18 research outputs found

    Incremental branching programs

    Get PDF
    We propose a new model of restricted branching programs which we call {em incremental branching programs}. We show that {em syntactic} incremental branching programs capture previously studied structured models of computation for the problem GEN, namely marking machines [Cook74]. and Poon\u27s extension [Poon93] of jumping automata on graphs [CookRackoff80]. We then prove exponential size lower bounds for our syntactic incremental model, and for some other restricted branching program models as well. We further show that nondeterministic syntactic incremental branching programs are provably stronger than their deterministic counterpart when solving a natural NL-complete GEN subproblem. It remains open if syntactic incremental branching programs are as powerful as unrestricted branching programs for GEN problems. Joint work with Anna GÃ¥l and Michal KouckÃ

    Bounds on monotone switching networks for directed connectivity

    Full text link
    We separate monotone analogues of L and NL by proving that any monotone switching network solving directed connectivity on nn vertices must have size at least n(Ω(lg⁥(n)))n^(\Omega(\lg(n))).Comment: 49 pages, 12 figure

    New Time-Space Upperbounds for Directed Reachability in High-genus and H-minor-free Graphs

    Get PDF
    We obtain the following new simultaneous time-space upper bounds for the directed reachability problem. (1) A polynomial-time, O(n^{2/3} * g^{1/3})-space algorithm for directed graphs embedded on orientable surfaces of genus g. (2) A polynomial-time, O(n^{2/3})-space algorithm for all H-minor-free graphs given the tree decomposition, and (3) for K_{3,3}-free and K_5-free graphs, a polynomial-time, O(n^{1/2 + epsilon})-space algorithm, for every epsilon > 0. For the general directed reachability problem, the best known simultaneous time-space upper bound is the BBRS bound, due to Barnes, Buss, Ruzzo, and Schieber, which achieves a space bound of O(n/2^{k * sqrt(log(n))}) with polynomial running time, for any constant k. It is a significant open question to improve this bound for reachability over general directed graphs. Our algorithms beat the BBRS bound for graphs embedded on surfaces of genus n/2^{omega(sqrt(log(n))}, and for all H-minor-free graphs. This significantly broadens the class of directed graphs for which the BBRS bound can be improved

    Formulas vs. Circuits for Small Distance Connectivity

    Full text link
    We give the first super-polynomial separation in the power of bounded-depth boolean formulas vs. circuits. Specifically, we consider the problem Distance k(n)k(n) Connectivity, which asks whether two specified nodes in a graph of size nn are connected by a path of length at most k(n)k(n). This problem is solvable (by the recursive doubling technique) on {\bf circuits} of depth O(log⁥k)O(\log k) and size O(kn3)O(kn^3). In contrast, we show that solving this problem on {\bf formulas} of depth log⁥n/(log⁥log⁥n)O(1)\log n/(\log\log n)^{O(1)} requires size nΩ(log⁥k)n^{\Omega(\log k)} for all k(n)≀log⁥log⁥nk(n) \leq \log\log n. As corollaries: (i) It follows that polynomial-size circuits for Distance k(n)k(n) Connectivity require depth Ω(log⁥k)\Omega(\log k) for all k(n)≀log⁥log⁥nk(n) \leq \log\log n. This matches the upper bound from recursive doubling and improves a previous Ω(log⁥log⁥k)\Omega(\log\log k) lower bound of Beame, Pitassi and Impagliazzo [BIP98]. (ii) We get a tight lower bound of sΩ(d)s^{\Omega(d)} on the size required to simulate size-ss depth-dd circuits by depth-dd formulas for all s(n)=nO(1)s(n) = n^{O(1)} and d(n)≀log⁥log⁥log⁥nd(n) \leq \log\log\log n. No lower bound better than sΩ(1)s^{\Omega(1)} was previously known for any d(n)≰O(1)d(n) \nleq O(1). Our proof technique is centered on a new notion of pathset complexity, which roughly speaking measures the minimum cost of constructing a set of (partial) paths in a universe of size nn via the operations of union and relational join, subject to certain density constraints. Half of our proof shows that bounded-depth formulas solving Distance k(n)k(n) Connectivity imply upper bounds on pathset complexity. The other half is a combinatorial lower bound on pathset complexity

    Space Complexity of the Directed Reachability Problem over Surface-Embedded Graphs

    Full text link
    The graph reachability problem, the computational task of deciding whether there is a path between two given nodes in a graph is the canonical problem for studying space bounded computations. Three central open questions regarding the space complexity of the reachabil-ity problem over directed graphs are: (1) improving Savitch’s O(log2 n) space bound, (2) designing a polynomial-time algorithm with O(n1−) space bound, and (3) designing an unambiguous non-deterministic log-space (UL) algorithm. These are well-known open questions in complex-ity theory, and solving any one of them will be a major breakthrough. We will discuss some of the recent progress reported on these questions for certain subclasses of surface-embedded directed graphs

    An O(n 1 2 +ɛ)-Space and Polynomial-Time Algorithm for Directed Planar Reachability

    Get PDF
    Abstract—We show that the reachability problem over directed planar graphs can be solved simultaneously in polynomial time and approximately O ( √ n) space. In contrast, the best space bound known for the reachability problem on general directed graphs with polynomial running time is O(n/2 √ log n Keywords-reachability, directed planar graph, sublinear space, polynomial time I

    Sublinear-Space Lexicographic Depth-First Search for Bounded Treewidth Graphs and Planar Graphs

    Get PDF
    The lexicographic depth-first search (Lex-DFS) is one of the first basic graph problems studied in the context of space-efficient algorithms. It is shown independently by Asano et al. [ISAAC 2014] and Elmasry et al. [STACS 2015] that Lex-DFS admits polynomial-time algorithms that run with O(n)-bit working memory, where n is the number of vertices in the graph. Lex-DFS is known to be P-complete under logspace reduction, and giving or ruling out polynomial-time sublinear-space algorithms for Lex-DFS on general graphs is quite challenging. In this paper, we study Lex-DFS on graphs of bounded treewidth. We first show that given a tree decomposition of width O(n^(1-?)) with ? > 0, Lex-DFS can be solved in sublinear space. We then complement this result by presenting a space-efficient algorithm that can compute, for w ? ?n, a tree decomposition of width O(w ?nlog n) or correctly decide that the graph has a treewidth more than w. This algorithm itself would be of independent interest as the first space-efficient algorithm for computing a tree decomposition of moderate (small but non-constant) width. By combining these results, we can show in particular that graphs of treewidth O(n^(1/2 - ?)) for some ? > 0 admits a polynomial-time sublinear-space algorithm for Lex-DFS. We can also show that planar graphs admit a polynomial-time algorithm with O(n^(1/2+?))-bit working memory for Lex-DFS

    Space-efficient Basic Graph Algorithms

    Get PDF
    We reconsider basic algorithmic graph problems in a setting where an n-vertex input graph is read-only and the computation must take place in a working memory of O(n) bits or little more than that. For computing connected components and performing breadth-first search, we match the running times of standard algorithms that have no memory restrictions, for depth-first search and related problems we come within a factor of Theta(loglog n), and for computing minimum spanning forests and single-source shortest-paths trees we come close for sparse input graphs

    Pebbling, Entropy and Branching Program Size Lower Bounds

    Get PDF
    We contribute to the program of proving lower bounds on the size of branching programs solving the Tree Evaluation Problem introduced by Cook et. al. (2012). Proving a super-polynomial lower bound for the size of nondeterministic thrifty branching programs (NTBP) would separate NLNL from PP for thrifty models solving the tree evaluation problem. First, we show that {\em Read-Once NTBPs} are equivalent to whole black-white pebbling algorithms thus showing a tight lower bound (ignoring polynomial factors) for this model. We then introduce a weaker restriction of NTBPs called {\em Bitwise Independence}. The best known NTBPs (of size O(kh/2+1)O(k^{h/2+1})) for the tree evaluation problem given by Cook et. al. (2012) are Bitwise Independent. As our main result, we show that any Bitwise Independent NTBP solving TEP2h(k)TEP_{2}^{h}(k) must have at least 12kh/2\frac{1}{2}k^{h/2} states. Prior to this work, lower bounds were known for NTBPs only for fixed heights h=2,3,4h=2,3,4 (See Cook et. al. (2012)). We prove our results by associating a fractional black-white pebbling strategy with any bitwise independent NTBP solving the Tree Evaluation Problem. Such a connection was not known previously even for fixed heights. Our main technique is the entropy method introduced by Jukna and Z{\'a}k (2001) originally in the context of proving lower bounds for read-once branching programs. We also show that the previous lower bounds given by Cook et. al. (2012) for deterministic branching programs for Tree Evaluation Problem can be obtained using this approach. Using this method, we also show tight lower bounds for any kk-way deterministic branching program solving Tree Evaluation Problem when the instances are restricted to have the same group operation in all internal nodes.Comment: 25 Pages, Manuscript submitted to Journal in June 2013 This version includes a proof for tight size bounds for (syntactic) read-once NTBPs. The proof is in the same spirit as the proof for size bounds for bitwise independent NTBPs present in the earlier version of the paper and is included in the journal version of the paper submitted in June 201
    corecore