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Abstract
We obtain the following new simultaneous time-space upper bounds for the directed reachabil-
ity problem. (1) A polynomial-time, Õ(n2/3g1/3)-space algorithm for directed graphs embed-
ded on orientable surfaces of genus g. (2) A polynomial-time, Õ(n2/3)-space algorithm for all
H-minor-free graphs given the tree decomposition, and (3) for K3,3-free and K5-free graphs, a
polynomial-time, O(n1/2+ε)-space algorithm, for every ε > 0.

For the general directed reachability problem, the best known simultaneous time-space upper
bound is the BBRS bound, due to Barnes, Buss, Ruzzo, and Schieber, which achieves a space
bound of O(n/2k

√
logn) with polynomial running time, for any constant k. It is a significant open

question to improve this bound for reachability over general directed graphs. Our algorithms beat
the BBRS bound for graphs embedded on surfaces of genus n/2ω(

√
logn), and for all H-minor-free

graphs. This significantly broadens the class of directed graphs for which the BBRS bound can
be improved.
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1 Introduction

Given a graph G and two vertices s and t, is there a path from s to t in G? This problem,
known as the reachability problem, is of fundamental importance in the study of space
bounded complexity classes as various versions of it characterize important complexity classes
(such as NL, RL, L and NC1 [16, 17, 3]). Progress in understanding the space complexity of
graph reachability problems directly relates to the progress in space complexity investigations.
We refer the readers to a survey by Wigderson [24] to further understand the significance
of reachability problems in complexity theory. Because of its central role, designing space
and time efficient deterministic algorithms for reachability problems is a major concern of
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complexity theory. In this paper we focus on algorithms for reachability over directed graphs
that run in polynomial-time and use sub-linear space.

Two basic algorithms for directed reachability are the Breadth First Search algorithm
(BFS) and Savitch’s algorithm [19]. BFS uses linear space and runs in polynomial time,
whereas Savitch’s algorithm uses only O(log2 n) space, but takes super-polynomial (θ(nlogn))
time. Thus BFS is time-efficient and Savitch’s algorithm is space-efficient. Hence a natural
and significant question that researchers have considered is whether we can design an
algorithm for reachability whose time-bound is better than that of Savitch’s algorithm and
the space-bound is better than that of BFS. A concrete open question is: Can we design a
polynomial-time algorithm for the directed graph reachability problem that uses only O(n1−ε)
space for some small constant ε? [24].

The best known result in this direction is the bound due to Barnes, Buss, Ruzzo, and
Schieber [2]. By cleverly combining BFS and Savitch’s algorithm, they designed a polynomial-
time algorithm for reachability that uses O(n/2k

√
logn) space, for any constant k. Henceforth

we refer to this bound as the BBRS bound. Improving the BBRS bound remains a significant
open question regarding the complexity of the graph reachability problem.

Recently there has been some progress on improving the BBRS bound for certain restricted
classes of directed graphs. Asano and Doerr showed that, for any ε > 0, there is a polynomial-
time algorithm that takes O(n1/2+ε) space for reachability over directed grid graphs [1]. In
[12], it was shown that, for any ε > 0, the directed planar reachability problem can also be
solved in polynomial-time and O(n1/2+ε) space. In [20], it was shown that the reachability
problem for directed acyclic graphs with O(n1−ε) sources nodes and embedded on surfaces
of O(n1−ε) genus can be solved in polynomial time and O(n1−ε) space. See a recent survey
article [22] for more details on known results.

In this paper we design reachability algorithms that beat the BBRS bound for a substan-
tially larger class of graphs than known before. Our main approach is to use a space-efficient
kernelization where we compress the given graph to a smaller kernel graph preserving reacha-
bility. Once such a kernel graph is computed, we can use known algorithms (such as BFS)
on the kernel graph to solve the reachability problem.

There are indications that it may be difficult to improve the BBRS bound for general
directed graphs using earlier known techniques. This is because there are matching lower
bounds known for general reachability on certain restricted model of computation known
as NNJAG [5, 15, 9]. All the known algorithms for the general reachability problem can be
implemented in NNJAG without significant blow up in time and space. However, we believe
that our kernel-based approach has a potential to overcome the NNJAG bottleneck.

Our main motivation to design space-efficient algorithms for reachability problems comes
from their importance in computational complexity theory. However, designing polynomial-
time, sub-linear space algorithms is of clear significance from a general algorithmic perspective,
especially in the context of computations over large data sets. Thus our algorithms may be
of interest to a more general audience.

Our Contributions
Our first result is a new algorithm for the directed reachability problem for surface-embedded
graphs.

I Theorem 1. There is an algorithm that, given a directed graph G embedded on an orientable
surface of genus g with the combinatorial embedding and two vertices s and t, decides whether
there is a directed path from s to t in G. This algorithm runs in polynomial-time and uses
Õ(n2/3g1/3) space, where n is the number of vertices of the graph.
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For the case when g = n1−ε, our algorithm uses Õ(n1−ε/3) space and runs in polynomial
time (by Õ(s(n)) we mean O(s(n)(logn)O(1))). In general, for graphs that are embedded on
surfaces of genus g = n/2ω(

√
logn), our algorithm beats the BBRS bound.

For proving the above theorem, we first give an algorithm for constructing a planarizing
set (a set S of nodes of a graph G, so that G \S is a planar graph) of size O(n2/3g1/3) of the
underlying undirected graph in polynomial-time and space Õ(n2/3g1/3). This space-efficient
algorithm for computing a planarizing set may be of independent interest.

There are known algorithms that compute a planarizing set of a high-genus graph [8, 11, 10].
However, we cannot rely on these existing algorithms since the starting point of all these
algorithms is a BFS tree computation of the input graph. In general computing a BFS tree
(even for an undirected graph) is as difficult as the directed reachability problem. Avoiding
a BFS tree computation of the entire graph is the the main technical challenge that we
overcome in our space efficient algorithm for constructing a planarizing set.

Once a planarizing set is computed, we construct a new directed graph G̃, called the
kernel graph on G whose vertex set is the planarizing set, so that reachability in G reduces
to reachability in G̃. This reduction uses the O(n1/2+ε) space algorithm for directed planar
reachability from [12] as a subroutine. Finally we solve reachability on G̃ using BFS. Since
the size of G̃ is O(n2/3g1/3), we get the desired space bound.

Our second contribution is a new reachability algorithm for H-minor-free graphs, that
improves upon the BBRS bound, where H is an arbitrary but fixed graph. To design this
algorithm we assume that we are provided with the tree decomposition of the H-minor-free
graph.

I Theorem 2. Given a graph H, there is an algorithm that, given any H-minor-free graph
G together with
(i) a tree decomposition (T,X) of G, and
(ii) for every Xi ∈ X, the combinatorial embedding of the subgraph G0 of G[Xi],
and two vertices s and t in G, decides whether there is a directed path from s to t in G. The
algorithm runs in polynomial-time and uses Õ(n2/3) space, where n is the number of vertices
of the graph.

The reader may refer to Section 4.1 to understand the notation that we use in Theorem 2.
This theorem is proved by first designing a Õ(n2/3)-space and polynomial-time algorithm for
constructing a 2/3-separator of size O(n2/3) for the given graph. Once such a separator is
obtained, we use ideas from [12] to design the reachability algorithm. To construct such a
separator for H-minor-free graphs, we use the tree decomposition of the given graph by [18]
and find a “separating node” in that tree. Then we construct a bounded-genus graph from
the graph induced by the separating node. Finally by using the planarizing set construction
used to prove Theorem 1, we design an algorithm to construct a planarizing set of size
O(n2/3) of the underlying undirected graph in polynomial-time and Õ(n2/3) space.

For K3,3-free and K5-free graphs we give a better upper bound than the one given in
Theorem 2. Kuratowski’s theorem states that planar graphs are exactly those graphs that
do not contain K3,3 and K5 as minors. Hence it is a natural question whether results on
planar graphs can be extended to graphs that do not contain either a K3,3 minor (known
as K3,3-free graphs) or a K5 minor (known as K5-free graphs). Certain complexity upper
bounds that hold for planar graphs have been shown to hold for K3,3-free and K5-free graphs
[4, 21, 6, 7]. On the other hand, there are problems for which upper bounds that hold for
planar graphs are not known to extend to such minor-free graphs (such as computing a
perfect matching in bipartite graphs [13]). We show that the time-space bound known for
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planar graphs can also be obtained for both these classes of graphs. Here it is important
to note that even though directed reachability in K3,3-free and K5-free graphs reduces to
directed planar reachability[21], the reduction blows up the size of the graph by a polynomial
factor and hence we can not use this approach for our purposes.

I Theorem 3. For any constant 0 < ε < 1/2, there is a polynomial time and O(n1/2+ε)
space algorithm that given a directed K3,3-free or K5-free graph G on n vertices, decides
whether there is a directed path from s to t in G.

Although for Theorem 2 we require additional inputs (such as the tree decomposition
and the embeddings of the bounded genus parts), in Theorem 3 we do not have any such
requirements. The proof idea of Theorem 3 is similar to that of Theorem 2. However we use
the known algorithm to compute a planar separator instead of a bounded genus separator.
This gives better space bound compared to the case of H-minor-free graphs.

The rest of the paper is organized as follows. In Section 2 we give some basic definitions
and notations that we use. In Section 3, we give a construction of planarizing set for
high-genus graphs and also provide a proof of Theorem 1. In Section 4, we present the
algorithm for reachability in H-minor-free graphs and as a corollary we show Theorem 3.
Due to space constraints, most of the proofs appear in the Appendix.

2 Preliminaries

We first define some notations which will be used later in this paper. Given a graph G and a
set of vertices X, G[X] denotes the subgraph of G induced by X and V (G) denotes the set
of vertices present in the graph G. Now we define necessary notions on graphs embedded
on surfaces. We refer the reader to the excellent book by Mohar and Thomassen [14] for
a comprehensive treatment of this topic. In this paper we only consider closed orientable
surfaces. These surfaces are obtained by adding “handles” to a sphere.

Let G = (V,E) be a graph and for each v ∈ V , let πv be a cyclic permutation of edges
incident on v. Let Π = {πv | v ∈ V }. We say that Π is a combinatorial embedding of G. Given
a combinatorial embedding we can define Π-facial walk. Let e = 〈v1v2〉 be an edge. Consider
the closed1 walk f = v1e1v2e2v3 · · · vkekv1 where πvi+1(ei) = ei+1, and πv1(ek) = e1. We call
f a face of the graph G.

Given a Π-embedding of a graph G, the Π-genus of G is the g such that n−e+f = 2−2g,
where n, e and f denote the number of vertices, edges and faces of the graph G. This is
popularly known as the Euler-Poincaré formula.

It is known that given any graph with Π-genus g, it can be embedded on a closed
orientable surface of genus g such that every face is homeomorphic to an open disc. Let Π
be a combinatorial embedding of a graph G and H be a subgraph of G. The embedding Π
naturally induces an embedding Π′ on G \H. By abuse of notation, we still refer to the
induced embedding as Π-embedding.

Given a cycle C of a graph, we can define left and right sides of the cycle C. Two vertices
are on the same side of C if they are path connected such that the path does not cross the
cycle C. We use Gl(C) and Gr(C) to denote the left and right sides of G. Given a cycle C,
we say that it is contractible if one of Gl(C)∪C or Gr(C)∪C has Π-genus zero (i.e. planar).
We say that a cycle is surface separating if Gl(C) and Gr(C) have no edges in common. Note

1 A priori it is not obvious that that this leads to a closed walk. However, it can shown that this walk
comes back to v1. See [14] Chapter 3.2 for a proof.
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that every contractible cycle is surface separating. A cycle that is not surface separating is
called a non-separating cycle. We now mention some fundamental facts about these cycles
that are used throughout this paper.

I Proposition 1. Let C be a cycle of a graph with Π-genus g. If C is non-separating, then
Π-genus of G \ C is ≤ g − 1. If C is surface separating, then sum of Π-genera of Gl(C) ∪ C
and Gl ∪ C equals g.

An edge that appears on a facial walk f may appear once or twice on f . Any edge that
appears twice on a facial walk is called singular edge.

I Proposition 2. Let G be a graph with Π-genus g, and e be a singular edge such that G \ e
is connected. The Π-genus of G \ e is g − 1.

The notions of planarizing set and separator defined below are crucial in this paper. A
set S of vertices of a graph G is called a planarizing set if G \ S is a planar graph. An
(α, β)-separator of a graph G = (V,E) having n vertices, is a subset S of V such that
|S| ≤ O(α) and every connected component in V \ S has at most βn vertices.

Next we state two theorems about planar graphs that are used in this paper. In [12] the
authors construct a (n1/2, 8/9)-separator. By running their algorithm repeatedly (a constant
number of times), we can obtain a (n1/2, 1/3) separator.

I Theorem 4 ([12]). Given a planar graph G there is an algorithm that computes a (n1/2, 1/3)-
separator of G in polynomial time and Õ(n1/2) space.

We refer to the algorithm of this theorem as PlanarSeparator algorithm. In [12], this
algorithm is used to obtain a time-space efficient algorithm for reachability on directed planar
graphs

I Theorem 5 ([12]). For any constant 0 < ε < 1/2, there is an algorithm that, given a
directed planar graph G and two vertices s and t, decides whether there is a path from s to
t. This algorithm runs in time nO(1/ε) and uses O(n1/2+ε) space, where n is the number of
vertices of G.

3 A Reachability Algorithm for High Genus Graphs

In this section we prove Theorem 1. We will use a space-efficient construction of a planarizing
set to establish this result. We first assume that the following theorem holds and then prove
Theorem 1. Proof of Theorem 6 will appear in Section 3.1.

I Theorem 6. There is an algorithm that given a combinatorial embedding of an undirected
graph G embedded on an orientable surface of genus g, outputs a planarizing set of G of size
O(n2/3g1/3). This algorithm runs in polynomial time and uses space Õ(n2/3g1/3). Here n
denotes the number of vertices of G.

Proof of Theorem 1. Let 〈G, s, t〉 be an instance of reachability where G whose Π-genus is
g. Consider the underlying undirected graph Gun. By using the algorithm from Theorem 6
we first compute a planarizing set S of Gun. Let S = S ∪ {s, t}. Let Gp be the planar graph
obtained by removing all vertices (and the edges incident on them) of S from G.

Consider the following reduction that outputs an instance 〈G, s, t〉, where G = (S, E).
Given two nodes a and b in S, we place a directed edge from a to b in E , if there is a directed
edge from a to b in the original directed graph G. Additionally, we place an edge from a to
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b in E , if there exist vertices u and v in the vertex set of Gp such that all of the following
conditions hold: 1) there is a directed edge from a to u in G, 2) there is a directed edge
from v to b in G, and 3) there is a directed path from u to v in the directed planar graph
Gp. Determining whether there is path from u to v in Gp can be done in polynomial-time
and O(n2/3) space, by setting ε to 1/6 by Theorem 5. By Theorem 6, S can be computed in
polynomial time and Õ(n2/3g1/3) space. Thus this reduction runs in polynomial time and
uses Õ(n2/3g1/3) space.

We now claim that there is a path from s to t in G if and only if there is a path from s

to t in G. Consider any s-t path in G, let e1, e2, · · · ek be the edges of this path. Consider
an edge ei = (a, b). Note that the reduction places this edge in G when, either there is a
directed path or an edge from a to b in G. This implies that there is path from s to t in G.
Now we prove the converse direction. Let P be a path from s to t in G. We can decompose
P into p1e1q1h1p2e2q2h2 · · · pk. Here ei is an edge from a vertex in S to a vertex in Gp and
hi is an edge from a vertex in Gp to a vertex in S, qi is the part of the path P from head
of ei to the tail of hi so that it completely lies within Gp, and pi is the part of the path P
that completely lies in the graph induced by the planarizing set S. By the construction of G,
there is an edge oi from the tail of ei to the head of hi in G. Thus p1o1p2o2 · · · pk is a path
from s to t in G.

Reachability in the directed graph G can be solved using BFS. Since the number of vertices
in G is O(n2/3g1/3), the BFS algorithm runs in polynomial-time and uses in Õ(n2/3g1/3)
space. By combining the above reduction with the reachability algorithm on G, we obtain an
algorithm that solves reachability in G that runs in polynomial time and uses Õ(n2/3g1/3)
space. This completes the proof of Theorem 1. J

3.1 Proof of Theorem 6
The structure of the proof is as follows. Given an embedded graph, we decompose the graph
into several regions. We first look for a small non-contractible cycle C inside some region. If
we find one, then we add the vertices of C into the planarizing set. If C is non-separating, by
Proposition 1, removal of the vertices of C will result in a graph whose genus ≤ g − 1. If C
is surface separating, since C is non-contractible, by Proposition 1, we get two components
each with genera 0 < g1, g2 < g so that g1 + g2 = g. In both cases, since the genus of each
component is < g, we can iterate this process. If this iteration stops, then all the regions
of all the resulting components are homeomorphic to an open disc. In this case, for each
component we identify a small subgraph based on the regions, and argue that this subgraph is
a planarizing set of that component. Our final planarizing set is the collection of planarizing
sets of each component together with the non-contractible cycles. Notice that at any stage
the components obtained can be implicitly represented by the original graph and the cycles
that are removed. Thus we do not have to explicitly store the components. We only store
the non-contractible cycles that are removed. We now proceed to give a formal proof. The
algorithm given in the following lemma is the core of the planarizing set algorithm.

I Lemma 7. There is an algorithm that given a connected undirected graph G, its Π-
embedding, and an integer k as input, outputs one of the following:
1. A non-separating cycle of size O(k) or a singular edge e so that G \ e is connected. The

output of this step (either a cycle or a singular edge) is called a genus reduction set.
2. a non-contractible and surface-separating cycle of size O(k)
3. a planarizing set of size O((n/k + g)

√
k)

The algorithm runs in polynomial-time and uses Õ(n/k + k) space.



D. Chakraborty, A. Pavan, R. Tewari, N. V. Vinodchandran, and L. F. Yang 591

The proof of the above lemma is given in the Appendix. Now using this lemma, we prove
Theorem 6.

Proof of Theorem 6. The planarizing set construction algorithm applies the algorithm from
Lemma 7 iteratively. We will describe the algorithm by describing an iteration. After the
ith iteration, we will have a collection of components G1, G2, . . . , Gm. We will describe the
(i+1)st iteration: The algorithm considers the first component Ĝ whose Π-genus ĝ is non-zero
and apply the algorithm from Lemma 7 on Ĝ. This results in either (1) a genus-reduction set
of Ĝ, (2) non-contractible surface separating cycle of Ĝ, or (3) planarizing set of Ĝ. In cases
(1) and (2) the algorithm stores the corresponding cycles. In case (3) it adds the planarizing
set obtained to the final planarizing set. This process stops when all the components are
planar.

We claim that after any iteration, the total number of vertices in all of the components
together is at most n, and the total genera of all of the components together is at most g.
Assume that this claim holds after ith iteration. Let Ĝ be the component considered at the
(i+ 1)st iteration. In case (1), by Propositions 1 and 2, Ĝ is reduced to a component whose
genus is at most ĝ − 1. In case (2), since we have a non-contractible surface separating cycle,
by Proposition 1, we get two components whose sum of the genera is at most ĝ. In case (3),
Ĝ is reduced to a planar graph. Thus sums of the genera of all components is ≤ g and, since
no vertex is repeated in more than one component, vertices in all of the components together
is at most n.

Clearly this algorithm produces a planarizing set and runs in polynomial-time. We will
now bound the size of the planarizing set and the space used by the algorithm.

Notice that the algorithm stores only the cycles and singular edges and will not store the
components: At any stage, given the original graph, the cycles or singular edges computed so
far, and an index of the component, the edge relations of that component can be computed
without additional space. After at most g iterations, we are left with at most g components
each of whose genus is at most 1. Since each iteration may produce a cycle of length O(k),
the algorithm will store at most 2g cycles each of length O(k). Consider a component Gi in
which case (3) of the lemma happens. The size of the corresponding planarizing set produced
is O(ni/k + gi)

√
k. Since

∑
i ni ≤ n and

∑
i gi ≤ g, the total size of the planarizing set is

O((n/k + g)
√
k + kg). Total space used is Õ(n/k + k + kg + (n/k + g)

√
k) (including the

space to store the planarizing set).
By choosing k = max{(n/g)2/3, 1}, we get that the total space-bound of the algorithm to

compute the planarizing set is Õ(n2/3g1/3), and the size of the planarizing set produced is
O(n2/3g1/3). J

4 A Reachability Algorithm for H-minor-free Graphs

In this section, we prove Theorem 2 by first giving an algorithm to construct a separator of
the input graph. Towards this we define the notion of a tree decomposition of a graph which
is crucial to the construction.

4.1 Graph Minor Decomposition Theorem

A graph H is said to be a minor of a graph G if H can be obtained from a subgraph of G by
contracting some edges. A graph G is said to be H-minor-free if G does not contain H as a
minor, for some graph H.
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I Definition 8. A tree decomposition of a graph G = (V,E) is the tuple (T,X) where
T = (VT , ET ) is a tree and X = {Xi | i ∈ VT }, such that, (a) ∪iXi = V , (b) for every edge
(u, v) in G, there exists i, such that u and v belong to Xi, and (c) for every v ∈ V , the set of
nodes {i ∈ VT | v ∈ Xi} forms a connected subtree of T .

We will refer to the Xi’s as bags of vertices. Note that each bag corresponds to a node
(we call vertices of T as nodes) in the tree T . The width of a tree decomposition (T,X),
is the maximum over the size of Xi’s minus 1. The treewidth of a graph is the minimum
width over all possible tree decompositions of G. A tree decomposition is said to be a path
decomposition if T = (VT , ET ) is a path and pathwidth of a graph is the minimum width
over all possible path decompositions of G.

For a fixed graph H, Robertson and Seymour, gave a tree decomposition for every
H-minor-free graph [18]. Before we see the Theorem we need to state some definitions.

A graph G is called almost h-embeddable if there exists a set of vertices Y (called the
apices) of size at most h such that, (i) G \ Y can be written as G0 ∪G1 ∪ . . . ∪Gh, (ii) G0
has an embedding on a surface of genus at most h (say S), (iii) for i = 1, · · · , h, Gi’s are
pairwise disjoint ( we shall refer to them as vortices), (iv) there exists faces F1, · · · , Fh of
G0 and pairwise disjoint discs D1, · · · , Dh on S such that for all i ∈ {1, . . . , h}, Di ⊆ Fi and
Ui := V (G0)∩V (Gi) = V (G0)∩Di, and (v) for each graph Gi, there is a path decomposition
(Pu)u∈Ui of width at most h such that u ∈ Pu, for all u ∈ Ui. The sets of vertices in Pu are
ordered according to the ordering of the corresponding u’s as vertices along the boundary of
face Fi in G0.

Let G and H be two graphs each containing cliques of equal sizes. The clique-sum of G
and H is formed by identifying pairs of vertices in these two cliques to form a single shared
clique, and then possibly deleting some of the clique edges (may be none). A k-clique-sum is
a clique-sum in which both cliques have at most k vertices. The k-clique-sum of G and H is
denoted as G⊕k H. The set of shared vertices in this operation is called the join set.

We are now ready to state the decomposition theorem for H-minor-free graphs.

I Theorem 9 ([18]). For every graph H, depending only on |V (H)|, there exists an integer
h ≥ 0 such that every H-minor-free graph can be represented as at most h-clique-sum of
“almost h-embeddable” graphs in some surface on which H cannot be embedded.

Henceforth, we will assume that the tree decomposition of the original graph and the
combinatorial embedding of all subgraphs (the G0’s in each almost h-embeddable graph)
that are embedded on the surface are provided as part of the input. We will refer to this as
tree decomposition with combinatorial embedding of H-minor-free graphs.

4.2 Constructing Separator for H-minor-free Graphs
Now we will show that given a decomposition of a H-minor-free graph stated in the last
subsection, how to construct a separator. We start with the following lemma whose proof is
given in the Appendix.

I Lemma 10. There exists a log-space algorithm, that given a tree decomposition (T,X)
of a graph G on n vertices, outputs a node i ∈ T such that every connected component in
G[V \Xi] has at most n/2 vertices.

We now give a separator construction for all H-minor-free graphs which is the main
contribution of this whole section.
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I Theorem 11. Given a H-minor-free graph G and its tree decomposition with combinato-
rial embedding, there exists an Õ(n2/3) space, polynomial time algorithm that computes a
(n2/3, 2/3)-separator of G.

Proof. Given an input graph G and its tree decomposition, compute the vertex i using
Lemma 10. The separator for G that we would construct would be a subset of Xi. Let i
have m neighbors in T , say i1, . . . , im. Now for every j ∈ [m], G[Xi] is joined with G[Xij ]
using the clique-sum operation of at most h (constant depending only on H) vertices. Let
C = {C1, C2, . . . , Cm} where Cj is a set of at most h vertices in Xi, such that G[Xi] is joined
with G[Xij ] via Cj . Let Tj be the connected subtree of T \ i containing the node j. We
define the subgraph Gj to be the induced subgraph of G corresponding to the vertices in the
subtree Tj . In other words, Gj = G[∪l∈TjXl]. Let kj = |Gj |.

Now if |Xi| ≤ O(n2/3), then it follows from Lemma 10 that Xi is a (n2/3, 1/2)-separator
of G. Otherwise, consider the node i and its corresponding almost h-embeddable graph
K = G[Xi]. Now consider the representation of K using apices and vortices. Let Y be
the set of apices and K \ Y can be written as K0 ∪K1 ∪ · · · ∪Kh where each of Ki has a
path decomposition (Pu)u∈Ui of width less than h. Now build a new graph K ′ from K0
using the following steps: for i = 1, · · · , h, add a cycle of length |Pu| attached to the vertex
u ∈ Ui inside the face Fi and then connect those cycles such that they form a path like
structure similar to the corresponding path decomposition. The new graph K ′ is a graph
embedded on a constant genus and so from Theorem 6, we can get a (n2/3, 2/3)-separator
S (which is union of planarizing set of K ′, say Z and output of PlanarSeparator on the
graph K ′ \ Z) using Õ(n2/3) space and polynomial time. If S contains some vertices from
a newly added cycle, then we add all the vertices present in the corresponding “bag” of
vertices of the respective path decomposition. We also add all the apices of K0 and we get
a new set S′. As the size of S is O(n2/3), so the size of S′ will be at most O(hn2/3) = O(n2/3).

I Claim 1. S′ is a (n2/3, 2/3)-separator of K.

Proof. Observe that by construction, K ′ is a graph embedded on a bounded genus surface.
Moreover there is a canonical injective map (say σ) from vertices in K to vertices in K ′. To
see this, note that K ′ = K0 ∪ {newly added cycles} and by construction, for every vertex in
the bag Xi there is a vertex in the newly added cycle in K ′.
Since S is a (n2/3, 2/3)-separator of K ′, S′ is also a (n2/3, 2/3)-separator of K. Let C be a
connected component in K \ S′. Then the vertices corresponding to C in K ′ (via the map σ)
also form a connected component. Since every connected component in K ′ \ S has size at
most 2|K ′|/3, so S′ is a (n2/3, 2/3)-separator of K. J

By running the above construction repeatedly (a constant number of times), we can get a
(n2/3, 1/6)-separator S. As according to Lemma 10, G[V \Xi] contains at most n/2 vertices,
so the set S also acts as a (n2/3, 2/3)-separator for the whole graph G. It is clear from the
construction of S that this algorithm will take Õ(n2/3) space and polynomial time. J

We also consider the special case when H is either the K3,3 or the K5.

I Theorem 12 ([23, 21]). Let (T,X) be a tree decomposition of a K3,3-free or K5-free graph
G. Then
(i) for every Xi ∈ X, G[Xi] is either a planar graph or the K5 (if G is K3,3-free) or V8 (if

G is K5-free), and
(ii) G is the 3-clique-sum of G[Xi] and G[Xj ] for every adjacent vertices i, j in T .
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Moreover given a K3,3-free or K5-free graph G, such a tree decomposition can be computed
in logspace.

Thierauf and Wagner have shown how to compute the tree decomposition of a K3,3-free or
K5-free graph given in Theorem 12 in log-space [21] and thus we get the following corollary
for these special class of H-minor-free graphs.

I Corollary 13. Given a K3,3-free or K5-free graph G, there exists an Õ(n1/2) space,
polynomial time algorithm that computes a (n1/2, 2/3)-separator of G.

The detailed proof of the above stated corollary is given in the Appendix.

Proof of Theorem 2. Observe that the planar reachability algorithm of Theorem 5 essentially
uses the properties that (I) a subgraph of a planar graph is also planar, and (II) their exists
an algorithm that computes a (n1/2, 2/3)-separator of a planar graph in polynomial time and
Õ(n1/2) space. Note that by the definition itself, all the subgraphs of a H-minor-free graph is
also H-minor-free and given a tree decomposition, from Theorem 11 we get an algorithm that
computes a (n2/3, 2/3)-separator of a H-minor-free graph in polynomial time and Õ(n2/3)
space. Now using the algorithm stated in Theorem 5, we get our desired result. J

Just mimicking the above proof, we can achieve a better simultaneous time-space bound
for the directed reachability problem over K3,3-free or K5-free graphs as stated in Theorem 3
using the separator obtained from the Corollary 13.
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