4,015 research outputs found

    General Bounds for Incremental Maximization

    Full text link
    We propose a theoretical framework to capture incremental solutions to cardinality constrained maximization problems. The defining characteristic of our framework is that the cardinality/support of the solution is bounded by a value k∈Nk\in\mathbb{N} that grows over time, and we allow the solution to be extended one element at a time. We investigate the best-possible competitive ratio of such an incremental solution, i.e., the worst ratio over all kk between the incremental solution after kk steps and an optimum solution of cardinality kk. We define a large class of problems that contains many important cardinality constrained maximization problems like maximum matching, knapsack, and packing/covering problems. We provide a general 2.6182.618-competitive incremental algorithm for this class of problems, and show that no algorithm can have competitive ratio below 2.182.18 in general. In the second part of the paper, we focus on the inherently incremental greedy algorithm that increases the objective value as much as possible in each step. This algorithm is known to be 1.581.58-competitive for submodular objective functions, but it has unbounded competitive ratio for the class of incremental problems mentioned above. We define a relaxed submodularity condition for the objective function, capturing problems like maximum (weighted) (bb-)matching and a variant of the maximum flow problem. We show that the greedy algorithm has competitive ratio (exactly) 2.3132.313 for the class of problems that satisfy this relaxed submodularity condition. Note that our upper bounds on the competitive ratios translate to approximation ratios for the underlying cardinality constrained problems.Comment: fixed typo

    Overcommitment in Cloud Services -- Bin packing with Chance Constraints

    Full text link
    This paper considers a traditional problem of resource allocation, scheduling jobs on machines. One such recent application is cloud computing, where jobs arrive in an online fashion with capacity requirements and need to be immediately scheduled on physical machines in data centers. It is often observed that the requested capacities are not fully utilized, hence offering an opportunity to employ an overcommitment policy, i.e., selling resources beyond capacity. Setting the right overcommitment level can induce a significant cost reduction for the cloud provider, while only inducing a very low risk of violating capacity constraints. We introduce and study a model that quantifies the value of overcommitment by modeling the problem as a bin packing with chance constraints. We then propose an alternative formulation that transforms each chance constraint into a submodular function. We show that our model captures the risk pooling effect and can guide scheduling and overcommitment decisions. We also develop a family of online algorithms that are intuitive, easy to implement and provide a constant factor guarantee from optimal. Finally, we calibrate our model using realistic workload data, and test our approach in a practical setting. Our analysis and experiments illustrate the benefit of overcommitment in cloud services, and suggest a cost reduction of 1.5% to 17% depending on the provider's risk tolerance

    Locality-preserving allocations Problems and coloured Bin Packing

    Get PDF
    We study the following problem, introduced by Chung et al. in 2006. We are given, online or offline, a set of coloured items of different sizes, and wish to pack them into bins of equal size so that we use few bins in total (at most α\alpha times optimal), and that the items of each colour span few bins (at most β\beta times optimal). We call such allocations (α,β)(\alpha, \beta)-approximate. As usual in bin packing problems, we allow additive constants and consider (α,β)(\alpha,\beta) as the asymptotic performance ratios. We prove that for \eps>0, if we desire small α\alpha, no scheme can beat (1+\eps, \Omega(1/\eps))-approximate allocations and similarly as we desire small β\beta, no scheme can beat (1.69103, 1+\eps)-approximate allocations. We give offline schemes that come very close to achieving these lower bounds. For the online case, we prove that no scheme can even achieve (O(1),O(1))(O(1),O(1))-approximate allocations. However, a small restriction on item sizes permits a simple online scheme that computes (2+\eps, 1.7)-approximate allocations

    Lower bounds for several online variants of bin packing

    Full text link
    We consider several previously studied online variants of bin packing and prove new and improved lower bounds on the asymptotic competitive ratios for them. For that, we use a method of fully adaptive constructions. In particular, we improve the lower bound for the asymptotic competitive ratio of online square packing significantly, raising it from roughly 1.68 to above 1.75.Comment: WAOA 201

    Information-based complexity, feedback and dynamics in convex programming

    Get PDF
    We study the intrinsic limitations of sequential convex optimization through the lens of feedback information theory. In the oracle model of optimization, an algorithm queries an {\em oracle} for noisy information about the unknown objective function, and the goal is to (approximately) minimize every function in a given class using as few queries as possible. We show that, in order for a function to be optimized, the algorithm must be able to accumulate enough information about the objective. This, in turn, puts limits on the speed of optimization under specific assumptions on the oracle and the type of feedback. Our techniques are akin to the ones used in statistical literature to obtain minimax lower bounds on the risks of estimation procedures; the notable difference is that, unlike in the case of i.i.d. data, a sequential optimization algorithm can gather observations in a {\em controlled} manner, so that the amount of information at each step is allowed to change in time. In particular, we show that optimization algorithms often obey the law of diminishing returns: the signal-to-noise ratio drops as the optimization algorithm approaches the optimum. To underscore the generality of the tools, we use our approach to derive fundamental lower bounds for a certain active learning problem. Overall, the present work connects the intuitive notions of information in optimization, experimental design, estimation, and active learning to the quantitative notion of Shannon information.Comment: final version; to appear in IEEE Transactions on Information Theor
    • …
    corecore