research

Locality-preserving allocations Problems and coloured Bin Packing

Abstract

We study the following problem, introduced by Chung et al. in 2006. We are given, online or offline, a set of coloured items of different sizes, and wish to pack them into bins of equal size so that we use few bins in total (at most α\alpha times optimal), and that the items of each colour span few bins (at most β\beta times optimal). We call such allocations (α,β)(\alpha, \beta)-approximate. As usual in bin packing problems, we allow additive constants and consider (α,β)(\alpha,\beta) as the asymptotic performance ratios. We prove that for \eps>0, if we desire small α\alpha, no scheme can beat (1+\eps, \Omega(1/\eps))-approximate allocations and similarly as we desire small β\beta, no scheme can beat (1.69103, 1+\eps)-approximate allocations. We give offline schemes that come very close to achieving these lower bounds. For the online case, we prove that no scheme can even achieve (O(1),O(1))(O(1),O(1))-approximate allocations. However, a small restriction on item sizes permits a simple online scheme that computes (2+\eps, 1.7)-approximate allocations

    Similar works