7 research outputs found

    Tight Size-Degree Bounds for Sums-of-Squares Proofs

    Full text link
    We exhibit families of 44-CNF formulas over nn variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) dd but require SOS proofs of size nΩ(d)n^{\Omega(d)} for values of d=d(n)d = d(n) from constant all the way up to nδn^{\delta} for some universal constantδ\delta. This shows that the nO(d)n^{O(d)} running time obtained by using the Lasserre semidefinite programming relaxations to find degree-dd SOS proofs is optimal up to constant factors in the exponent. We establish this result by combining NP\mathsf{NP}-reductions expressible as low-degree SOS derivations with the idea of relativizing CNF formulas in [Kraj\'i\v{c}ek '04] and [Dantchev and Riis'03], and then applying a restriction argument as in [Atserias, M\"uller, and Oliva '13] and [Atserias, Lauria, and Nordstr\"om '14]. This yields a generic method of amplifying SOS degree lower bounds to size lower bounds, and also generalizes the approach in [ALN14] to obtain size lower bounds for the proof systems resolution, polynomial calculus, and Sherali-Adams from lower bounds on width, degree, and rank, respectively

    Sherali-Adams and the binary encoding of combinatorial principles.

    Get PDF
    We consider the Sherali-Adams ( SA ) refutation system together with the unusual binary encoding of certain combinatorial principles. For the unary encoding of the Pigeonhole Principle and the Least Number Principle, it is known that linear rank is required for refutations in SA , although both admit refutations of polynomial size. We prove that the binary encoding of the Pigeonhole Principle requires exponentially-sized SA refutations, whereas the binary encoding of the Least Number Principle admits logarithmic rank, polynomially-sized SA refutations. We continue by considering a refutation system between SA and Lasserre (Sum-of-Squares). In this system, the unary encoding of the Least Number Principle requires linear rank while the unary encoding of the Pigeonhole Principle becomes constant rank

    Tight Size-Degree Bounds for Sums-of-Squares Proofs

    Get PDF

    Tight Size-Degree Bounds for Sums-of-Squares Proofs

    No full text
    We exhibit families of 4 -CNF formulas over n variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) d but require SOS proofs of size nΩ(d) for values of d=d(n) from constant all the way up to nδ for some universal constantδ. This shows that the nO(d) running time obtained by using the Lasserre semidefinite programming relaxations to find degree-d SOS proofs is optimal up to constant factors in the exponent. We establish this result by combining NP-reductions expressible as low-degree SOS derivations with the idea of relativizing CNF formulas in [Kraj́íček '04] and [Dantchev and Riis'03], and then applying a restriction argument as in [Atserias, Müller, and Oliva '13] and [Atserias, Lauria, and Nordström '14]. This yields a generic method of amplifying SOS degree lower bounds to size lower bounds, and also generalizes the approach in [ALN14] to obtain size lower bounds for the proof systems resolution, polynomial calculus, and Sherali-Adams from lower bounds on width, degree, and rank, respectively

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore