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We study the following problem, introduced by Chung et al. in 2006. We are given, online 
or offline, a set of coloured items of different sizes, and wish to pack them into bins 
of equal size so that we use few bins in total (at most α times optimal), and that the 
items of each colour span few bins (at most β times optimal). We call such allocations 
(α, β)-approximate. As usual in bin packing problems, we allow additive constants and 
consider (α, β) as the asymptotic performance ratios. We prove that for ε > 0, if we desire 
small α, no scheme can beat (1 + ε, �(1/ε))-approximate allocations and similarly as we 
desire small β , no scheme can beat (1.69103, 1 + ε)-approximate allocations. We give 
offline schemes that come very close to achieving these lower bounds. For the online 
case, we prove that no scheme can even achieve (O (1), O (1))-approximate allocations. 
However, a small restriction on item sizes permits a simple online scheme that computes 
(2 + ε, 1.7)-approximate allocations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of computing locality-preserving allocations of coloured items to bins, so as to preserve locality 
(colours span few bins) but remain efficient (use a few total bins). The problem appears to be a fundamental problem arising 
in allocating files in peer-to-peer networks, allocating related jobs to processors, allocating related items in a distributed 
cache, and so on. The aim is to keep the communication overhead between items of the same colour small. One application 
for example appears in allocating jobs in a grid computing system. Some of the jobs are related in such a way that results 
computed by one job are used by another one. There are also non-related jobs that may be from different users and 
contexts. Related jobs are of a same colour and each job has a length (number of instructions for example). In the grid 
environment each computer has a number of instructions donated by its owner to be used by the grid jobs. This way the 
objective is to allocate jobs to machines trying to use few machines (bins) respecting the number of instructions available 
(bins size), while also trying to keep related jobs together in as few machines as possible. In peer-to-peer systems a similar 
problem also appears where one wants to split pieces of files across several machines, and wants to keep pieces of a file 
close together to minimize the time to retrieve the entire file.
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These problems can be stated as a fundamental bi-criteria bin packing problem. Let I be a set of items, each item of 
some colour c ∈ C , and denote by Ic the set of items of a given colour c. Denote by OPT(I) the minimum number of bins 
necessary to pack all items and denote by OPT(Ic) the minimum number of bins necessary to pack only items of colour c, 
i.e., as if we had a bin packing instance with items Ic . Let A(I) be the number of bins generated by algorithm A when 
packing all items, and for each colour c, let A(Ic) be the number of bins of this packing having items of colour c. We 
say that items of colour c span A(Ic) bins in this packing. We want an algorithm that minimizes both ratios A(I)

OPT(I) and 
maxc∈C

A(Ic)
OPT(Ic)

. So we would like to allocate the items to bins so that we use few bins in total (at most αOPT(I), where we 
call α the bin stretch), and the items of each colour c span few bins (at most βOPT(Ic), where we call β the colour stretch). 
We call such allocations (or packings) (α, β)-approximate. The problem of minimizing any one of α or β is equivalent to the 
classical one-dimensional bin packing, but as we show, in general it is not even possible to minimize them simultaneously. 
A natural extension is to consider bins as nodes of some graph G , and we want to allocate bins so that each subgraph Gc

induced by nodes containing items of colour c has some natural property allowing small communication overhead, such as 
having low diameter, or small size.

We prove that for ε > 0, if we desire small bin stretch, no scheme can beat (1 + ε, �(1/ε))-approximate allocations 
and similarly as we desire small colour stretch, no scheme can beat (1.69103, 1 + ε)-approximate allocations. We give 
offline schemes that are based in well know bin packing algorithms and yet come very close to achieving these lower 
bounds. We show how to construct (1 + ε, �(1/ε)) and (1.7, 1 + ε) approximate allocations, the first one closing the gap 
with the lower bound and the last one almost closing the gap. For the online case, we prove that no scheme can even 
achieve (O (1), O (1))-approximate allocations. However, a small restriction on item sizes permits a simple online scheme 
that computes (2 + ε, 1.7)-approximate allocations.

2. Preliminaries

We now formulate the problem of computing locality-preserving allocations as a coloured bin packing problem. We are 
given a set I of n coloured items each item e with a size s(e) in (0, 1] and with a colour c(e) from C = {1, . . . , m}, and an 
infinite number of unit-capacity bins. Let Ic be the set of colour-c items, and denote by OPT(I) (OPT(Ic) respectively) the 
smallest possible number of bins needed to store items in I (Ic respectively). For a packing P of items I , define P (I) as the 
number of bins used to pack I , and define Pc(I) as the number of bins spanned by colour-c items in the packing P . When 
I is obvious, we drop it and write P and Pc .

We define an (α, β)-approximate packing as one where: (1) P � αOPT(I) + O (1) and (2) for each colour c ∈ C , Pc �
βOPT(Ic) + O (1). An algorithm that always produces (α, β)-approximate packings is called an (α, β)-approximation algorithm.

As usual in bin packing problems, we allow additive constants and consider α (respectively β) as the asymptotic per-
formance ratio as OPT(I) (respectively OPT(Ic)) grows to infinity (and hence the total weight of items). This is because a 
simple reduction from PARTITION (e.g. see [10]) shows that, without allowing additive constants, it would be NP-hard to do 
better than (1.5 − ε, δ) or (δ, 1.5 − ε) approximate packings for any δ.

When dealing with the online problem we have similar definitions for the competitive ratio of an online algorithm, 
and in this case OPT(I) corresponds to an optimal offline solution to instance I that has full knowledge of the request 
sequence I . As standard, we shall use the term approximation ratio interchangeably with competitive ratio when discussing 
online algorithms (i.e. a 2-approximate online scheme is one that is within a factor 2 of the optimal offline scheme).

2.1. Related work

Chung et al. [4] consider the case where each item is of a different colour and can be fractionally (arbitrarily) divided 
between bins, bins have different sizes and the total weight of items exactly equals the total weight of bins. They show how 
to compute an allocation that is asymptotically optimal for each colour. By contrast, we relax the assumption that we must 
exactly fill all the bins, and consider the case of indivisible allocations. In this setting, the problem is much more interesting: 
it is impossible to get arbitrarily good (1 + ε, 1 + ε)-approximate allocations in general. Thus, these relaxed packings have 
a tradeoff between bin stretch and colour stretch, with polynomial-time approximations. We also consider for the first time 
the case where items arrive online. However, the case of heterogeneous bins is open for our setting.

The nonexpansive hashing scheme of Linial and Sasson [16] can also be used to find a locality-preserving packing for 
unit-size items. By defining the distance of two items to be 0 if they are of the same colour, and δ > 1 otherwise, one can 
interpret their dynamic hashing result as follows: for any ε > 0, it is possible to hash unit-size items into bins in O (1) time 
so that they have use O (OPT1+ε) bins (giving bin stretch O (OPTε) and colour stretch O (1)).

Krumke et al. [14] study a related ‘online coloured bin packing’ problem where the goal is to minimize the number of 
different colours packed into each bin, while using the entire capacity of each bin (in their problem all items have same 
unit size). However, this problem is quite different to ours. In particular, an optimal solution problem when minimizing 
the number of colours per bin may give arbitrarily bad bin stretch. Consider b bins of capacity x, and unit size items of 
many colours c1, c2, . . . , c(x−2)b+1. There will be 2b items of colour c1 and 1 item of each of the other colours. Now, a 
(1, 1)-approximate packing places x colours from {c2 . . . c(x−2)b+1} into each bin and the items of c1 into the remaining bins. 
On the other hand, a packing minimizing the maximum number of colours per bin (while using all the capacity of each 
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bin) will place 2 items of c1 and x − 2 items of other colours into each bin. Hence, considering colour 1, it may be packed 
individually into OPT(I1) = 2b/x bins, but in this solution it spans b bins, giving colour stretch x/2, which can be made 
arbitrarily large.

There are some other variants of bin packing problems with colours, for example the so called Coloured Bin Packing that 
has the restriction that items of a same colour cannot be packed next to each other on a same bin. Approximation algorithms 
for the online version of the problem were presented by Böhm et al. [2] and Dósa and Epstein [6]. A generalization where 
the objective is to pack a graph G into another graph H where nodes into H have capacities and nodes in G corresponds 
to items of given size, was studied by Bujtás et al. in [3].

The ‘class-constrained bin packing problem’, studied by Golubchik et al. [11], Kashyap et al. [13], Xavier et al. [18]
and Epstein et al. [7] is a coloured bin packing problem. The aim is to minimize the number of bins used, subject to 
the constraint that each bin contains items from at most c different colours (and subject to its capacity constraints). This 
problem has applications in developing algorithms for data placement on parallel disk arrays. Again, optimal solutions to 
this problem may be arbitrarily far from good if we wish to minimize colour stretch.

A recent survey covering different variants of bin packing problems was made by Coffman et al. [9].

3. Impossibility results for offline algorithms

We start by considering some lower bounds on what values of bin and colour stretch can be achieved simultaneously. 
All these bounds hold for offline algorithms, so there is some inherent tension between the two measures of colour stretch 
and bin stretch. We now show a lower bound on colour stretch, if we wish to take bin stretch arbitrarily small.

Theorem 1. For bin stretch (1 + ε), it is impossible to achieve better than �(1/ε) colour stretch.

Proof. For 0 < δ < 1/2, consider the instance containing n items of size 1 − δ, one for each colour 1, . . . , n and n items 
of size δ, all of colour n + 1. For simplicity assume that ε = 1/x for some integer x, and δ = 2ε, such that δn and εn are 
integers. We have OPT(I) = n, OPT(Ic) = 1 for c = 1, . . . , n and OPT(In+1) = δn. Assume we want to construct a packing 
using at most (1 + ε)n bins in total.

Since items of colours c = 1, . . . , n cannot fit together, we use at most nε bins only for colour n + 1, then at least 
n − (nε/δ) = n/2 colour-(n + 1) items overflow. Therefore at least n/2 + εn = n(1/2 + ε) bins are used for colour-(n + 1)

items in any packing using at most n(1 + ε) bins. Since OPT(In+1) = δn, the number of bins for colour-(n + 1) is at least

OPT(In+1)(1/2 + ε)/δ = OPT(In+1)(1/(4ε) + 1/2)

= �(1/ε)OPT(In+1).

The construction holds for δ < 1/2, so it is valid for ε < 1/4. �
On the other hand, if one wants to keep low colour stretch, no bin stretch smaller than 1.69103 can be achieved.

Theorem 2. For colour stretch (1 + ε), it is impossible to achieve bin stretch better than 1.69103, for sufficiently small ε.

Proof. Consider the following Sylvester sequence with l0 = 1, l j+1 = l j(l j + 1). For some constant m, we assume we have 
items of (m + 1) different colours where, for colour ci, i = 0, . . . , m, we have a list of n items each one with size 1

li+1 + ε, 
where ε is a small enough constant that depends on the value of m. Note however that m is independent of ε, and its value 
will be defined later. For each colour ci an optimal packing OPT(Ici ) for colour stretch uses n

li
bins for i = 0, . . . , m, each bin 

containing exactly li items. We assume for simplicity and w.l.o.g. that li divides n. Let P be the packing corresponding to 
the union of the optimal packings OPT(Ici ) for each colour. Notice that the bins of this packing cannot be joined together.

Now consider an optimal packing P∗ for bin stretch, but which has colour stretch at most (1 + ε). We will show that if 
the packing has colour stretch (1 + ε), then most of the bins for each colour ci are packed like the optimal colour stretch 
packing. So P∗ uses almost the same number of bins as P .

For some colour ci , let kci
j be the number of bins in P∗ that contain exactly j items for j = 1, . . . , li . We want to upper 

bound the number of bins that contain less than li items, which is 
∑li−1

j=1 kci
j . Since P∗ has colour stretch (1 +ε), each colour 

ci must span at most (1 + ε)n/li bins. The number of bins used to pack items of colour ci can be bounded as follows:

kci
li

+
li−1∑
j=1

kci
j = n − ∑li−1

j=1 jkci
j

li
+

li−1∑
j=1

kci
j � (1 + ε)

n

li
,

so we can write

−
li−1∑

jkci
j + li

li−1∑
kci

j =
li−1∑

[(li − j)kci
j ]� εn
j=1 j=1 j=1
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Since (li − j) � 1 for j = 1, . . . , li − 1, the number of bins in P∗ not containing exactly li items of colour ci is at most ∑li−1
j=1 kci

j � εn. Hence there are at least n − (li − 1)εn items that must be packed in bins containing li items. So at least

n − (li − 1)εn

li
= n

li
(1 − (li − 1)ε)

bins are used to pack only items of colour ci . Note that m is a constant and then (li − 1) is O (1). The packing P∗ must use 
at least

P∗(I) �
m∑

i=0

n

li
(1 − (li − 1)ε)

bins, while an optimal solution for bin stretch uses exactly n bins by packing one item of each colour in a bin, so the bound

P∗(I)

OPT(I)
�

m∑
i=0

1 − (li − 1)ε

li

=
m∑

i=0

1

li
− ε(m −

m∑
i=0

1

li
) � 1.69103 − ε′

holds for m � 5 and sufficiently small ε � ε′
m . �

Somewhat surprisingly, the two correct bounds are not symmetric – the upper bounds in the next section show that we 
can indeed achieve (O (1), 1 + ε)-approximation schemes.

4. Offline algorithms

4.1. A (1 + ε, O (1/ε))-approximation algorithm

We now describe how to achieve asymptotically the bound in Theorem 1. We shall make use of the APTAS of Fernandez 
de la Vega and Lueker [8] (VL), which operates as follows:

The APTAS VL fix some ε > 0, and separate items I into small Is (< ε) and large Il (� ε). For the large items, sort them by 
increasing size and partition them into K = 1/ε2 groups, each of at most nε2 items. Round each item up to the size of the 
largest item in its group, to obtain an instance J .

Each bin contains at most 1/ε items from Il , so the total number of different bin types is at most t = (1/ε+K
1/ε

)
, and 

the total number of possible packings using at most n bins is at most 
(n+t

t

)
, which is polynomial in n. Therefore we can 

enumerate these packings and choose the best one. Since we have rounded all items up in size, a packing of the rounded 
up items gives a valid packing of the original items. The following elegant domination argument (from [8]) shows that an 
optimal packing for the rounded up items uses at most a factor (1 + ε) more bins than packing the original items: consider 
rounding down item sizes to the smallest in the group to obtain an instance J ′ . Then a packing for J ′ gives a packing for 
all but the largest group in J , which contains at most nε2 items. Since each item has size � ε, we have OPT(Il) � nε. Thus,

OPT( J ) � OPT( J ′) + nε2 � (1 + ε)OPT(Il).

Now take the small items Is and pack them into the remaining free space using first fit (FF). If we do not open more 
bins, then we already have at most (1 + ε)OPT(I) bins. If we need to add more bins, then clearly each bin except at most 1 
is full to at least 1 − ε. In this case, we have at most OPT(I)/(1 − ε) + 1 � (1 + 2ε)OPT(I) + 1 bins.

Our modification For our problem, we can use the rounding step, but we cannot use the FF step for small items (as some 
colours may be spread over many bins). However, a small change fixes this: group small items by colour, pack each group 
using FF into existing bins having more than 2ε of free space, then open more bins if necessary. With this idea, for each 
colour c, every bin (except at most 1) either contains at least ε weight of colour c, or no items of colour c (if a bin contains 
a large item this is clearly true, and if not, since we used FF and each bin has at least 2ε of free space, at least half of this 
space is used).

So each colour spans at most OPT(Ic)/ε bins, giving the desired colour stretch. For the bin stretch, the argument is 
similar to the one above – if new empty bins are used when packing small items, then each bin is full to at least (1 − 2ε)

and if not, we already have the desired number of bins.

4.2. A (1.7, 1 + ε)-approximation algorithm

We now present an algorithm that almost closes the gap with the lower bound of Theorem 2. For this, we will use both 
the APTAS of Fernandez de la Vega and Lueker (VL) [8] described above, and the online bin packing algorithm Bounded 
Best-Fit (BBF), whose competitive ratio is 1.7 [5].
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Algorithm 1 A (1.7, 1 + ε)-approximation algorithm.
1: Arbitrarily order colours c1 . . . cm .
2: for each colour ci do
3: pack items of this colour into new bins using the APTAS of (VL) (all bins are monochromatic).
4: end for
5: Let P = P (c1) ∪ . . . ∪ P (cm) be all bins generated.
6: Let P ′ be a new packing initially empty.
7: for each item e in the order it appears in P do
8: Pack e into P ′ with BBF.
9: end for

10: Return P ′ .

BBF maintain at most k open bins, and the rest are closed and cannot be reopened. An item of size s is packed into the 
open bin that is most full and has space for the item, breaking ties arbitrarily. If no such bin exists, the fullest bin is closed 
and a new empty bin opened. It is known that BBF with k = 2 has (asymptotic) competitive ratio 1.7 [5].

Our algorithm is presented in Algorithm 1. It first packs items of each colour separated using the algorithm VL. Then 
given all m packings for each colour in some order, we apply the algorithm BBF over the items in the order the items 
appears in these packings.

We now prove a lemma that shall be useful in proving the desired approximation ratio of the algorithm.

Lemma 3. Let b = (B−(k−1), . . . , B0), be some opened bins that may contain items, and let P = (B1, . . . , Bx) be bins packing items of 
some set S. Let P ′ be the packing generated over the items in S by the BBF algorithm in the order they appear in P using the bins in b
as initially opened. Then the number of used bins by P ′ is at most k + x.

Proof. Let P ′ = (B ′
−(k−1)

, . . . , B ′
0, B

′
1, . . . , B

′
y) be the bins in the order they are closed by BBF. We will show that any item 

e ∈ Bi of P for i ∈ {1, . . . , x} is packed in a bin B ′
j of P ′ where j � i.

Assume for contradiction that e ∈ Bi is the first item packed in some bin B ′
j with j > i. Since e is the first such item of 

Bi , all previous items e′ ∈ Bi′ , i′ = 1, . . . , i − 1 must have been packed in a bin B ′
j′ with j′ � i′ . So bin B ′

i only contains items 
of Bi . But since P is a valid packing, there must be room for e in B ′

i . �
Theorem 4. The algorithm computes (1.7, 1 + ε)-approximate packings.

Proof. The time bound follows since the number of colours is polynomial in n, and both algorithms VL and BBF run in 
polynomial time. In steps (1–4) we generate packings P (ci) for each colour ci such that P (ci) � (1 + 2ε)OPT(ci) + 1. In steps 
(7–9) of the algorithm it is used the BBF algorithm to pack the items in the order they appear in P = (P (c1), . . . , P (cm)). 
Since the BBF algorithm keeps at any time k = 2 opened bins, by the previous Lemma 3, in the final packing P ′ we 
have for each colour ci , P ′

ci
(I) � (1 + 2ε)OPT(Ici ) + 3. Since BBF has approximation factor 1.7 we also have the bound 

P ′(I) � 1.7OPT(I) + O (1) for the entire packing. �
It is interesting to note that just packing the items of each colour in order using bounded best fit gives a 

(1.7, 1.7)-approximate packing (for the bin stretch, ignore colours then the entire packing is 1.7-approximate, and for 
colour stretch use Lemma 3 above to get Pc � 1.7OPT(Ic) + O (1) since the algorithm is bounded space).

Note that in order to have the (1.7, 1 + ε)-approximation we need a bounded space online algorithm on step 8 of 
Algorithm 1, but not necessarily any online bounded space algorithm would work. We have to use an algorithm that satisfies 
the property of Lemma 3. Consider the Harmonic algorithm [15] for instance. If we have an instance consisting of just one 
colour, then after step 8, the Harmonic algorithm would have separated items by types of sizes creating an entire new 
packing and the (1 + ε)-colour stretch would be lost.

5. Online algorithms

We now consider the online version of the problem. Coloured items arrive and must be packed with no knowledge of 
future arrivals. The main difficulty with constructing an online algorithm is that we don’t know in advance the total weight 
of each colour, but on the other hand would like to reserve space so that colours of small weight aren’t spread over many 
bins.

5.1. Impossibility of online (O (1), O (1))-approximation

Even under the restriction that items are � ε, there is still a lower bound L � 1.5403 for the online classical bin packing 
problem, due to by Balogh et al. [1] which improved a previous lower bound of 1.5401 by van Vliet [17]. In this case, L is 
also a lower bound for both bin stretch and colour stretch; we cannot hope to do better in either parameter. To see this, 
consider packing items of only one colour, then the number of bins used cannot be smaller than LOPT + O (1).
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We now show that no online (O (1), O (1))-approximation scheme exists. The idea is to consider items in rounds. In each 
round an optimal packing for the items needs a single extra bin. If a scheme has bin stretch O (1) it only needs O (1) bins 
per round, but if the instance has a large number of colours then some fraction of colours will be forced to split every few 
rounds, from which it follows that some colour must split in at least a constant fraction of rounds.

Theorem 5. There is no (α, β)-approximation online algorithm for the coloured bin packing problem where (α, β) are constants.

Proof. Consider an instance where there are n different colours and where each item has size 1/n. We analyze the packing 
in rounds and in each round we receive a list L of n items of n different colours. There will be at most nx rounds where x
is the number of bins necessary to pack any colour after nx rounds, and n is going to be defined later.

Let Ii be the total number of items until round i (there are ni). Since the optimal packing for bin stretch uses i bins, any 
(α, β)-algorithm must use at most αi bins by round i. W.l.o.g. assume that in each new round the algorithm uses at most 
α bins, since otherwise it will have approximation ratio > α and the adversary will stop at this point. The algorithm may 
use less than α bins in one round and more than α bins in a later round, but the average per round must be α. So we can 
assume that the algorithm opens α bins per round even if it will only use some bins in a later round. So we focus on the 
colour stretch. We will consider at most nx rounds, and so there are at most nx items of each colour. Clearly the optimal 
packing for colour stretch has x bins per colour, so A must guarantee that each colour spans at most xβ bins.

In each round the algorithm has α bins available and some other bins that were partially filled. Since the bin stretch is 
guaranteed to be at most α, the only job of the algorithm is to keep the β approximation in colour stretch. We now show 
that any algorithm A must incur colour stretch larger than β on the request sequence.

Define s(i) = α + α2 + . . . + αi , with s(0) = 0. For i � 1, stage i consists of rounds (s(i − 1) + 1) . . . s(i). At the end of 
stage i the algorithm has αs(i) bins available, and items of total weight s(i). It can be seen that

s(i + d) = αds(i) + s(d) > αds(i). (1)

We consider groups of d + 1 stages, where d = � 5
log α �. We will show that for every group of d + 1 stages, there exists a set 

of at least n/8 colours that split during this group, i.e. colours that need to be packed in more bins than the ones available 
in the beginning of the group.

Here is the proof of this claim. Assume that less than n/8 colours split during the first d stages of the group starting 
at round s(i) + 1. Then there is a set of at least 7n/8 colours that do not split during the next d stages. All items of these 
colours remain packed in the first αs(i) bins. In this case, we have items of weight

7

8
(s(i + d) − s(i)) + s(i) = 1

8
(7s(i + d) + s(i))

>
7

8
αds(i)

going into at most αs(i) bins (the last inequality uses (1)). Now we choose d so that 7
8 αds(i) > αs(i), which is satisfied by 

taking d = � 5
log α � > log 8/7

log α + 1.
This shows that at least 7n/8 (> n/8) colours (say C ′) must split during the following (i.e. (d + 1)th) stage. The argument 

for this is the following: consider all the bins that contained items of colours C ′ at the start of the group. All these bins 
become overfull just by considering the weight of items with colours in C ′ . So for every colour c in C ′ , at least one of its 
bins splits, and so at least |C ′| colours split.

Clearly, an item of every colour is contained in some bin at the start of every group, so the claim implies that af-
ter q(d + 1) stages, we have at least qn/8 splittings. So taking q > 8xβ , after 125xβ

log α > 8xβ(d + 1) stages, we have had 
>xβn splittings, so some colour must have split >xβ times. It remains to choose n large enough so that we have at least 

α
α−1 2125xβ > s( 125xβ

log α ) rounds. �
5.2. An online (3, 1.7)-approximation

In this section we provide an online algorithm that computes (3, 1.7)-approximate packings, but we need to assume that 
each item has size at least ε > 0, where ε is a constant. Note that in the approximation factors there is a dependency on 
the value of ε, since the bin stretch is limited by 3OPT(I) + O (log 1/ε) and the colour stretch is limited by 1.7OPT(I) +
O (log 1/ε).

W.l.o.g. assume that ε = 1
2 j for some positive integer j. We consider two types of bins: isolated, that corresponds to bins 

packing only items of a given colour, and non-isolated, that may pack items of different colours. For each i = 1, . . . , j we 
define some special bins which we call level-i bins. A level-i bin is divided in exactly 1/2iε regions each of size 2iε for 
i = 1, . . . , j. These regions are monochromatic (each region contains items of at most one colour). A region in some level-i
bin is called a level-i region. We use a modified NF algorithm MNF to pack items into non-isolated bins, and switch to BBF 
to pack colours in isolated bins. MNF is similar to NF and a description is given in Algorithm 2.
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Algorithm 2 Modified Next Fit (MNF).
1: To pack item e of colour c and size s(e)
2: Let i be the highest level where an item of colour c is packed
3: (Let i = 1 if this is the first item of colour c)
4: if e can be packed in the level-i region then
5: Pack e into this level-i region
6: else
7: Let l > i be the lowest level such that 2lε � s(e)
8: Pack e into a new level-l region (possibly creating a new level-l bin)
9: end if

Algorithm 3 A (3, 1.7)-approximation algorithm.
1: To pack item e of colour c and size s(e)
2: if colour c has level < j then
3: Pack e with MNF in the non-isolated bins
4: else
5: Pack e with BBF in the isolated bins.
6: end if

Notice that each colour occupies at most one level-i bin, for each level i = 1, . . . , j. We say that a colour c has level i
if i is the largest level of a bin containing items of colour c. The following algorithm uses MNF to pack items of the same 
colour until the colour has level j. When this happens the algorithm starts packing items of the colour in isolated bins (the 
last level- j bin is also considered an isolated bin) using the BBF algorithm. A description is given in Algorithm 3.

A region is used when there are items packed on it. A bin is used when all its regions are used. The following lemma 
states that level-i bins that are used, have at least 1/3 of their capacity used by items. Notice that for each level i, at most 
one level-i bin is not using all its regions, since a new level-i bin is created only when all existing level-i regions are used. 
So there are at most O (log 1

ε ) = O (1) non-isolated bins that have some unused regions.

Lemma 6. Consider the non-isolated bins that have all their regions in use. On average, each bin has at least 1/3 of its capacity used 
by items.

Proof. We will prove this by considering the levels used by any colour c using non-isolated bins.
For each colour c, a group is a maximal sequence of regions 2kε, 2k+1ε, . . . , 2k+pε used by colour c (each colour may 

occupy a number of disjoint groups). We will show that for each group, its regions used by colour c have 1/3 of their area 
occupied. Let 2kε, 2k+1ε, . . . , 2k+pε be a group used by colour c.

We have two cases:

• p is odd: Consider the pairs of adjacent regions

(2kε,2k+1ε), . . . , (2k+p−1ε,2k+pε).

Since we used MNF to pack the items, for each pair of regions the total weight of items is at least the size of the region 
in the lowest level. Since the higher level region is twice the size of the lower one, each pair has at least 1/3 of its area 
occupied.

• p is even: If k � 2 then there is an item in the first region 2kε of the group that could not fit in a previous used 
region by colour c. This item was packed in the smallest region with room for it. So this item occupies at least 1/2
of region 2kε. If k = 1 then the assumption that s(e) � ε implies that this region is filled by at least 1/2. The remaining 
regions 2k+1ε, . . . , 2k+p−1ε, 2k+pε can be paired as in the odd case, and for each pair at least 1/3 of its total area is 
occupied. �

With this result we can prove the following theorem:

Theorem 7. The algorithm is a (3, 1.7)-approximation scheme, and uses space at most O (m).

Proof. Since we use BBF to pack isolated bins we can guarantee that on average at least 1/2 of the area of the isolated 
bins is occupied, and for the non-isolated bins, the previous lemma says that at least 1/3 of the capacity of these bins is 
occupied, with the exception of at most O (log 1/ε) bins. So for bin stretch we have a bound of 3OPT(I) + O (log 1/ε).

Now we consider the colour stretch. For a colour c using only non-isolated bins, it must use at most O (log 1/ε) bins, 
which is a constant. If a colour c also uses isolated bins, then by the performance bound of BBF [5], it uses at most 
1.7OPT(Ic) + O (log 1/ε) bins. The approximation ratio (3, 1.7) is then valid if 1/ε is bounded by a constant.

For the space bound, BBF uses at most O (1) open bins per isolated colour, and MNF uses at most one open bin per level 
which is O (log 1/ε), a constant. �
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Algorithm 4 (2 + ε, 1.7)-approximation.
1: Let g = 1/ε
2: For each colour c let w(c) = 0
3: To pack item e of colour c and size s(e)
4: if w(c) � g then
5: Pack e into non-isolated bins using FF
6: w(c) ← w(c) + s(e)
7: else
8: Pack e into isolated bins of colour c using FF
9: end if

We may also consider trying to improve the bin stretch bound of 3 by using a variation of FF instead of NF in the 
modified next fit scheme. A ‘modified first fit’ MFF works as MNF except that step 2 is replaced by ‘let i be the lowest level 
occupied by colour c with space for e’, so that we try to pack e in each of the used regions, packing it in the first such region 
with space for e. This requires at most O (log 1/ε) open bins per colour, but one may expect better performance, bearing in 
mind that FF beats NF. The following result shows that this is not the case, and using MFF provides no improvement in the 
bin stretch.

Theorem 8. Using either MFF or MNF, the approximation factor (3, 1.7) is tight.

Proof. Consider that ε = 1
2 j for some positive even integer j. Notice that the regions size are (2ε, 4ε, . . . , 1/2, 1) which is 

equal to ( 1
2 j−1 , 1

2 j−2 , . . . , 12 , 1). We will consider pairs of colours (c, c′). Assume that for colour c we receive j items in the 
following order: an item of size 1

2 j−i followed by an item of size 1
2 j−i +γ , for i = 0, 2, 6, . . . , j − 2, where γ > 0 is arbitrarily 

small. Then we receive items of colour c′ . For colour c′ we have j − 2 items in the following order: an item of size 1
2 j−i + γ

followed by an item of size 1
2 j−i , for i = 1, 3, . . . , j − 3.

Using the MFF (or MNF) algorithm to pack these items, for colour c we will have items 1
2 j , 1

2 j +γ , . . . , 1
22 , 1

22 +γ packed 
respectively in regions 1

2 j−1 , 1
2 j−2 , . . . , 12 , 1. For colour c′ we will have items 1

2 j−1 +γ , 1
2 j−1 , . . . , 1

23 +γ , 1
23 packed respectively 

in regions 1
2 j−2 , 1

2 j−3 , . . . , 1
22 , 12 . Pairing items of each colour we can see that they use approximately 1/3 of the allocated 

area for each pair (for small γ ). So for each colour it uses approximately 1/3 of the total area allocated to it. An optimal 
packing of the items of the colours (c, c′) uses one bin almost full. To see this, note that the sum of the sizes of the items 
of these colours is

j∑
i=2

1

2i
+

j∑
i=2

(
1

2i
+ γ ) =

j−1∑
i=1

1

2i
+ ( j − 1)γ �

∞∑
i=1

(1/2)i = 1

for sufficiently small γ (i.e. 1
( j−1)·2 j ). So for appropriate values of j and letting γ → 0, the sum of item sizes of each pair of 

colours can be made arbitrarily close to 1. We can then consider arbitrarily large instances by using many pairs of colours, 
thus establishing an asymptotic lower bound on 3 on bin stretch.

In the same instance we consider a special colour c∗ where we first receive an item of size 1 and then an instance that 
provides the worst case ratio 1.7 for the BBF algorithm (see [12]). Then for colour stretch the bound 1.7 is also tight. �
5.3. An online (2 + ε, 1.7)-approximation

In this section we show how to extend the algorithm of the previous Section 5.2 to get an online algorithm that computes 
(2 + ε, 1.7)-approximate packings. We assume that each item has size at least ε > 0.

The algorithm also uses isolated and non-isolated bins. It pack items of colour c in non-isolated bins while the total size 
of packed items of colour c, w(c) � g , where g = 1/ε. When w(c) > g the algorithm uses isolated bins to pack items of 
colour c (see Algorithm 4).

Theorem 9. The algorithm is a (2 + ε, 1.7)-approximation.

Proof. First consider colour stretch. For each colour c, it uses at most g/ε non-isolated bins, because each item has size at 
least ε. When w(c) > g it packs all items of this colour in isolated bins, and since we use the FF algorithm we can bound 
colour stretch by 1.7OPT + O (g/ε).

Now for bin stretch we have the following. At the end of the execution of the algorithm, it uses N1 non-isolated bins. 
It uses some isolated bins as well for large colours (the ones with w(c) > g). There are some large colours that uses just 
one isolated bin, and assume there are k of these large colours. There are some other large colours that uses more than one 
isolated bin, and assume that in total the algorithm uses N2 bins for these large colours.
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Since we used FF to pack the items in non-isolated bins we know that on average each one of the N1 bins are full to 
1/2. For the same reason the N2 bins used by large colours that uses more than one bin are full on average by at least 1/2. 
So the following bound is valid OPT �

∑
e s(e) � (N1 + N2)/2.

Notice that the algorithm starts to use isolated bins for colour c, only when w(c) > g , and then we also have the bound 
OPT �

∑
e s(e) � k · g .

The approximation ratio of the algorithm is then bounded as follows

ratio = N1 + N2 + k

OPT

� N1 + N2 + k∑
e s(e)

� N1 + N2

(N1 + N2)/2
+ k

gk
= 2 + 1/g.

Since g = 1/ε the algorithm is a (2 + ε, 1.7)-approximation. �
6. An APTAS to approximate optimal bin stretch

Our lower bounds show that it is impossible in general to achieve a (1 + ε, 1 + ε)-approximation. We now show that 
for any colour stretch β > 1 and every class of instances that admit a (1, β)-approximate packing, we can compute a 
(1 + ε, (1 + ε)β)-approximate packing in polynomial time. In this section we consider that the number of different colours 
m is bounded by a constant; relaxing this restriction remains open. It is also worth noting that our problem now is slightly 
different since we are assuming instances that admit a (1, β)-approximate packing, and in general there are instances that 
do not admit such packings (see Theorem 1).

We shall use OPTβ(I) to denote the smallest number of bins needed to pack items I using colour stretch � β . Similarly 
(by slight abuse of notation), OPTβ,c(I) is the number of bins spanned by colour c in such a packing. Clearly, OPTβ,c(I) �
βOPT(Ic). The scheme we describe below computes a packing P satisfying (1) total number of bins P (I) � (1 + ε)OPTβ(I) +
O (1), and (2) for each colour c, it uses at most Pc(I) � (1 + ε)OPTβ,c(I) + O (1) � β(1 + ε)OPT(Ic) + O (1) bins.

The idea is to use a variant of the grouping and rounding technique, but to explicitly work with the instance where items 
are rounded down. We are able to show that by packing some very large items and very small items separately, only a few 
items ‘overflow’ from some optimal packing OPT, and thus we can still achieve the desired colour stretch and bin stretch.

Denote by Il the items in I with size at least ε2 (large items), and I s the remaining items in I (small items).

Packing large items Partition the large items by colour: Il = I1, . . . , Im and let nc = |Ic| be the number of items of each 
colour c. Then sort each colour Ic by decreasing order of item size and partition it into at most M = �1/ε3� groups 
Ic1, Ic2, . . . , IcM , i.e. Ic = Ic1‖ . . .‖IcM where ‖ is a concatenation operator. Each group has �ncε

3 items except perhaps 
the last.

For each group of each colour, round down the items to the size of the smallest item in the group (by contrast with VL, 
who round up item sizes). As before, we can enumerate all such packings: the number of items per bin is at most y � 1/ε2, 
and the number of distinct item sizes is a constant mM (recall m is the number of colours and is assumed to be a constant). 
Thus, there are at most r′ = (y+Mm

y

)
different bin configurations. We shall do something more involved with the small items, 

so we shall attach to each bin configuration a subset of colours that shall be used for the small items later on. This gives 
at most r = r′2m total configurations so the number of feasible packings into at most n bins is bounded by 

(n+r
n

)
� (n + r)r . 

Notice that among the configurations there are some that may contain bins with no large items, and just have a subset of 
colours attached to show that small items can be packed later.

We enumerate all such packings, and keep only those that have colour stretch at most β (ignoring the additive constant). 
One of these packings corresponds exactly to an optimal packing after removing its small items and with its large items 
rounded down.

A similar domination argument to before will now show that at least one of these packings has close to the desired 
colour stretch and bin stretch. Let P be one of the enumerated packings with colour stretch at most β . Since item sizes 
were rounded down, each group Icj in P gives a packing for the items with original sizes in the next group Ic( j+1) (all 
these items have smaller size than the previous group). The only items not packed by this are those in the first group (with 
largest size) – denote these items by Q = ∪m

c=1 Ic1.
The ‘very large’ items in Q are packed into new bins using first fit (FF), considering all items of one colour before the 

next colour. Let P (Q ) be the size of the packing obtained in this way. The following simple argument shows that these very 
large items will contribute only a small amount to the total bin and colour stretch.

Lemma 10. P (Q ) � εOPT(I) and P (Q c) � εOPT(Ic) for each colour c.
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Algorithm 5 APTAS(I).
Require: Number of different colours m in I is O (1)

1: Fix ε > 0
2: Split items I into small (<ε2) I s and large (�ε2) Il

3: Group large items by colour and sort by decreasing size
4: Group large items of each colour into �1/ε3� groups and round item sizes down in each group
5: Enumerate all packings of large items, with attached ‘small colours’ labels
6: For each colour c, pack remaining ‘very large’ items Q c using FF
7: For each packing P , solve LPS to add small items
8: For each packing P , pack the overflowing small items into new bins using FF
9: Return the best packing that has colour stretch at most β

Proof. Clearly first fit packs at least one item per bin. Since |Q | � ∑
c ncε

3, and each item has size at least ε2, we have 
P (Q ) � εOPT(I). Since we apply first fit to items grouped by colour, the same argument establishes the claim for colour 
stretch. �
Packing small items Let P = {B1, . . . , Bk} be a packing of the large items Il . We now wish to pack carefully the small items 
I s into P .

The packing of the small items is obtained from a solution of a linear program. Recall that when enumerating packings 
of large items, each bin was tagged with a subset of colours that could be used to pack small items. Let Ni ⊆ {1, . . . , m}
be the set of possible colours that may be used to pack the small items in the bin Bi of the packing P . For each colour 
c ∈ Ni , define a non-negative variable xi

c . The variable xi
c indicates the total size of small items of colour c to be packed in 

the bin Bi . Denote by s(Bi) the total size of items already packed in the bin Bi . Consider the program denoted by LPS:

max
k∑

i=1

∑
c∈Ni

xi
c s.t.

s(Bi) +
∑
c∈Ni

xi
c � 1 i = 1, . . . ,k (1)

k∑
i=1

xi
c � s(I s

c) c = 1, . . . ,m (2)

where I s
c is the set of small items of colour c in I . The constraint (1) guarantees that the total size of items packed in each 

bin does not exceed the bins size and constraint (2) guarantees that the sum of the values of variables xi
c is not greater 

than the total size of small items.
Given a packing P , and a fractional packing of the small items, we do the following: for each variable xi

c we pack, 
while possible, the small items of colour c into the bin Bi , so that the total size of the packed small items is at most xi

c . 
The possible remaining small items (the ‘overflowing’ items) are packed using FF into new bins, again grouped by colour 
(meaning pack all items of one colour before the next).

Approximation ratio We will claim that there exists a packing P such that after the very large items Q and the small 
items I s have been packed into P , it has the desired bin and colour stretch. In particular, at least one packing uses at most 
(1 + O (ε))OPTβ(I) + O (1) bins in total and at most (1 + O (ε))OPTβ,c(I) + O (1) � β(1 + O (ε))OPT(Ic) + O (1) bins for each 
colour c.

Theorem 11. Let β > 1 be the desired colour stretch. The algorithm finds a packing P such that P (I) � (1 + O (ε))OPTβ(I) + O (1), 
and Pc(I) � β(1 + O (ε))OPT(Ic) + O (1) for each colour c.

Proof. Let OPTβ be an optimal packing for the instance I with colour stretch β . Let OPT′
β be the packing OPTβ without the 

small items and with the large items rounded down as described. Assume that each bin of OPT′
β has an indication of the 

colours of small items used in the corresponding bin of OPTβ . Clearly in the enumeration step of the algorithm one packing 
with the same configuration of OPT′

β with rounded items, is generated. This gives a packing P for the original items in 
Il \ Q . Notice that the number of bins used by P and OPTβ is the same. The very large items in Q are packed separately.

In the packing P there must be enough room to pack all small items, since there is in OPTβ . When packing the small 
items (guided by the fractional packing LPS), at most one small item of each colour is not packed into each desired bin. So, 
the total size of small items that overflow and need to be packed into new bins is at most OPTβ(I)ε2m. These small items 

use at most 
⌈

OPTβ (I)ε2m
(1−ε2)

⌉
+ 1 new bins, since each bin is full to at least (1 − ε2) except perhaps by the last one. Considering 

colour stretch, each colour c uses at most 
⌈

OPTβ (Ic)ε
2

(1−ε2)

⌉
+ 1 new bins.

The algorithm packs these small items in new bins obtaining a new packing P ′(I \ Q ). The number of bins is at most
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P ′(I \ Q ) � OPTβ(I) +
⌈

OPTβ(I)ε2m

1 − ε2

⌉
+ 1 (2)

� (1 + O (ε))OPTβ(I) + O (1). (3)

Considering colour stretch we have, for each colour c,

P ′(Ic \ Q c) � OPTβ(Ic) +
⌈

OPTβ(Ic)ε
2

1 − ε2

⌉
+ 1 (4)

� (1 + O (ε))OPTβ(Ic) + O (1). (5)

To finish the proof, it remains to consider the very large items Q . For these, Lemma 10 shows that they need an extra ε
fraction of bins for each colour and in total. Notice that in order to obtain a truly (1 + ε) approximated solution, we need 
to rescale the value of ε, for example by using ε′ = ε/m due to the factor m multiplying ε in the term OPTβ(I)ε2m on 

equation (2). So the running time of the entire algorithm is dominated by the enumeration step which is O (nO (1/ε′ 2)m/ε′ 3

) =
O (nO (m2/ε2)m4/ε3

). �
7. Open problems

• Improved approximation ratio. Can we get an online algorithm with (1.7 + ε, 1.7 + ε) approximation ratio, with the 
assumption on minimum item sizes?

• Multicoloured items. The multicoloured case is also interesting: fix a set of (possibly unbounded) colours C , and let 
each item have several (say at most k) colours from C . The original definitions of colour and bin stretch still apply. By 
allowing k copies of each item to be packed, it is certainly possible to reuse any (α, β)-approximation algorithm in this 
paper to construct one with bin stretch kα and colour stretch β . Is it possible to do better?

• Network packing version. Let the items form a graph as follows: the vertices are the items, and the (weighted or 
unweighted) distance between two items is a measure of how closely together the items should be ‘packed’. The notion 
of bin stretch is as before, and colour stretch is replaced by the following notion of ‘strong diameter stretch’: for a set of 
vertices X , let diam(X) be their ‘strong diameter’, i.e. maxu,v∈X dG (u, v). Let B(X) be the bins spanned by items in X . 
Then strong diameter stretch is maxX⊆V

diam(X)
|B(X)| . What bounds can we achieve when using this quantity, and does it 

depend on e.g. the expansion of G?
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