}\left(M_{A}, H^{\prime}\right)\right|+\left|H_{A}\right|+v(G)-\alpha_{2}(G) .
$$

Lemma 5. Let $P \in P_{o}(M, H)$ and assume that $P=m_{1}, h_{1}, m_{2}, \ldots, h_{l-1}, m_{l}, l \geq 1, m_{i} \in M, 1 \leq i \leq l, h_{j} \in$ $H, 1 \leq j \leq l-1$. Then $l \geq 3$ and $\left\{m_{1}, m_{l}\right\} \subseteq H^{\prime}$.
Proof. Let us show that $l \geq 3$. Note that if $l=1$, then $P=m_{1}$, and clearly $m_{1} \in H^{\prime}$ as otherwise we could enlarge H by adding m_{1} to it which contradicts $\left(H, H^{\prime}\right) \in M_{2}(G)$. Thus $m_{1} \in H^{\prime}$. Define

$$
H_{1}=H \cup\left\{m_{1}\right\}, H_{1}^{\prime}=H^{\prime} \backslash\left\{m_{1}\right\} .
$$

Note that $\left|H_{1}\right|+\left|H_{1}^{\prime}\right|=|H|+\left|H^{\prime}\right|=\lambda_{2}(G)$ and $\left|H_{1}\right|>|H|$ which contradicts $\left(H, H^{\prime}\right) \in M_{2}(G)$. Thus $l \geq 2$. Let us show that $m_{1} \in H^{\prime}$. If $m_{1} \notin H^{\prime}$, then define

$$
H_{1} \equiv\left(H \backslash\left\{h_{1}\right\}\right) \cup\left\{m_{1}\right\} .
$$

Note that

$$
H_{1} \cap H^{\prime}=\emptyset, \quad\left|H_{1}\right|=|H|,
$$

and

$$
\left|H_{1} \cap M\right|>|H \cap M|
$$

which contradicts $|H \cap M|$ being maximum. Thus $m_{1} \in H^{\prime}$. Similarly, one can show that $m_{l} \in H^{\prime}$.
Due to Property $4, P_{o}^{H^{\prime}}\left(H, H^{\prime}\right)=\emptyset$, thus there is $i, 1 \leq i \leq l$, such that $m_{i} \in M \backslash\left(H \cup H^{\prime}\right)$. Since $\left\{m_{1}, m_{l}\right\} \subseteq H^{\prime}$, we have $l \geq 3$.

Corollary 2. $\left|H_{A}\right| \geq 2\left(\nu(G)-\alpha_{2}(G)\right)$.
Proof. Due to Lemma 5, every path $P \in P_{o}(M, H)$ has length at least five, therefore it contains at least two edges from H. Due to Property 3, there are

$$
\left|P_{o}(M, H)\right|=\left|P_{o}^{M}(M, H)\right|=\nu(G)-\alpha_{2}(G)
$$

paths from $P_{o}(M, H)$, therefore

$$
\left|H_{A}\right| \geq 2\left(\nu(G)-\alpha_{2}(G)\right)
$$

Corollary 3. Every vertex lying on a path from $P(M, H)=P_{o}^{M}(M, H)$ is incident to an edge from H^{\prime}.
Proof. Suppose w is a vertex lying on a path from $P(M, H)=P_{o}^{M}(M, H)$ and assume that e is an edge from M_{A} incident to the vertex w. Clearly, if $e \in H^{\prime}$, then the corollary is proved therefore we may assume that $e \notin H^{\prime}$. Note that $e \in M_{A} \backslash H^{\prime}$ therefore due to Lemma 2, e is adjacent to two edges from H^{\prime}. Thus w is incident to an edge from H^{\prime}.

Let Y denote the set of the paths from $P\left(H, H^{\prime}\right)$ starting from the end-edges of the paths from $P_{o}^{M}(M, H)$. Note that Y is well-defined since due to Lemma 5 these end-edges belong to H^{\prime}. According to Property $4, Y \subseteq P_{e}\left(H, H^{\prime}\right)$, thus the set of the last edges of the paths from Y is a subset of H. Let us denote it by H_{Y}.

Lemma 6. (a) $|Y|=2\left(\nu(G)-\alpha_{2}(G)\right)$ and the length of the paths from Y is at least four, (b) $\left|P_{o}^{H^{\prime}}\left(M_{A}, H^{\prime}\right)\right| \geq v(G)-\alpha_{2}(G)$.

Proof. (a) Due to Property 4, all end-edges of the paths from $P_{o}^{M}(M, H)$ lie on different paths from Y. Therefore $|Y|=2\left|P_{o}^{M}(M, H)\right|=2\left(\nu(G)-\alpha_{2}(G)\right)$.

Since the edges from H_{Y} are adjacent to only one edge from H^{\prime}, we conclude that they do not lie on paths from $P_{o}^{M}(M, H)$ (Corollary 3). Thus, due to Corollary $1, H_{Y} \subseteq M \cap H$. Furthermore, since the first two edges of a path from Y lie on a path from $P_{o}^{M}(M, H)$, and the last edge does not, we conclude that its length is at least four.
(b) From $H_{Y} \subseteq M \cap H$ we get

$$
|M \cap H| \geq\left|H_{Y}\right|=|Y|=2\left|P_{o}^{M}(M, H)\right|=2\left(\nu(G)-\alpha_{2}(G)\right) .
$$

Fig. 1. Example achieving the bound of the theorem.
On the other hand, every edge from H_{Y} is adjacent to an edge from $H^{\prime} \backslash M$, which is an end-edge of a path from $P_{o}^{H^{\prime}}\left(M_{A}, H^{\prime}\right)$, therefore

$$
2\left(\nu(G)-\alpha_{2}(G)\right) \leq|M \cap H| \leq 2\left|P_{o}^{H^{\prime}}\left(M_{A}, H^{\prime}\right)\right|
$$

or

$$
v(G)-\alpha_{2}(G) \leq\left|P_{o}^{H^{\prime}}\left(M_{A}, H^{\prime}\right)\right|
$$

Theorem. For every graph G the inequality $\frac{\nu(G)}{\alpha_{2}(G)} \leq \frac{5}{4}$ holds.
Proof. Lemma 4, (b) of Lemma 6 and Corollary 2 imply

$$
\alpha_{2}(G) \geq\left|H^{\prime}\right|=\left|P_{o}^{H^{\prime}}\left(M_{A}, H^{\prime}\right)\right|+\left|H_{A}\right|+\nu(G)-\alpha_{2}(G) \geq 4\left(\nu(G)-\alpha_{2}(G)\right) .
$$

Therefore, $\frac{\nu(G)}{\alpha_{2}(G)} \leq \frac{5}{4}$.
Remark 1. We have given a proof of the theorem based on the structural Lemma 4, (b) of Lemma 6 and Corollary 2. It is not hard to see that the theorem can also be proved directly using only (a) of Lemma 6. As the length of every path from Y is at least four, there are at least two edges from H^{\prime} lying on each path from Y, therefore

$$
\alpha_{2}(G) \geq\left|H^{\prime}\right| \geq 2|Y|=4\left(\nu(G)-\alpha_{2}(G)\right) .
$$

Remark 2. There are infinitely many graphs G for which

$$
\frac{\nu(G)}{\alpha_{2}(G)}=\frac{5}{4}
$$

In order to construct one, just take an arbitrary graph F containing a perfect matching. Attach to every vertex v of F two paths of length two, as it is shown on the Fig. 1(a):

Let G be the resulting graph. Note that:

$$
\nu(G)=\frac{|V(F)|}{2}+2|V(F)|=\frac{5|V(F)|}{2} .
$$

Let us show that for every pair of disjoint matchings (H, H^{\prime}) satisfying $|H|+\left|H^{\prime}\right|=\lambda_{2}(G)$ and $e \in E(F)$ we have $e \notin H \cup H^{\prime}$. On the opposite assumption, consider an edge $e \in E(F)$ and a pair $\left(H, H^{\prime}\right)$ with $|H|+\left|H^{\prime}\right|=\lambda_{2}(G)$ and $e \in H \cup H^{\prime}$. Note that without loss of generality, we may always assume that H and H^{\prime} contain the edges shown on the Fig. 1(b).

Now consider a new pair of disjoint matchings (H_{1}, H_{1}^{\prime}) obtained from $\left(H, H^{\prime}\right)$ by changing only the edges that are shown on the Fig. 1(b) as it is shown on the Fig. 1(c).

Fig. 2. An example of a graph G_{n} with $\frac{v\left(G_{n}\right)}{\lambda_{2}\left(G_{n}\right)-\alpha_{2}\left(G_{n}\right)}=n$.
Note that $\left|H_{1}\right|+\left|H_{1}^{\prime}\right|=1+|H|+\left|H^{\prime}\right|>\lambda_{2}(G)$, which contradicts the choice of (H, H^{\prime}), therefore $e \notin H \cup H^{\prime}$ and $\lambda_{2}(G)=4|V(F)|, \alpha_{2}(G)=2|V(F)|$, hence

$$
\frac{\nu(G)}{\alpha_{2}(G)}=\frac{5}{4} .
$$

See [6] for the characterization of these graphs.
Remark 3. In contrast with the bound $\frac{\nu(G)}{\alpha_{2}(G)} \leq \frac{5}{4}$, it can be shown that for every positive integer $n \geq 2$ there is a graph G_{n} such that $\frac{v\left(G_{n}\right)}{\lambda_{2}\left(G_{n}\right)-\alpha_{2}\left(G_{n}\right)}=n$. Just consider the graph G_{n} shown on the Fig. 2.

Note that $v\left(G_{n}\right)=n, \lambda_{2}\left(G_{n}\right)=n+1, \alpha_{2}(G)=n$ hence

$$
\frac{v\left(G_{n}\right)}{\lambda_{2}\left(G_{n}\right)-\alpha_{2}\left(G_{n}\right)}=n .
$$

Acknowledgements

We would like to thank our reviewers for their helpful comments and suggestions.

References

[1] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[2] F. Harary, M.D. Plummer, On the core of a graph, Proc. London Math. Soc. 17 (1967) 305-314.
[3] L. Lovasz, M.D. Plummer, Matching theory, Ann. Discrete Math. 29 (1986).
[4] V.V. Mkrtchyan, On trees with a maximum proper partial 0-1 coloring containing a maximum matching, Discrete Math. 306 (2006) 456-459.
[5] V.V. Mkrtchyan, A note on minimal matching covered graphs, Discrete Math. 306 (2006) 452-455.
[6] A.V. Tserunyan, Characterization of a class of graphs related to pairs of disjoint matchings, Discrete Math. (2007) under review.
[7] D.B. West, Introduction to Graph Theory, Prentice-Hall, Englewood Cliffs, 1996.

[^0]: \star The work in this paper was supported by a grant of the Armenian National Science and Education Fund.
 E-mail addresses: vahanmkrtchyan2002@ysu.am, vahanmkrtchyan2002@ipia.sci.am, vahanmkrtchyan2002@yahoo.com (V.V. Mkrtchyan), vahe_musoyan@ysu.am, vahe.musoyan@gmail.com (V.L. Musoyan), anush_tserunyan@ysu.am, anush_tserunyan@yahoo.com, anush@math.ucla.edu (A.V. Tserunyan).
 ${ }^{1}$ Tel.: + 37493419589.

